
Model of hematopoiesis dynamics under IFNα
therapy in Myeloproliferative Neoplasms

Abstract. Hematopoiesis is a complex process in which stem cells in the
bone marrow produce all the cells circulating in the blood. When spe-
cific mutations occur in the stem cells, such as the JAK2V 617F mutation,
for example, this process can be altered leading to the development of
hematological malignancies such as Myeloproliferative Neoplasms. Inter-
feron alpha (IFNα ) is a treatment that allows a hematological response
in patients, but also in some cases a molecular response. However, its
precise mechanism of action is still poorly understood, and there are no
clear guidelines on the use of this treatment for clinicians. In this arti-
cle, we model the action of the IFNα on the hematopoiesis dynamics in
order to study in particular its effect at the level of stem cells. Using a
Bayesian parameter estimation method and data from a patient under
treatment for several years, we show that IFNα could act on cancer stem
cells by promoting their quiescence exit and thus their proliferation while
allowing their exhaustion from the stem cells stock by increasing their
propensity to make differentiated divisions.

Keywords: Dynamic Systems · Computational Bayesian Statistics ·
CMA-ES · Hematopoiesis · IFNα Therapy · Myeloproliferative Neo-
plasms

1 Introduction

Hematopoiesis is the process leading to the production of all blood cells. This is
a hierarchical system at the top of which is the hematopoietic stem cell (HSC).
HSCs harbor two properties: long-term self-renewal and multipotency (property
to give rise to all blood cell types). HSCs can commit to successive types of
progenitors, which are cells engaged in cell differentiation and which retain the
potential to give several types of blood cells. More restricted progenitors commit
to precursors which lose the ability to proliferate but can mature into fully dif-
ferentiated cells. Hematopoiesis is, therefore, a succession of cell differentiation
and proliferation steps involving many different cell types. HSC deregulation
can give rise to hematological malignancies. Among them, Myeloproliferative
Neoplasms (MPN) occur as a result of the mutation of specific genes in HSC
located in the bone marrow. This leads to a disturbance in hematopoiesis. In
the particular case of Polycythemia Vera (PV), it results in an overproduction
of red blood cells in the patient which can lead to medical complications such as
thromboses or hemorrhages. These pathologies can also progress to secondary
leukemia. Understanding MPN diseases remains a challenge for biologists, both
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because hematopoiesis is a complex dynamic system and because HSCs are dif-
ficult to access. Several driver mutations for MPN have already been identified,
including the JAK2V 617F gain-of-function mutation in the gene that codes for
Janus Kinase 2, a protein that plays a crucial role in cell signalling [1]. However,
the precise role of this mutation in the dynamics of the disease and the selective
advantage it provides during all steps of cell differentiation remains incompletely
understood.
Advances in the understanding of this disease are crucial to enable the devel-
opment of treatments that will lead to a patient’s recovery. Interferon alpha
(IFNα), a natural inflammatory cytokine that has long been used in the treat-
ment of many diseases, has shown promising results in MPN. Indeed, IFNα
induces not only a hematological response, i.e. a normalization in blood cell
counts, but also a molecular response, i.e. a reduction of mutated cells [2, 3].
In order to enable the development of personalized medicine, it is necessary to
be able to understand and quantify the impact of this treatment on (mutated)
hematopoietic cells, particularly in HSC.
Mathematical modelling and proper statistical methods can help biologists and
physicians achieve these goals. There are many proposals for mathematical mod-
els of hematopoiesis in the scientific literature [4–6]. In particular, they have been
widely used to describe leukaemia, as in [7, 8] for example. One of the advantages
of these models and their usefulness to biologists is the possibility of inferring
stem cell dynamics. For example, Michor et al. [9] show with a compartmental
model that imatinib targets leukemic stem cells which can lead to a molecular
remission.
In this paper, we propose a new compartmental model of hematopoiesis to de-
scribe the dynamics of healthy and cancer hematopoietic cells under the action
of IFNα. In particular, we focus on the drug effect on the HSC. We make the
hypothesis that the treatment can lead to a molecular remission by promoting
quiescence exit and differentiated divisions of the HSC. We develop a method
for estimating the parameters of the model based on a Bayesian framework. Fi-
nally, we apply this method to data from a PV patient undergoing treatment to
validate our hypotheses.

