function create_euclidean_distance_automaton(m::ContinuousTimeModel, timeline::AbstractVector{Float64}, observations::AbstractVector{Float64}, sym_obs::VariableModel) # Requirements for the automaton @assert sym_obs in m.g "$(sym_obs) is not observed." @assert length(timeline) == length(observations) "Timeline and observations vectors don't have the same length" nbr_observations = length(observations) # Locations locations = [:l0, :l1, :l2] ## Invariant predicates true_inv_predicate(x::Vector{Int}) = true Λ_F = Dict(:l0 => true_inv_predicate, :l1 => true_inv_predicate, :l2 => true_inv_predicate) ## Init and final loc locations_init = [:l0] locations_final = [:l2] map_var_automaton_idx = Dict{VariableAutomaton,Int}(:t => 1, :n => 2, :d => 3, :idx => 4) vector_flow = [1.0, 0.0, 0.0, 0.0] flow = Dict{Location,Vector{Float64}}(:l0 => vector_flow, :l1 => vector_flow, :l2 => vector_flow) ## Edges map_edges = Dict{Location, Dict{Location, Vector{Edge}}}() for loc in locations map_edges[loc] = Dict{Location, Vector{Edge}}() end idx_obs_var = getfield(m, :map_var_idx)[sym_obs] idx_var_t = map_var_automaton_idx[:t] idx_var_n = map_var_automaton_idx[:n] idx_var_d = map_var_automaton_idx[:d] idx_var_idx = map_var_automaton_idx[:idx] nbr_rand = rand(1:1000) basename_func = "$(replace(m.name, ' '=>'_'))_$(nbr_rand)" basename_func = replace(basename_func, '-'=>'_') func_name(type_func::Symbol, from_loc::Location, to_loc::Location, edge_number::Int) = Symbol("$(type_func)_eucl_dist_aut_$(basename_func)_$(from_loc)$(to_loc)_$(edge_number)$(type_func == :us ? "!" : "")") meta_elementary_functions = quote # l0 loc # l0 => l1 @everywhere $(func_name(:cc, :l0, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = true @everywhere $(func_name(:us, :l0, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (setfield!(S, :loc, Symbol("l1")); setindex!(getfield(S, :values), x[$(idx_obs_var)], $(idx_var_n)); setindex!(getfield(S, :values), 0.0, $(idx_var_d)); setindex!(getfield(S, :values), 1.0, $(idx_var_idx))) # l1 loc # l1 => l1 # Defined below @everywhere $(func_name(:cc, :l1, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (tml = $(Tuple(timeline)); tml_idx = tml[convert(Int, getfield(S, :values)[$(idx_var_idx)])]; getfield(S, :values)[$(idx_var_t)] >= tml_idx) @everywhere $(func_name(:us, :l1, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (y_obs = $(Tuple(observations)); y_obs_idx = y_obs[convert(Int, getfield(S, :values)[$(idx_var_idx)])]; setindex!(getfield(S, :values), getfield(S, :values)[$(idx_var_d)] + (getfield(S, :values)[$(idx_var_n)] - y_obs_idx)^2, $(idx_var_d)); setindex!(getfield(S, :values), getfield(S, :values)[$(idx_var_idx)] + 1.0, $(idx_var_idx))) @everywhere $(func_name(:cc, :l1, :l1, 2))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = true @everywhere $(func_name(:us, :l1, :l1, 2))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (setindex!(getfield(S, :values), x[$(idx_obs_var)], $(idx_var_n))) # l1 => l2 @everywhere $(func_name(:cc, :l1, :l2, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = getfield(S, :values)[$(idx_var_idx)] >= ($nbr_observations + 1) @everywhere $(func_name(:us, :l1, :l2, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (setfield!(S, :loc, Symbol("l2")); setindex!(getfield(S, :values), sqrt(getfield(S, :values)[$(idx_var_d)]), $(idx_var_d))) end eval(meta_elementary_functions) # l0 loc # l0 => l1 edge1 = Edge([nothing], getfield(Main, func_name(:cc, :l0, :l1, 1)), getfield(Main, func_name(:us, :l0, :l1, 1))) map_edges[:l0][:l1] = [edge1] # l1 loc # l1 => l1 #= edge1 = Edge([:ALL], getfield(Main, func_name(:cc, :l1, :l1, 1)), getfield(Main, func_name(:us, :l1, :l2, 1))) map_edges[:l1][:l1] = [edge1] for i = 1:nbr_observations meta_edge_i = quote @everywhere $(func_name(:cc, :l1, :l1, 1+i))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = S[:t] >= $(timeline[i]) @everywhere $(func_name(:us, :l1, :l1, 1+i))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = (setindex!(getfield(S, :values), S[:d] + (S[:n] - $(observations[i]))^2, $(idx_var_d)); setindex!(getfield(S, :values), S[:idx] + 1.0, $(idx_var_idx))) end eval(meta_edge_i) push!(map_edges[:l1][:l1], Edge([nothing], getfield(Main, func_name(:cc, :l1, :l1, 1+i)), getfield(Main, func_name(:us, :l1, :l1, 1+i)))) end =# edge1 = Edge([nothing], getfield(Main, func_name(:cc, :l1, :l1, 1)), getfield(Main, func_name(:us, :l1, :l1, 1))) edge2 = Edge([:ALL], getfield(Main, func_name(:cc, :l1, :l1, 2)), getfield(Main, func_name(:us, :l1, :l1, 2))) map_edges[:l1][:l1] = [edge1, edge2] # l1 => l2 edge1 = Edge([nothing], getfield(Main, func_name(:cc, :l1, :l2, 1)), getfield(Main, func_name(:us, :l1, :l2, 1))) map_edges[:l1][:l2] = [edge1] ## Constants constants = Dict{Symbol,Float64}(:nbr_obs => nbr_observations) for i = 1:nbr_observations constants[Symbol("tml_$(convert(Float64, i))")] = timeline[i] constants[Symbol("y_$(convert(Float64, i))")] = observations[i] end A = LHA("Euclidean distance", m.transitions, locations, Λ_F, locations_init, locations_final, map_var_automaton_idx, flow, map_edges, constants, m.map_var_idx) return A end export create_euclidean_distance_automaton