import StaticArrays: SVector, SMatrix, @SVector, @SMatrix import Distributions: Poisson, rand d=1 k=1 dict_var_poisson = Dict(:N => 1) dict_p_poisson = Dict(:λ => 1) l_tr_poisson = [:R] p_poisson = [5.0] x0_poisson = [0] t0_poisson = 0.0 @everywhere function Poisson_f!(xnplus1::Vector{Int}, l_t::Vector{Float64}, l_tr::Vector{Transition}, xn::Vector{Int}, tn::Float64, p::Vector{Float64}) u1 = rand() tau = (-log(u1)/p[1]) xnplus1[1] += 1 l_t[1] = tn + tau l_tr[1] = :R end @everywhere isabsorbing_Poisson(p::Vector{Float64}, xn::Vector{Int}) = p[1] === 0.0 g_poisson = [:N] @everywhere @eval $(MarkovProcesses.generate_code_model_type_def(:PoissonModel)) @everywhere @eval $(MarkovProcesses.generate_code_model_type_constructor(:PoissonModel)) @everywhere @eval $(MarkovProcesses.generate_code_simulation(:PoissonModel, :Poisson_f!, :isabsorbing_Poisson)) poisson = PoissonModel(d, k, dict_var_poisson, dict_p_poisson, l_tr_poisson, p_poisson, x0_poisson, t0_poisson, :Poisson_f!, :isabsorbing_Poisson; g=g_poisson, time_bound=1.0) function create_poisson(new_p::Vector{Float64}) poisson_new = deepcopy(poisson) @assert length(poisson_new.p) == length(new_p) set_param!(poisson_new, new_p) return poisson_new end