2 Model

2.1 Data and experimental setup

Observational patient study. At Gustave Roussy cancer research institute,
an observational prospective study is underway on a cohort of 50 MPN patients
treated with IFNα for several years. These patients are mainly suffering from
Essential Thrombocythemia or Polycythemia vera (PV), and harbor mutations
in JAK2, CALR or MPL gene [1]. The patients generally present a mix of cells
that are heterozygous (denoted with the symbol ’het’, mutation on one allele),
homozygous (’hom’, mutation on both alleles following a mitotic recombination)
and even healthy that are called wild-type (’wt’). The patient considered in
this article is a 59-year-old male individual with a JAK2V 617F PV. Written
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informed consent was obtained in accordance with the Declaration of Helsinki
and the study was approved by the Ethics Committee from CHU DIJON and
Commission Nationale de l’Informatique et des Libertés (CNIL) (authorization
#915663). He had been under treatment with IFNα for six years and received
a variable posology with primarily high doses of IFNα, up to 180µg weekly.
Most of his mutated cells are homozygous. Data were collected approximately
every four months for four years and annually afterwards. We denote {ti}i∈I the
set of sampling dates, relatively to the start of treatment, with I indexing the
measurements.

Measures. Using regular blood samples, we measured the proportions of mu-
tated cells at two levels. First, at the level of mature cells, we measured for the
granulocytes the global allelic fraction of mutated genes by Taqman allelic dis-
crimination qPCR. That is, for these cells, we cannot distinguish between het
and hom cells. For all i ∈ I, ŷi is the allelic fraction measured at time ti.
The second level involves the earliest stages of hematopoietic dynamics cor-
responding to immature cells. Based on the surface markers CD34+CD38+,
CD34+CD38−CD90− and CD34+CD38−CD90+, we isolated the different pro-
genitor cells from the others cells, purified them and sorted at one progenitor per
well in 96-well plates. Each progenitor gave a progeny of cells (colony) after 10
to 15 days of culture. The genotyping of each colony by Taqman allelic discrim-
ination qPCR enabled to retrospectively know the genotype of each progenitor.
This allowed us to know precisely how many wt, het and hom immature cells
were in our subsample. At a given time ti for i ∈ I, we denote these numbers
n̂i, n̂

′
i and n̂′′i respectively. Because this subsample is of reduced size (around 200

progenitors), the mutated immature cell proportions deduced are not fully rep-
resentative of those from the entire progenitor population within the patient’s
body. This induces a sampling noise that we model adequately in the next para-
graph.

2.2 Noise model

Mature cells. At time ti, the measured clonal fraction ŷi corresponds to an
unknown real fraction yi. We have ŷi, yi ∈ [0, 1]. Conventional uncertainty models
are additive or multiplicative Gaussian noises that are not entirely appropriate
in our case. We choose to generalize them as follows:

ŷi|yi ∼ N (yi, σ
2(yi)) (1)

with σ2 : [0, 1] −→ R. By choosing for the function σ2 a constant, we find
ourselves with an additive noise and by choosing σ2(yi) = σ2

my
2
i we find our-

selves with a multiplicative noise. In this article, in order to have a noise that is
maximum at yi = 1/2 and vanishes for yi = 0 = 1, we choose:

σ2(yi) = yi(1− yi)σ2
m (2)
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Immature cells. To model the sampling noise we have for the mutated clonal
fractions of progenitors, we assume that we have randomly drawn with replace-
ment immature cells from the patient’s body. This approach is used, for example,
by Catlin et al. [10] and allows to model the uncertainty by a multinomial law.
For a large number of immature cells in the body, the approach is almost iden-
tical to that of Xu et al. [5] who consider a multivariate hypergeometrical law
used to model sampling without replacement. Let’s consider that at date ti for
i ∈ I, the real proportions of het and hom immature cells are respectively z′i
and z′′i (and zi = 1− z′i − z′′i ). From the set of immature cells, of unknown but

very large number, we draw a number N̂i := n̂′i + n̂′′i + n̂i of cells. Among these
cells, we have exactly n̂′i het and n̂′′i hom mutated cells. Since they are random
variables, they follow a multinomial law:

P [n̂i = n1, n̂
′
i = n2, n̂

′′
i = n3|z′i, z′′i ] =

(n1 + n2 + n3)!

n1!n2!n3!
zn1
i z′i

n2z′′i
n3 (3)

2.3 Compartmental model

One brick for one cellular type. To describe the dynamics of cell differ-
entiation and proliferation, we propose a compartmental model in which each
compartment represents a category of cells in the hematopoietic hierarchical
structure. This type of model is commonly used in the literature, for example,
in [7, 9]. Our first assumption is the absence of interaction between wt, het and
hom mutated cells. We choose to treat these three types independently and
identically. For a given type, we will then end up with a system of Ordinary
Differential Equations (ODE), with parameter values that are specific to the
cell type under consideration. This is what we call the basic building brick of
the model, shown in Figure 1. Two compartments correspond to the non-stem

