using MacroTools function get_multiplicand_and_species(expr::Expr) @assert expr.args[1] == :* multiplicand = reduce(*, expr.args[2:(end-1)]) sym_species = expr.args[end] return (multiplicand, sym_species) end get_multiplicand_and_species(sym::Symbol) = (1, sym) function get_multiplicand_and_species(expr::Real) if expr == 0 return (0, :∅) else error("A number can't be a species identifier") end end #= function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict) str_propensity = "" for op in propensity.args[2:end] if haskey(dict_species, op) str_propensity *= "xn[$(dict_species[op])] * " elseif haskey(dict_params, op) str_propensity *= "p[$(dict_params[op])] * " else str_propensity *= "$(op) * " end end return str_propensity[1:(end-2)] end =# function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict) operator_expr = propensity.args[1] operands_expr = propensity.args[2:end] if (operator_expr in [:+, :-]) && length(operands_expr) == 1 return "($(operator_expr)" * "$(get_str_propensity(operands_expr[1], dict_species, dict_params)))" end str_propensity = "(" for op in operands_expr[1:(end-1)] str_propensity *= "$(get_str_propensity(op, dict_species, dict_params))" * "$(operator_expr)" end str_propensity *= "$(get_str_propensity(operands_expr[end], dict_species, dict_params)))" return str_propensity end function get_str_propensity(propensity::Symbol, dict_species::Dict, dict_params::Dict) if haskey(dict_species, propensity) return "xn[$(dict_species[propensity])]" elseif haskey(dict_params, propensity) return "p[$(dict_params[propensity])]" else error("Error during the parsing of propensity functions: a symbol is neither a parameter or a species.") end end get_str_propensity(propensity::Real, dict_species::Dict, dict_params::Dict) = "$(propensity)" function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int}, propensity::Expr, list_species::Vector) for operand in propensity.args[2:end] fill_params!(dict_params, l_dim_params, operand, list_species) end end function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int}, propensity::Symbol, list_species::Vector) if !(propensity in list_species) && !haskey(dict_params, propensity) l_dim_params[1] += 1 dict_params[propensity] = l_dim_params[1] end end fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int}, propensity::Real, list_species::Vector) = nothing macro network_model(expr_network,expr_name...) transitions = Transition[] dict_species = Dict{VariableModel,Int}() dict_params = Dict{ParameterModel,Int}() dim_state = 0 dim_params = 0 l_dim_params = [0] list_expr_reactions = Any[] empty_symbols = [:∅] # First we detect all of the species for expr_reaction in expr_network.args local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) if isreaction push!(list_expr_reactions, expr_reaction) push!(transitions, TR) # Parsing reactants, products for reaction_part in [reactants, products] # If there's several species interacting / produced if typeof(reaction_part) <: Expr && reaction_part.args[1] == :+ for operand in reaction_part.args[2:end] mult, sym_species = get_multiplicand_and_species(operand) if !haskey(dict_species, sym_species) && !(sym_species in empty_symbols) dim_state += 1 dict_species[sym_species] = dim_state end end else mult, sym_species = get_multiplicand_and_species(reaction_part) if !haskey(dict_species, sym_species) && !(sym_species in empty_symbols) dim_state += 1 dict_species[sym_species] = dim_state end end end end if !isreaction && !(typeof(expr_reaction) <: LineNumberNode) error("Error in an expression describing a reaction") end end list_species = [species for species in keys(dict_species)] # Then we detect parameters in propensity expressions # Parameters are the symbols that are not species (at this point we know all of the involved species) allowed_op_in_propensity = [:*] for expr_reaction in list_expr_reactions local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) fill_params!(dict_params, l_dim_params, propensity, list_species) #= if typeof(propensity) <: Expr @assert propensity.args[1] in allowed_op_in_propensity "Only product of species/params/constants are allowed in propensity" for operand in propensity.args[2:end] if typeof(operand) <: Symbol # If it's not a species, it's a parameter if !