diff --git a/src/MarkovProcesses.jl b/src/MarkovProcesses.jl index 243ccee291878858c51d76457bda3044753d9fa1..4e0964d0c69ae9e077e8780765708ec997ac2356 100644 --- a/src/MarkovProcesses.jl +++ b/src/MarkovProcesses.jl @@ -10,11 +10,11 @@ import DelimitedFiles: readdlm, writedlm import Distributed: @everywhere, @distributed, @sync, @async, nworkers, nprocs, workers import Distributed: nworkers, nprocs, workers, remotecall_fetch import DistributedArrays: DArray, dzeros, convert, localpart -import Distributions: Product, Uniform, Normal, MvNormal, Categorical +import Distributions: Uniform, Normal, MvNormal, Categorical import Distributions: Distribution, Univariate, Continuous, UnivariateDistribution, DiscreteUnivariateDistribution, MultivariateDistribution, product_distribution -import Distributions: insupport, isbounded, ncategories, pdf +import Distributions: insupport, isbounded, ncategories, pdf, product_distribution import FunctionWrappers: FunctionWrapper import Logging: @info using LinearAlgebra @@ -39,8 +39,8 @@ function __init__() end ## Exports -export Distribution, Product, Uniform, Normal -export @everywhere +export Distribution, Uniform, Normal +export product_distribution, @everywhere # Common types and constructors export SVector, @SVector diff --git a/test/unit/draw_pm.jl b/test/unit/draw_pm.jl index 0a9e6f635a962b40bcad38bf5539db690ecc2298..c8ca7e2a7e265e993d71717f18caf2006dc371e5 100644 --- a/test/unit/draw_pm.jl +++ b/test/unit/draw_pm.jl @@ -3,7 +3,7 @@ using MarkovProcesses load_model("ER") k1 = ER[:k1] -dist_mv_unif = Product(Uniform.([2.5,6.0], [3.5,7.0])) +dist_mv_unif = product_distribution(Uniform.([2.5,6.0], [3.5,7.0])) pm = ParametricModel(ER, [:k3,:k2], dist_mv_unif) draw_model!(pm) test1 = 2.5 <= ER[:k3] <= 3.5 && 6.0 <= ER[:k2] <= 7.0 && pm.df == 2 diff --git a/test/unit/model_prior.jl b/test/unit/model_prior.jl index dd246066cdcac0807afbf6241c19c53b6423e01b..aec19461325e5d6d06cf17f5fa224df9088f228e 100644 --- a/test/unit/model_prior.jl +++ b/test/unit/model_prior.jl @@ -9,7 +9,7 @@ pm1 = ParametricModel(ER, (:k2, Uniform(2.0, 4.0))) draw_model!(pm1) test_all = test_all && 2.0 <= ER[:k2] <= 4.0 && pm1.df == 1 -pm2 = ParametricModel(ER, [:k3,:k2], Product(Uniform.([2.5,6.0], [3.5,7.0]))) +pm2 = ParametricModel(ER, [:k3,:k2], product_distribution(Uniform.([2.5,6.0], [3.5,7.0]))) draw_model!(pm2) test_all = test_all && 2.5 <= ER[:k3] <= 3.5 && 6.0 <= ER[:k2] <= 7.0 && pm2.df == 2