Fig. 1. One brick of the model. Schema of the 4 hematopoietic compartments for a
given cellular type (wild-type, heterozygous or homozygous) and under given treatment
conditions (with or without IFNα) and the associated parameters.

cells, related to the data in our possession (see § 2.1). Mature cells will die at
the rate δm. Immature cells leave their compartment at the rate δi. The pa-
rameter κm models the proliferation of cells from progenitors to mature cells.
Two compartments correspond to stem cells. Indeed, HSCs are far from being
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a homogeneous whole. Instead, there appears to be a continuum of states, from
proliferating active stem cells to quiescent states. Compartment 2 represents ac-
tive cells, which can proliferate. These cells are recruited at a rate α to contribute
to hematopoiesis. Once recruited, these cells divide. We consider three possible
types of division for stem cells [15]:

– Asymmetric division, where one HSC generates one HSC and one differenti-
ated cell, with a frequency of occurrence equal to p1

– Symmetrical division, where one HSC generates two HSCs, with a frequency
of occurrence equal to p2

– Differentiated division, where one HSC generates two differentiated cells,
with a frequency of occurrence equal to p0 = 1− p1 − p2

We denote ∆ := p2−p0 which expresses the balance between these three mecha-
nisms of division. For ∆ = 0, we are in the conditions of homeostasis, for ∆ < 0
there is an exhaustion and for ∆ > 0 an invasion of the stem compartments.
Finally, the rates γ and β model exchanges between compartments 1 and 2. We
do not make any assumption on the nature of these two compartments. In the
biological literature, one could find, for example, the distinction between dor-
mant or non-dormant [11]. In the end, the system of equations to describe the
dynamics of a given hematopoietic cell population (wt, het or hom) is as follows:

dN1(t)
dt = −γN1(t) + βN2(t)

dN2(t)
dt = γN1(t) + (α∆− β)N2(t)

dNi(t)
dt = α(1−∆)κiN2(t)− δiNi(t)

dNm(t)
dt = δiκmNi(t)− δmNm(t)

(4)

With N1(t), N2(t), Ni(t) and Nm(t) the numbers of cells, of a given type, in
compartments 1, 2, immature and mature respectively at time t. The proposed
ODE system is linear, and we can derive an analytical solution.

Considering all cell types. We have described above the dynamics for a
population of cells of a given type. In practice and to be consistent with our
experimental data, we do not have access to the quantities of wt, het or hom
cells separately, but to their relative proportions. To take this into account, we
consider that each population of a given type follows an ODE system as described
in eq. (4). Then we will consider as outputs of our model no longer the numbers
of cells but the proportions of immature heterozygous and homozygous cells

respectively z′(t) =
N ′

i(t)
Ni(t)+N ′

i(t)+N
′′
i (t) and z′′(t) =

N ′′
i (t)

Ni(t)+N ′
i(t)+N

′′
i (t) as well as

the mature cell allele burden y(t) =
0.5·N ′

m(t)+N ′′
m(t)

Nm(t)+N ′
m(t)+N ′′

m(t) where every contribution

of het cells is only counted for one half. In terms of notation, we use zero, one
and two apostrophes for wt, het and hom cells. For convenience, we define k′i
such that κ′i = k′iκi and likewise k′′i , k

′
m and k′′m.
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Effect of IFNα and initial conditions. So far, we have not talked about the
effect of IFNα in the model. Following the idea of Michor et al. [9], we consider
that IFNα acts by modifying the values of some parameters in the model. We
consider that time t = 0 corresponds to the beginning of the treatment. Before
that time, the equations (4) are still valid, but we consider that the homeostatic
conditions are satisfied, i.e. the system is in a quasi-stationary state. This is of
course verified for wt cells as soon as ∆ = 0, which gives us the following initial
conditions: N1(0) = β

β+γNHSC , N2(0) = γ
β+γNHSC , Ni(0) = κiα

δi
N2(0) and

Nm(0) = κmδi
δm

Ni(0) with NHSC the total wild-type HSC number considered
constant. For mutated cells, we know that the homeostatic condition is not
verified since they tend to invade the stem cell compartment. But since the
invasion happens over a long time (over 30 years), we assume ∆′ ≈ ∆′′ ≈ 0+.

