Studying the influence of regulatory mechanisms
in the treatment of Myeloproliferative
Neoplasms

Abstract. Myeloproliferative neoplasms (MPN) are clonal disorders of
hematopoietic stem cells caused by driver mutations, essentially in JAK2.
IFNa therapy has shown promising results in MPN blood cancers, lead-
ing in some cases to molecular remission. However, the mechanism of
action of IFN« remains unclear. To better understand the effect of IFN«
on MPN patients, our team previously proposed a mathematical model
of hematopoiesis calibrated using longitudinal data from a cohort of pa-
tients. A potential limitation in our model was the absence of feedback
regulation. In this article, we study several ways to implement regulatory
mechanisms. Using Bayesian statistical inference and a model selection
procedure, we find that our data are consistent with the hypothesis that
the production of wild-type polynuclear neutrophils (PNN) might be
regulated through red blood cells. However, we only slightly improve our
previous results, suggesting that regulatory mechanisms would only play
a minor role in the hematopoietic dynamics of MPN under IFNa. More
data would be required to validate our hypothesis. If confirmed, our find-
ings would imply that the measure of the variant allele frequency (VAF)
among PNN, as done in clinical routine for patient monitoring, might
not be an appropriate proxy of the VAF among progenitor cells, nor a
good estimator of the instant effect of IFNa.
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1 Introduction

Myeloproliferative Neoplasms (MPN) are malignant hematological pathologies
resulting in the overproduction of matures blood cells and the deregulation of
hematopoiesis. The disease is often detected belatedly after complications such
as thrombosis or cardiovascular events and can degenerate to acute leukemia.
These blood cancers occur following the acquisition of a specific somatic muta-
tion in a hematopoietic stem cell (HSC). The primary driver mutation of the
MPN disease affects the JAK2 protein (mutation JAK2V617F) that plays a cru-
cial role in cell signaling [2]. Following homologous recombination, homozygous
malignant subclones can develop in parallel to the heterozygous ones.

Advances in the understanding of this disease are crucial to enable the devel-
opment of treatments that will lead to a patient’s recovery. Interferon alpha
(IFNa), a natural inflammatory cytokine that has long been used to treat many
diseases, has shown promising results in MPN. Indeed, IFN« induces not only



a hematological response, i.e., a normalization in blood cell counts, but also a
molecular response, i.e., a reduction of mutated cells [4, 5].

In order to enable the development of personalized medicine, it is necessary to
be able to understand and quantify the impact of this treatment on (mutated)
hematopoietic cells. In previous work, Mosca et al. [1] tried to achieve this goal
by building a mathematical model, calibrating it based on longitudinal observa-
tions from a cohort of patients, and finally inferring the HSC dynamics under
IFNa. Their model proved to describe most of the patient’s dynamics adequately,
yet some limitations and subsequent avenues for improvement were identified. In
particular, their model did not integrate any regulatory mechanisms that might
be relevant to explain why some patients exhibit high measures of variant allele
frequency (VAF) among polynuclear neutrophils (PNN). Feedback regulations
have been widely used for modelling hematopoiesis, as by Marciniak et al. [6] or
Jiao et al. [7]. In such models, some mature, fully differentiated hematopoietic
cells influence their own production through a metabolic pathway involving cy-
tokines.

In this article, we explore several ways to consider regulatory mechanisms and
study their influence on the treatment of MPN. We derive different alternative
models and use a Bayesian model selection procedure based on the Akaike infor-
mation criterion (AIC) and the deviance information criterion (DIC). We apply
this procedure using data from one illustrative patient. Then, we estimate the
parameters of the selected model for several patients of the cohort.

2 Models

2.1 Based model without regulation

The model of Mosca et al. [1], without regulation, is the based model that we
will further extend to include regulatory mechanisms. The description in this
section was presented in more details in their previous work.

One brick for one cellular type. To describe cell differentiation and prolif-
eration dynamics, Mosca et al. [1] proposed a compartmental model in which
each compartment represents a category of cells in the hematopoietic hierar-
chical structure. The first assumption was the absence of interaction between
wild-type (wt), heterozygous (het), and homozygous (hom) mutated cells. For
each of these three genotypes, the authors ended up with a system of ordinary
differential equations (ODE), as presented in eq. (1) and schematised in black
in fig. 1, with parameter values specific to the cell type under consideration.

