using MacroTools function get_multiplicand_and_species(expr::Expr) @assert expr.args[1] == :* multiplicand = reduce(*, expr.args[2:(end-1)]) str_species = String(expr.args[end]) return (multiplicand, str_species) end get_multiplicand_and_species(sym::Symbol) = (1, String(sym)) function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict) str_propensity = "" for op in propensity.args[2:end] str_op = String(op) if haskey(dict_species, str_op) str_propensity *= "xn[$(dict_species[str_op])] * " elseif haskey(dict_params, str_op) str_propensity *= "p[$(dict_params[str_op])] * " else str_propensity *= "$(str_op) * " end end return str_propensity[1:(end-2)] end function get_str_propensity(propensity::Symbol, dict_species::Dict, dict_params::Dict) str_propensity = String(propensity) if haskey(dict_species, str_propensity) str_propensity = "xn[$(dict_species[str_propensity])]" elseif haskey(dict_params, str_propensity) str_propensity = "p[$(dict_params[str_propensity])]" else str_propensity = "$(str_propensity)" end return str_propensity end macro biochemical_network(expr_name,expr_network) transitions = String[] dict_species = Dict{String,Int}() dict_params = Dict{String,Int}() dim_state = 0 dim_params = 0 list_expr_reactions = Any[] # First we detect all of the species for expr_reaction in expr_network.args local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) if isreaction push!(list_expr_reactions, expr_reaction) push!(transitions, String(TR)) # Parsing reactants, products for reaction_part in [reactants, products] # If there's several species interacting / produced if typeof(reaction_part) <: Expr && reaction_part.args[1] == :+ for operand in reaction_part.args[2:end] mult, str_species = get_multiplicand_and_species(operand) if !haskey(dict_species, str_species) dim_state += 1 dict_species[str_species] = dim_state end end else mult, str_species = get_multiplicand_and_species(reaction_part) if !haskey(dict_species, str_species) dim_state += 1 dict_species[str_species] = dim_state end end end end if !isreaction && !(typeof(expr_reaction) <: LineNumberNode) error("Error in an expression describing a reaction") end end list_species = [species for species in keys(dict_species)] # Then we detect parameters in propensity expressions # Parameters are the symbols that are not species (at this point we know all of the involved species) for expr_reaction in list_expr_reactions local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) if typeof(propensity) <: Expr @assert propensity.args[1] == :* "Only product of species/params/constants are allowed in propensity" for operand in propensity.args[2:end] if typeof(operand) <: Symbol str_op = String(operand) # If it's not a species, it's a parameter if !(str_op in list_species) && !haskey(dict_params, str_op) dim_params += 1 dict_params[str_op] = dim_params end end end elseif typeof(propensity) <: Symbol str_op = String(propensity) if !(str_op in list_species) && !haskey(dict_params, str_op) dim_params += 1 dict_params[str_op] = dim_params end end if !isreaction && !(typeof(expr_reaction) <: LineNumberNode) error("Error in an expression describing a reaction") end end # Let's write some lines that creates the function f! (step of a simulation) for this biochemical network nbr_rand = rand(1:1000) nbr_reactions = length(list_expr_reactions) basename_func = "$(replace(expr_name, ' '=>'_'))_$(nbr_rand)" expr_model_f! = "function $(basename_func)_f!(xnplus1::Vector{Int}, l_t::Vector{Float64}, l_tr::Vector{Union{Nothing,String}}, xn::Vector{Int}, tn::Float64, p::Vector{Float64})\n\t" # Computation of nu and propensity functions in f! str_l_a = "l_a = (" str_test_isabsorbing = "(" l_nu = [zeros(Int, dim_state) for i = 1:nbr_reactions] for (i, expr_reaction) in enumerate(list_expr_reactions) local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) # Writing of propensities function str_propensity = get_str_propensity(propensity, dict_species, dict_params) expr_model_f! *= "a$(i) = " * str_propensity * "\n\t" # Anticipating the write of the function isabsorbing str_test_isabsorbing *= str_propensity * "+" # Update the nu of the i-th reaction nu = l_nu[i] if typeof(reactants) <: Expr && reactants.args[1] == :+ for operand in reactants.args[2:end] mult, str_species = get_multiplicand_and_species(operand) nu[dict_species[str_species]] -= mult end else mult, str_species = get_multiplicand_and_species(reactants) nu[dict_species[str_species]] -= mult end if typeof(products) <: Expr && products.args[1] == :+ for operand in products.args[2:end] mult, str_species = get_multiplicand_and_species(operand) nu[dict_species[str_species]] += mult end else mult, str_species = get_multiplicand_and_species(products) nu[dict_species[str_species]] += mult end expr_model_f! *= "nu_$i = $(Tuple(nu))\n\t" # Anticipating the line l_a = (..) str_l_a *= "a$(i), " end str_test_isabsorbing = str_test_isabsorbing[1:(end-2)] * ")" str_l_a = str_l_a[1:(end-2)] * ")\n\t" expr_model_f! *= str_l_a expr_model_f! *= "asum = sum(l_a)\n\t" expr_model_f! *= "if asum == 0.0\n\t\t" expr_model_f! *= "copyto!(xnplus1, xn)\n\t\t" expr_model_f! *= "return nothing\n\t" expr_model_f! *= "end\n\t" # Computation of array of transitions expr_model_f! *= "l_nu = (" * reduce(*, ["nu_$i, " for i = 1:nbr_reactions])[1:(end-2)] * ")\n\t" expr_model_f! *= "l_str_R = $(Tuple(transitions))\n\t" # Simulation of the reaction expr_model_f! *= "u1 = rand()\n\t" expr_model_f! *= "u2 = rand()\n\t" expr_model_f! *= "tau = - log(u1) / asum\n\t" expr_model_f! *= "b_inf = 0.0\n\t" expr_model_f! *= "b_sup = a1\n\t" expr_model_f! *= "reaction = 0\n\n\t" expr_model_f! *= "for i = 1:$(nbr_reactions)\n\t\t" expr_model_f! *= "if b_inf < asum*u2 < b_sup\n\t\t\t" expr_model_f! *= "reaction = i\n\t\t\t" expr_model_f! *= "break\n\t\t" expr_model_f! *= "end\n\t\t" expr_model_f! *= "b_inf += l_a[i]\n\t\t" expr_model_f! *= "b_sup += l_a[i+1]\n\t" expr_model_f! *= "end\n\t" expr_model_f! *= "nu = l_nu[reaction]\n\t" expr_model_f! *= "for i = 1:$(dim_state)\n\t\t" expr_model_f! *= "xnplus1[i] = xn[i]+nu[i]\n\t" expr_model_f! *= "end\n\t" expr_model_f! *= "l_t[1] = tn + tau\n\t" expr_model_f! *= "l_tr[1] = l_str_R[reaction]\n" expr_model_f! *= "end\n" expr_model_isabsorbing = "isabsorbing_$(basename_func)(p::Vector{Float64},xn::Vector{Int}) = $(str_test_isabsorbing) === 0.0" model_f! = eval(Meta.parse(expr_model_f!)) model_isabsorbing = eval(Meta.parse(expr_model_isabsorbing)) return :(ContinuousTimeModel($dim_state, $dim_params, $dict_species, $dict_params, $transitions, $(zeros(dim_params)), $(zeros(Int, dim_state)), 0.0, $model_f!, $model_isabsorbing; g = $list_species)) end