We introduce η′ =
N ′

1(0)+N
′
2(0)

NHSC
and χ′ =

N ′
2(0)

N ′
1(0)+N

′
2(0)

. We can then express the

initial conditions for het cells: N ′1(0) = η′(1 − χ′)NHSC , N ′2(0) = χ′η′NHSC ,

N ′i(0) =
κ′
iα

′

δ′i
N ′2(0) and Nm(0) =

κ′
mδ

′
i

δ′m
N ′i(0). The same goes for hom cells. From

t = 0, the patient is under treatment. IFNα will then modify the values of the
parameters, potentially in different ways depending on the cell type. In terms of
notation, we add the subscript ∗ to the parameters impacted by the drug. We
define ki∗ such that κi∗ = ki∗κi and similarly for k′i∗, k

′′
i∗, k

′
m∗ and k′′m∗. From

t ≥ 0, eq. (4) remain valid with new parameters, and there is an equilibrium
shift. This induces a new dynamics. From our data, we estimate the values of
the model parameters. This is the subject of the next section which presents the
parameter estimation method.

3 Method

3.1 Bayesian framework and MCMC algorithm

To estimate the parameters of the model described above, we consider a Bayesian
framework. Let M be the model considered, σ2

m the parameter introduced in
eq. (2) and θ the random vector of the parameters to be estimated. Our goal is
to estimate the posterior distribution of θ knowing the data:

P[θ, σ2
m|D,M] ∝ P[D|θ, σ2

m,M] P[θ] P[σ2
m] (5)

with D = {n̂′i, n̂′′i , n̂i, ŷi}i∈I the set of all measures for the considered patient.
For clarity, we omit to mention M in the following and we consider that σ2

m is
included in the parameter vector θ we want to estimate. The prior distribution
is chosen uniform (see table 1). The expression of the likelihood is obtained from
the noise model presented in §2.2. We have

P[D|θ]
(1)
=
∏
i∈I
P[(n̂′i, n̂

′′
i , n̂i, ŷi) |θ]

(2)
=
∏
i∈I
P[(n̂′i, n̂

′′
i , n̂i) |θ] P[ŷi|θ] (6)

with (1) because conditionally on θ, the measures are independent, and (2)
because we consider that the measures for immature and mature cells are ob-
tained through two independent experiments. We do not have an analytical
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expression for the posterior. We approximate the distribution by sampling from
it with a Markov Chain Monte Carlo (MCMC) algorithm, more specifically
the Metropolis-Hastings algorithm. It relies on a proposal distribution that we
choose as a multivariate normal distribution with zero mean and Σ as covari-
ance matrix. Potentially, the parameter space dimension is large. In that case, the
Metropolis-Hatings algorithm often proves inefficient, as it becomes complicated
to define a covariance matrix that allows a good convergence of the algorithm.
Adaptative algorithms have been proposed to circumvent this problem [14]. We
propose here an alternative and simpler method which proved very efficient in
practice. We start by learning the covariance matrix of the proposal distribution
and by choosing a starting point of the Markov chain located at the maximum
a posteriori using the CMA-ES method [12] as detailed below.

3.2 Setting the MCMC algorithm using CMA-ES method

The CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) algorithm
is a stochastic method for optimization that gives good results in a wide range
of problems, including problems that are non-linear, non-separable and in high
dimension [12]. This algorithm searches for the maximum of a function over gen-
erations. At each generation, a sample of λ individuals (i.e. parameter vectors)
is generated, according to a multidimensional normal distribution whose mean
and variance-covariance matrix is computed from the selected individuals of the
previous generation. Among these λ offsprings, we select µ (those which give
the highest values for the posterior). These are the ones we use for the next
generation. This continues until we reach the maximum number of generations
ng or if the estimated value for the maximum no longer changes sufficiently over
the generations. The basic equation for sampling the individuals, for generation
number g = 0, 1, 2, · · · , ng reads [13]:

θ
(g+1)
k ∼m(g) + σ(g)N

(
0,C(g)

)
for k = 1, . . . , λ (7)

with m(g) the mean value of the search distribution, σ(g) the step-size and
C(g) the covariance matrix at generation g. We use this algorithm to find the
maximum a posteriori (MAP) of the distribution defined in eq. (5). We use it
as starting point for our MCMC algorithm. Moreover, learning the covariance
matrix in the CMA-ES is analogous to learning the inverse Hessian matrix in
a quasi-Newton method [13]. Thus, we choose for the covariance matrix of the
Metropolis proposal the one learned by the CMA-ES method and setΣ = C(ng).