In this model, PNN die at the rate dpn . Progenitors leave their compartment
at the rate §;. Parameter k,, models the proliferation of cells from progenitors
to mature cells. HSCs can be quiescent (compartment 1) or active (compart-
ment 2). In the latter case, HSCs can be recruited at a rate o to contribute
to hematopoiesis. Once recruited, these cells divide. It was assumed that three
division types occur at different rates (or probabilities). First, the HSC may
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Fig. 1: Tllustration of the cell compartments and parameters used in our different
models (adapted from [1]). The four black compartments are those from the
based model. We study the impact of regulatory mechanisms on the parameter
Km that models the production of mature cells from progenitors. We study two
hypotheses: either PNN are regulated through PNN (feedback regulation, blue
line) or through red blood cells (red compartment) which have a much higher
lifespan than PNN (~120 days vs ~1 day).

divide asymmetrically (with probability p;) and give rise to one HSC and one
differentiated cell that further proliferates and becomes a progenitor. Second,
the HSC may divide symmetrically (with probability ps) and give rise to two
HSC. Finally, the HSC may undergo a differentiated division and give rise to two
differentiated cells (with probability po = 1 — py — p1). Parameter A := ps — po,
which expresses the balance between these three division mechanisms, will be
used in the following. Finally, the rates v and 8 model exchanges between com-
partments 1 and 2. In the end, the system of equations to describe the dynamics
of a given hematopoietic cell population (wt, het or hom) was as follows:

AN — Ny (t) 4 SNo(t)
dz\gt(t) = YNy (t) + (@A — B)No(t) (1)
AN = (1 — A)kiNa(t) — 6N (1)

dt
M%;V(t) = 0ikmNi(t) — 0pNNNpnn(t)

With Ni(t), Nao(t), Ni(t) and Npyn(t) the numbers of cells, of a given geno-
type, in compartments 1, 2, immature and mature (PNN) respectively at time ¢.
Appropriate indices should be used - both for parameters and numbers of cells
- whether we refer to wt, het or hom cells.

Considering all cell types. The dynamics described above models the be-
haviour of a cell population of a given genotype. Yet, data from Mosca et al. [1]
do not provide information about absolute values for quantities of wt, het or hom



cells separately, but rather their relative proportions. To take this into account,
Mosca et al. considered that each population of a given genotype followed an
ODE system as described in eq. (1). Then, they considered as outputs of their
model no longer the numbers of cells but the proportions of immature heterozy-

gous cells znet (t) = §r NLA,Z; Ftt)(j')Ni,hom( 77 (and similarly for hom cells) as well as
0.5 Npnw.net () +Npw N nom (t
the mature VAF among PNN y(t) = g0 ane D Fusnnonll) o For con-

venience, k; pet was defined such that k; pet = ki petoi and likewise k; nom, Km, het
and Ky, hom.-

Effect of IFN« and initial conditions. Following the idea of Michor et al. 8],
Mosca et al. [1] considered that IFNa acts by modifying the values of some pa-
rameters in the model. Time ¢t = 0 corresponds to the beginning of the treatment.
Before that time, equations (1) are still valid, but it is assumed that the homeo-
static conditions are satisfied, i.e. the system is in a quasi-stationary state. This
is of course verified for wt cells as soon as A = 0, which gives the following ini-
tial conditions: N1(0) = ﬁﬁT,YNHSC» N2(0) = 515 Nusc, Ni(0) = 5> N2(0) and
Npnn(0) = ;P’L‘Z N;(0) with Nggc the total wild-type HSC number considered
constant. For mutated cells, Mosca et al. assumed that Aper =~ Apom ~ 0F.
They also introduce npe; = Nl’h”(ﬁ;ﬁzh”(o) and Xpet = Nl,,wff?)’)ﬁfﬁég,),m(o) for
expressing the initial conditions for het and hom cells. From ¢ = 0, patients are
under treatment. IFNq is assumed to modify the values of some parameters,
potentially in different ways depending on the cell type. In terms of notation,
the superscript * is added to the parameters impacted by the drug. From ¢ > 0,
eq. (1) remains valid with new parameters, and there is an equilibrium shift that

induces a new dynamics.

