using BenchmarkTools println("Pygmalion:") using pygmalion str_m = "enzymatic_reaction" str_d = "abc_er" pygmalion.load_model(str_m) str_oml = "P,R,time" ll_om = split(str_oml, ",") x0 = State(95.0, 95.0, 0.0, 0.0, 0.0, 0.0) p_true = Parameters(1.0, 1.0, 1.0) u = Control(10.0) tml = 1:400 g_all = create_observation_function([ObserverModel(str_oml, tml)]) b1_pyg = @benchmark pygmalion.simulate($f, $g_all, $x0, $u, $p_true; on = nothing, full_timeline = true) b2_pyg = @benchmark pygmalion.simulate(f, g_all, x0, u, p_true; on = nothing, full_timeline = true) @timev pygmalion.simulate(f, g_all, x0, u, p_true; on = nothing, full_timeline = true) @show minimum(b1_pyg), mean(b1_pyg), maximum(b1_pyg) @show minimum(b2_pyg), mean(b2_pyg), maximum(b2_pyg) println("MarkovProcesses:") using MarkovProcesses MarkovProcesses.load_model("ER") ER.time_bound = 10.0 b1 = @benchmark MarkovProcesses.simulate($ER) b2 = @benchmark MarkovProcesses.simulate(ER) @timev MarkovProcesses.simulate(ER) @show minimum(b1), mean(b1), maximum(b1) @show minimum(b2), mean(b2), maximum(b2)