4 Results

4.1 Parameter estimation

The model presented above in §2.3 potentially has a large number of parame-
ters. However, in this paper, we estimate parameters using data from a single
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Table 1. Parameter estimation

Parameter Mean Variance range Parameter Mean Variance range

γ 1.51e-03 8.91e-07 [0.0, 0.05] η′′ 0.123 1.28e-03 [0.0, 2.0]
β 2.90e-02 1.47e-04 [0.0, 0.05] γ′∗ 2.43e-02 1.59e-04 [0.0, 0.05]
α∗ 2.71e-02 1.56e-04 [0.0, 0.05] ∆′′∗ -0.404 2.30e-02 [−1, 1]
km∗ 0.513 7.51e-02 [0.05, 1.0] η′ 1.44e-02 3.73e-05 [0, 2]
k′′m 11.894 6.48 [1.0, 20.0] ∆′∗ -0.694 4.54e-2 [−1, 1]

patient. In order to reduce the risk of over-fitting, it is necessary to make several
assumptions concerning the parameters, in particular regarding those that vary
among the wt, het or hom cell subtypes, with or without IFNα effect. The vari-
ous simplifying assumptions are as follows: α = α′ = α′′ = 0.00375 (considering
that 150 HSCs are recruted each day, among around 40.000 over 100.000 [15, 11],
to contribute to hematopoiesis and that this is independent from the cell type),
γ∗ = γ and β∗ = β (meaning that the drug does not target healty HSCs), δi =
δ′i = δ′′i = δi∗ = δ′i∗ = δ′′i∗ = 1/6 and δm = δ′m = δ′′m = δm∗ = δ′m∗ = δ′′m∗ = 1/3
(knowing that wild-type granulocytes have a lifespan of the order of magnitude
of the day), k′′i∗ = k′i∗ = ki∗ = 1 (meaning that IFNα does not influence the
proliferation for immature cells), k′′i = k′i = 1 (meaning that the mutation does
not give a competitive advantage at the progenitor level), χ′′ = χ′ = γ/(γ + β),
β∗′ = β′′∗ = β, k′′m∗ = km∗ = k′m∗ (meaning that IFNα affects equally all mature
cells), k′m = k′′m and γ′∗ = γ′′∗ (meaning that there is only little difference be-
tween het and hom cells) and finally α′∗ = α′′∗ = α∗ (meaning that IFNα affects
equally the HSC quiescence exit). In the end, we have 10 parameters to estimate.
Applying the method described in section 3, and burning the first samples, we
obtain the estimations given in Table 1.

4.2 Convergence of the algorithms

The validity of the results presented in the previous paragraph depends on the
convergence of the algorithms used. Following the method presented in section 3,
we start by estimating the maximum a posteriori (MAP) using the CMA-ES
algorithm. In Figure 2, top right, we observe the logarithmic value of the MAP
over the different generations of the CMA-ES algorithm (where we sample 50 new
individuals at each generation). The algorithm converges after 80 generations.
Next, we use an MCMC sampling method, where the covariance matrix of the
Metropolis proposal is learned using the CMA-ES method and rescaled to obtain
a correct acceptance rate, as shown at the bottom right of Figure 2. We iterate
over a sufficient number of times until the convergence of the ergodic means
of the parameters. In the upper left corner of Figure 2, we see the example of
the ergodic mean for ∆′′∗ . At the bottom left of the same figure, we can also
observe the chain generated for this parameter, showing a correct exploration of
the parameter space.
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Fig. 2. Top left: ergodic mean of the parameter ∆′′∗ illustrating the convergence of
the MCMC schema; bottom left: MCMC chain of the parameter ∆′′∗ showing how
the parameter space is explored; bottom right: variation of the acceptance rate with
iterations, it fluctuates around 0.4; top right: log-value of the posterior as a function
of the generation with the CMA-ES algorithm

5 Discussion

5.1 Effect of IFNα

As we can see in Figure 3, obtained after propagating uncertainties using a
Monte-Carlo method, IFNα affects the hematopoiesis dynamics of the patient
in a positive manner: it reduces the number of cancer cells not only in the
immature and mature compartments but also in HSCs. We can observe this
phenomenon looking at the dotted purple curve which corresponds to the HSC

allelic burden defined as follows: yHSC(t) =
0.5·(N ′

1(t)+N
′
2(t))+N

′′
1 (t)+N ′′

2 (t)

N1(t)+N ′
1(t)+N

′′
1 (t)+N2(t)+N ′

2(t)+N
′′
2 (t) .