2.2 Regulatory functions

The based model of Mosca et al. [1] was linear, and no interaction between geno-
types was assumed. To extend their model, we consider a feedback regulation
carried on by mature cells (see blue or red lines in fig. 1). Feedback regulation is
relatively standard in biological systems and has, for example, been studied by
Marciniak et al. [6] in hematopoiesis. Here, we assume that feedback regulation
only impacts the production of mature cells (and not stem cells). Indeed, Mosca
et al. obtained good fits for the dynamics of progenitor cells with their based
model (as we can see for example on the left of fig. 3), which suggested that,
if regulations mechanisms had a role to play, it would rather be at the level of
immature cells than HSCs.

Biologically, JAK2Y 51 "Fmutation affects the cell signaling [2] and makes the mu-
tated cell less dependent on cytokines and growth factors: mutated cells might
escape regulatory controls, especially homozygous compared to heterozygous
cells. Thus, we choose to model a feedback regulation for wt and, to a lesser ex-
tent, for het progenitors, assuming that R, wi = Fm,wt (Nm,het (t) + N hom (£))
and R het = Em,het(Nm,hom (t)) are not constants anymore but functions of a
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quantity of mutated mature cells (more precision in the next paragraph). Then,
the ODE systems we consider become non-linear and coupling between mutated
and wild-type cells is introduced. Actually, regulation in biological systems is not
directly carried on by cells but by cytokines. However, as done, for example, by
Marciniak et al. [6], we consider that the number of cytokines might be directly
proportional to the number of mature cells so that we can assume that these
cells directly intervene in the regulatory functions.

To note that, biologically, it would be more accurate to consider a feedback reg-
ulation based on the whole number of mature cells (and not only the mutated
ones). Our approach is an approximation that allows us to simplify the expres-
sion of the initial conditions and easily get a lower regulation in heterozygous
cells than wt cells as expected biologically.

We study two different functions classically used for modelling feedback regula-
tion, either a Hill function:

Rm,

) T

(2)
or a sigmoid:

R (N) = 26, (1 - 1+expl(—pzv)> 3)

where in both cases, R (0) = K, and Nlir_r: Em(N) = 0. p is the regulatory
— 400

parameter to estimate. In the Hill function, we also introduce parameter n that
we choose to set constant and equal to 2.

2.3 Regulation through different cell types

Regulation through PNN. Polynuclear neutrophils (PNN) are white blood
cells with a life span of about one day. In the data from Mosca et al. [1], these
are the cells used for measuring the VAF among mature cells. A first hypothesis
would be that PNN regulate their own production through a feedback regulation.
This is schematized with the blue line in fig. 1. In that case, the quantity IV that
appears in eq. (2) and (3) is Npn N hom OF NpNN het + NPNN hom according to
whether the regulation is acting on het or wet cells respectively.

The ODE system for homozygous cells will remains the same as for the based
model (eq. (1)). For wt and het cells, the last line of system (1) is changed,
introducing the dependence of the cell number Npnn hom (and also Npyn het
for wt cells) in &,,.

Regulation through RBC. Red blood cells (RBC) have a much higher lifes-
pan than PNN (about 120 days). Erythropoiesis - i.e., the production of RBC -
is known to be regulated through the action of the erythropoietin (EPO). This
cytokine acts on cells that possess the corresponding receptor (EpoR). Until re-
cently, there was no biological evidence suggesting that PNN (and progenitor
committed towards the granulocyte lineage) might be regulated through EPO



(or equivalently through the intermediary of RBC) since the EpoR was thought
to be found essentially on erythroid cells. However, recent findings in the mouse
demonstrated that EpoR could be expressed in other hematopoietic cells, includ-
ing progenitor cells [3]. These findings might be consistent with the hypothesis
that RBC might regulate the production of PNN (in addition to their own pro-
duction).

