using MarkovProcesses import LinearAlgebra: dot import Distributions: Uniform load_automaton("euclidean_distance_automaton") load_model("SIR") tml_obs = 0:0.5:200 set_time_bound!(SIR, 200.0) y_obs = vectorize(simulate(SIR), :I, tml_obs) sync_SIR = SIR * create_euclidean_distance_automaton(SIR, tml_obs, y_obs, :I) σ = simulate(sync_SIR) test = euclidean_distance(σ, :I, tml_obs, y_obs) == σ.state_lha_end[:d] return test