After estimating the model parameters from real data, we can propose some
hypotheses on the effect of IFNα on HSCs. First, our model suggests that it
may play a role in altering the balance between symmetrical, asymmetrical and
differentiated divisions of stem cells and in promoting differentiated divisions.
Indeed, almost surely, the values of the parameters ∆′′∗ and ∆′∗ are negative.
Their posterior distributions, as we can see on the left of figure 4, are centred
around the mean values −0.404 and −0.694 respectively. Secondly, we show
that IFNα could promote stem cell proliferation by increasing the value of the
parameter α. We estimate that P[α∗ > α] = 0.989. Lastly, IFNα seems to
promote the quiescence exit of the mutated stem cells, favouring the passage
from compartment 1 to 2. We have E[γ′′∗ /γ] = 18.8 and in Figure 4, on the right,
we visualize the distribution of this ratio. Next, we should confirm these results
by performing the study on a more significant number of patients. This step
could also help understand whether one of these three effects is more important
than the two others.
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Fig. 3. Dynamics of the mutated clonal fraction for the patient under treatment and
comparison with real data. The shaded bands represent 95% confidence intervals.

5.2 Adding patients

Despite the many simplifications made in paragraph 4.1 to reduce the number
of parameters to be estimated, it remains quite large compared to the number of
data in our possession, leading to a risk of over-fitting. The results obtained and
discussed should, therefore, be confirmed based on data from the entire cohort.
This way, we could understand what the dominant effect of IFNα on all patients
is. However, most of the model parameters are not generic but patient-specific.
Multiplying the number of patients will not increase the robustness if it only
results in the multiplication of the number of parameters. To circumvent this
problem, we will extend the proposed Bayesian framework with a hierarchical
model. The hierarchical model hinges on the modification of the expressions
for the priors by adding hyper-parameters. With these new hyper-parameters,
we can bind the parameters of all patients, which introduces robustness in the
parameter estimation by reducing the variance on the results [16].

5.3 Pharmacodynamics

The model presented in this article aims to test hypotheses concerning the im-
pact of IFNα on hematopoiesis and cancer cells. We built the model on the
assumption that the treatment acts on the model parameters in a static way, i.e.
the model parameters will potentially take new values as soon as t ≥ 0, date of
the beginning of the treatment, and will keep these values throughout the ther-
apy. However, as we mentioned in the paragraph 2.1, the IFNα dosage evolves
throughout the patient follow-up. The changes in the dosage might explain, for
example, the last value observed for the mature cell allele burden on graph 3.
The next step is to extend our model so that it can dynamically take into ac-
count changes in posology in order to understand how dosage affects the patient’s
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Fig. 4. On the left, posterior distributions of the parameters ∆′′∗ and ∆′∗. On the right,
posterior distribution of the ratio γ′′∗ /γ

response to treatment. This could also help to determine optimal posology to
achieve molecular remission in patients.

6 Conclusion

Based on biological knowledge, we proposed a hematopoiesis model in order to
test the effect of the IFNα treatment on mutated hematopoietic cells, primarily
stem cells. We designed this compartmental model in coherence with observa-
tion data of the experimental protocol of a prospective medical study at Gustave
Roussy cancer research institute. Our data come from a patient followed for sev-
eral years. We then modelled the uncertainties in the experimental measurements
and implemented a parameter estimation method based on Bayesian statistics.
Due to the complexity of the hematopoiesis model and the measurement noise
model, the parameter posterior distribution were numerically approximated. To
do this, we developed a method combining a classical MCMC-type algorithm
initialized and configured from the results of an optimization algorithm, the
CMA-ES method. Our method eased the convergence of the Metropolis-Hastings
algorithm, especially in high dimension. We were then able to test our biological
hypotheses and see to what extent IFNα allowed the molecular remission of the
patient by acting on the stem cell stock. Our preliminary results seem to confirm
our hypothesis that IFNα acts on stem cells by promoting the quiescence exit of
stem cells, particularly mutated stem cells, and by leading to the exhaustion of
the stock of mutated stem cells by promoting the differentiated division mecha-
nism. These results will be confirmed by studying all patients in the cohort and
by the implementation of a hierarchical Bayesian framework which enables to
have more robust results. Once confirmed the impact of IFNα on stem cells, the
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next step will be to study the effect of posology in order to provide patients with
personalized treatments.
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