To test this second hypothesis, we adapt the based model of Mosca et al. [1]
by considering an additional compartment describing RBC, as depicted in red
in fig. 1. Since we have no data about these cells, we assume a similar behavior
to PNN, except for the lifespan 1/0gpc > 1/6pnyn. The ODE system (1) is
modified accordingly with an additional equation and the introduction of the
interaction within genotypes through the feedback regulatory function &,,. We
get for wild-type cells (omitting the subscript wt for clarity):

nglt(z) = —yN1(t) + BN2(t)
S0 0 0)+ e B0

dit(t) _ O[(]. _ A)/{,LNQ(t) — (SzNz(t) (4)
dNpN N (1)

= 62Rm (Nmut,RBC (t))

i
dNRdiBtc(t) = 0iRm (Nmut,rBC(t))

N;(t) —opnnNpnn(t)
N;i(t) — drcNrBC (1)
with Nmut,RBC(t) = NRBC,het(t) + NRBC,hom(t>-

3 Statistical inference and model selection

3.1 Data

The data we consider are from Mosca et al. [1]. Briefly, several MPN patients
have been followed during five years over an IFNa therapy. Data were collected
approximately every four months, both for progenitor cells and mature cells.
Concerning mature cells, VAF among PNN was measured by Tagqman allelic
discrimination qPCR. We model the uncertainty on the observation using a
Gaussian noise. Concerning immature cells: based on the surface marker CD34™,
progenitor cells were isolated from the others cells, purified, and sorted at one
progenitor per well in 96-well plates. Each progenitor gave a progeny of cells
(colony) after 10 to 15 days of culture. The genotyping of each colony by Tagman
allelic discrimination qPCR enabled Mosca et al. to know the genotype of each
progenitor retrospectively, allowing them to know precisely how many wt, het
and hom immature cells were in each subsample. At a given time t;, for a given
patient, these numbers are denoted 7;, 7j per and 7 pom, respectively. Because the
subsamples are of reduced size (around 200 progenitors), the mutated immature
cell proportions deduced are not fully representative of those from the entire
progenitor population within the patient’s body. This induces a sampling noise
that Mosca et al. [1] modeled using a multinomial law.

In this article, we consider only JAK2V617Fpatients with VAF measures that go
beyond 50%. Indeed, for patients with low VAF, studying the effect of regulatory
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mechanisms might no be as pertinent. We first compare our different models
based on patient #32 who is an illustrative patient of the study from Mosca et
al. Then, we estimate the parameters of the model we would have selected for
patients #3, 12, 18, and 20 from the cohort of Mosca et al. [1].

3.2 Parameter estimation

To estimate the parameters of each model we study, we consider a Bayesian
framework. Let M be the model considered and € the random vector of the
parameters to be estimated. Our goal is to estimate the posterior distribution of
0 given the data:

P[9|D, M] x P[D|9, M] P[6] (5)

with D = {m’hmﬁi,hom,ﬁi’thAFi}iel the set of all measures (collected at
different timepoint ¢; for ¢ € I) for the considered patient. For clarity, we omit
to mention M in the following. The expression of the likelihood is as follows:

P[D|6] Y ] Pl(n,n/ 2, VAF,) 8] 2 ] Pl 2, 7s) |6] PIVAF:|O]  (6)
1€l 1€l

with (1) because conditionally on 6, the measures are independent, and (2)
because the measures for immature and mature cells are obtained through two
independent experiments. We do not have an analytical expression for the poste-
rior. We approximate the distribution by sampling from it with a Markov Chain
Monte Carlo (MCMC) algorithm, more specifically the Metropolis-Hastings al-
gorithm. It relies on a proposal distribution that we choose as a multivariate
normal distribution with zero mean and X as covariance matrix. Potentially,
the parameter space dimension is large. In that case, the Metropolis-Hatings al-
gorithm often proves inefficient, as it becomes complicated to define a covariance
matrix that allows a good convergence of the algorithm. Adaptative algorithms
have been proposed to circumvent this problem [10]. We proposed an alternative
and simpler method which proved very efficient in practice. We start by learning
the covariance matrix of the proposal distribution and by choosing a starting
point of the Markov chain located at the maximum a posteriori using the CMA-
ES algorithm [9].

We made the code for estimating the parameters of our different models publicly
available on GitLab!. Several assumptions have been made by Mosca et al. to
further decrease the number of parameters to estimate so that the based model
could be identifiable given the data they had. These assumptions are presented
in more detail in [1] and implemented in our code. A summary table of the pa-
rameters is presented in Figure 2. We end up with seven parameters to estimate
for the based model, which are presented in Table 2.

! link hidden to respect the blind peer review process
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Fig.2: Summary table of the parameters used in the based model (from Mosca

et al. [1]).
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3.3 Model selection

Once having estimated the parameters of each model we study, for patient #32,
we want to compare them and select the one that performs best. For that pur-
pose, we use two different criteria. The first one is the Akaike Information Criteria
(AIC):

AIOZ2]€—2]Og(IP[D|9MLE,M]) (7)
with 0,1, the maximum likelihood estimator and k the number of parameters
to estimate. To note that, since we consider uniform prior distributions, @515
is also the maximum posterior estimator. It could be estimated both using the
output of the CMA-ES algorithm or based on the generated MCMC.

The second criterion we use is the deviance information criterion (DIC) [11],
broadly used in Bayesian model selection problems:

DIC = D (E[0|D, M]) + 2pp (8)

With the deviance defined by D(0) = —2log (P[D|6, M]) and pp the effective
number of parameters defined, following Gelman et al. [12], by pp = 0.5V[D(8)].

4 Results

4.1 Red blood cells could regulate the production of mature cell

Model Regulatory function| AIC | DIC

Based model NA 132.1|142.4
Regulation through PNN Hill function 133.8|144.6
Sigmoid 133.6/140.5

Regulation through RBC Hill function 132.1| 138
Sigmoid 132.3| 146

Table 1: Results of the model selection procedure applied on patient #32.

To find how regulation could potentially impact the hematopoietic dynamics
during IFNa therapy, we apply our model selection procedure using the data
of patient #32, who is an illustrative patient in the study of Mosca et al. [1],
with many data points and an interesting dynamic. Indeed, we observe a typical
bell curve for this patient, with a first increase of the proportion of mutated
cells among progenitors and PNN just after the start of the therapy, and then
a slow decrease. Moreover, patient #32 exhibits a high VAF among PNN, with
a proportion of mutated mature cells that remain at a high level even after the
CF of progenitor cells decreases. Such behavior was poorly fitted with the based
model (fig. 3, left). Intuitively, such observation suggests a regulatory mechanism
that would influence the proliferation of mature cells. Besides, since the cells we
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Fig. 3: Inferred dynamics for patient #32 from the based model (left) vs the
model with a regulation through RBC and a Hill regulatory function (right). 95%
credibility intervals are obtained by propagating uncertainties using a Monte-
Carlo method.

are dealing with (progenitors and PNN) have a short lifespan of some days, it
suggests a memory effect over several months that might be carried on by RBC
(that have a higher lifespan of ~120 days).

We tried to verify the plausibility of this hypothesis by applying our model
selection procedure. We ran our Metropolis-Hasting algorithm (after using the
CMA-ES algorithm) over 1 million iterations and a burn-in of 100,000. The re-
sults are presented in Table 1. Looking at the AIC, our alternative models with
regulations perform all worse than the based model because of the penalization
of the additional parameter to estimate. Only the model with feedback regula-
tion through RBC and a Hill regulatory function performs as well as the based
model. We get slightly different results by considering the DIC, with two mod-
els performing better than the based model and the model performing the best
being the same as for the AIC.

Thus, our data are consistent with the hypothesis that the production of PNN
would be regulated through RBC, the model that encapsulates this hypothesis
getting the best performance. However, according to our criteria, we obtain only
a slight improvement compared to the based model. Comparing the inferred
dynamics between the based model and the best model in Figure 3, we still ob-
serve that the inferred dynamic for PNN looks visually better with the model
implementing regulatory mechanisms. In particular, the 95% credibility interval
reaches the two measures at 400 and 500 days, which was not the case for the
based model. It might suggest that regulation plays a minor role and that a
model implementing such effects might only be relevant if we had access to more
observations.
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Fig.4: Inferred dynamics for four additional patients (for the best model with
feedback regulation through RBC). 95% credibility intervals are obtained by
propagating uncertainties using a Monte-Carlo method.
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Fig. 5: Posterior distribution of the regulatory parameter p for each five patients

we consider.
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#3 #12 #18 #20

km,hom | 5.40 [1.61, 14.7] | 1.61 [1.11, 2.02] 1.40 [1.01, 2.24] [10.46 [6.6, 15.1]

Nhom |0.23 [0.17, 0.31] | 0.35 [0.26, 0.44] 1.87 [1.62, 2.1] 0.04 [0.02, 0.07]

Yhom | 0.06 [0.03, 0.1] [0.009 [0.006, 0.013] | 0.004 [0.003, 0.004] | 0.02 [0.01, 0.04]
nom |-0.14 [-0.2, -0.11] |-0.33 [-0.46, -0.23] | -0.86 [-0.99, -0.67] [-0.35 [-0.63, -0.17]

Nhet | 0.07 [0.03, 0.13] | 0.01 [0.0, 0.02] 1.63 [1.41, 1.86] 0.01 [0.0, 0.01]

Vier |0.03 [0.01, 0.08] | 0.03 [0.0, 0.09] 0.0034 [0.003, 0.004] | 0.02 [0.0, 0.06]
net |-0.40 [-0.95, -0.15]|-0.11 [-0.44, 0.02] 0.09 [0.05,0.13] [-0.46 [-0.96, -0.08]

P 1.42 [0.03, 5.06] | 1.26 [0.05, 3.77] 0.90 0.3, 1.55] 0.94 [0.03, 3.45]

Table 2: Estimating the parameters of the best model for four additional patients.
Expected values along with their 95% credibility interval are displayed.

4.2 Regulatory mechanisms would play a minor role in IFN«
therapy

We then estimated the posterior distributions of the parameters (for the best
model, i.e., with feedback regulation through RBC and a Hill regulatory func-
tion) for four other patients who exhibit a high VAF among PNN. The expected
parameter values and the corresponding 95% credibility interval are presented in
Table 2. In this article, we are mainly interested in the regulatory parameter p
(see eq. (2) and (3)), which posterior distribution is displayed for each patient we
considered in Figure 5. Regulatory mechanisms might play a more critical role
for these four additional patients than patient #32. Indeed, we estimate higher
mean values for parameter p. However, except for patient #18, values near 0
are reached with a high probability, confirming the low influence of regulatory
mechanisms in MPN dynamics under IFNa. Comparing the AIC between the
based model and the model with feedback regulation through RBC, we found
that this latter model performed only better for patient #18.

The inferred dynamics for these four patients are presented in fig. 4. Compared
to the results obtained by Mosca et al. [1], we get few differences in the inferred
dynamics, except for patient #3. For this latter, the based model could not
reach VAF about 100%, contrary to what we can observe with our model with
regulation.

5 Discussion

Using mathematical modelling and Bayesian model selection, we explored how
regulatory mechanisms could influence the dynamics of hematopoietic cells for
MPN patients over IFNa therapy. We extended the work of Mosca et al. [1]
by implementing different mechanisms that would regulate the production of
PNN. We tested two main hypotheses: a feedback regulation carried on by PNN
or regulation through RBC. The first hypothesis is a natural extension of the
based model when the second one is based on recent findings having evidenced
the existence of the EPO receptor on non-erythroid cells [3]. Our results were
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mixed. Based on both the AIC and the DIC criteria, we found that the best
model would be the one with regulation through RBC and a Hill regulatory
function. However, we only slightly improved the results that we got with the
based model, which does not allow us to conclude with confidence that RBC
would truly regulate PNN. More reasonably, our results would suggest that reg-
ulation might play a role for some patients with high VAF among mature cells,
but only a minor one. Given the observations from Mosca et al., our results
suggest that it might not be relevant to implement regulatory mechanisms in
their model since such implementation results in an additional parameter to
estimate and does not strongly improve the data’s fit. We also only explored
a limited number of regulatory mechanisms; we can not exclude that another
model would perform much better than ours. Biological regulatory mechanisms
involve complex metabolic pathways, and appropriate modeling would probably
require many parameters to estimate.

Finally, more data would be required to validate the hypothesis that RBC reg-
ulate the production of PNN during IFNa therapy. Such findings might have
clinical implications. Since PNN have a short life span of about one day, their
measure is used as a proxy of the instant effect of IFNa among progenitor and
mature cells. However, regulated production of PNN through cells with a higher
life span - in this case RBC - would imply that the VAF among PNN also embeds
some information about RBC production months ago. Thus, VAF measures of
PNN should be considered with caution.
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