(operand in list_species) && !haskey(dict_params, operand) dim_params += 1 dict_params[operand] = dim_params end end end elseif typeof(propensity) <: Symbol if !(propensity in list_species) && !haskey(dict_params, propensity) dim_params += 1 dict_params[propensity] = dim_params end end if !isreaction && !(typeof(expr_reaction) <: LineNumberNode) error("Error in an expression describing a reaction") end =# end dim_params = l_dim_params[1] # Creation of names variables model_name = isempty(expr_name) ? "Network" : expr_name[1] model_name = Symbol(replace(model_name, ' ' => '_') * "Model") id = MarkovProcesses.newid() nbr_reactions = length(list_expr_reactions) basename_func = "$(model_name)_$(id)" basename_func = replace(basename_func, '-'=>'_') # Writing of f! symbol_func_f! = Symbol("$(basename_func)_f!") str_expr_model_f! = "function $(symbol_func_f!)(xnplus1::Vector{Int}, l_t::Vector{Float64}, l_tr::Vector{Transition}, xn::Vector{Int}, tn::Float64, p::Vector{Float64})\n\t" # Computation of nu and propensity functions in f! str_l_a = "l_a = SVector(" str_test_isabsorbing = "@inbounds(" l_nu = [zeros(Int, dim_state) for i = 1:nbr_reactions] for (i, expr_reaction) in enumerate(list_expr_reactions) local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_)) # Writing of propensities function str_propensity = get_str_propensity(propensity, dict_species, dict_params) str_expr_model_f! *= "@inbounds a$(i) = " * str_propensity * "\n\t" # Anticipating the write of the function isabsorbing str_test_isabsorbing *= str_propensity * "+" # Update the nu of the i-th reaction nu = l_nu[i] if typeof(reactants) <: Expr && reactants.args[1] == :+ for operand in reactants.args[2:end] mult, sym_species = get_multiplicand_and_species(operand) if !(sym_species in empty_symbols) nu[dict_species[sym_species]] -= mult end end else mult, sym_species = get_multiplicand_and_species(reactants) if !(sym_species in empty_symbols) nu[dict_species[sym_species]] -= mult end end if typeof(products) <: Expr && products.args[1] == :+ for operand in products.args[2:end] mult, sym_species = get_multiplicand_and_species(operand) if !(sym_species in empty_symbols) nu[dict_species[sym_species]] += mult end end else mult, sym_species = get_multiplicand_and_species(products) if !(sym_species in empty_symbols) nu[dict_species[sym_species]] += mult end end str_expr_model_f! *= "nu_$i = $(Tuple(nu))\n\t" # Anticipating the line l_a = (..) str_l_a *= "a$(i), " end str_test_isabsorbing = str_test_isabsorbing[1:(end-1)] * ")" str_l_a = str_l_a[1:(end-2)] * ")\n\t" str_expr_model_f! *= str_l_a str_expr_model_f! *= "asum = sum(l_a)\n\t" str_expr_model_f! *= "if asum == 0.0\n\t\t" str_expr_model_f! *= "copyto!(xnplus1, xn)\n\t\t" str_expr_model_f! *= "return nothing\n\t" str_expr_model_f! *= "end\n\t" # Computation of array of transitions str_expr_model_f! *= "l_nu = SVector(" * reduce(*, ["nu_$i, " for i = 1:nbr_reactions])[1:(end-2)] * ")\n\t" str_expr_model_f! *= "l_sym_R = SVector$(Tuple(transitions))\n\t" # Simulation of the reaction str_expr_model_f! *= "u1 = rand()\n\t" str_expr_model_f! *= "u2 = rand()\n\t" str_expr_model_f! *= "tau = - log(u1) / asum\n\t" str_expr_model_f! *= "b_inf = 0.0\n\t" str_expr_model_f! *= "b_sup = a1\n\t" str_expr_model_f! *= "reaction = 0\n\n\t" str_expr_model_f! *= "for i = 1:$(nbr_reactions)\n\t\t" str_expr_model_f! *= "if b_inf < asum*u2 < b_sup\n\t\t\t" str_expr_model_f! *= "reaction = i\n\t\t\t" str_expr_model_f! *= "break\n\t\t" str_expr_model_f! *= "end\n\t\t" str_expr_model_f! *= "@inbounds b_inf += l_a[i]\n\t\t" str_expr_model_f! *= "@inbounds b_sup += l_a[i+1]\n\t" str_expr_model_f! *= "end\n\t" str_expr_model_f! *= "nu = l_nu[reaction]\n\t" str_expr_model_f! *= "for i = 1:$(dim_state)\n\t\t" str_expr_model_f! *= "@inbounds xnplus1[i] = xn[i]+nu[i]\n\t" str_expr_model_f! *= "end\n\t" str_expr_model_f! *= "@inbounds l_t[1] = tn + tau\n\t" str_expr_model_f! *= "@inbounds l_tr[1] = l_sym_R[reaction]\n" str_expr_model_f! *= "end\n" # Writing of isabsorbing symbol_func_isabsorbing = Symbol("isabsorbing_$(basename_func)") str_expr_model_isabsorbing = "$(symbol_func_isabsorbing)(p::Vector{Float64},xn::Vector{Int}) = $(str_test_isabsorbing) === 0.0" # Creation of code expr_model_f! = Meta.parse(str_expr_model_f!) expr_model_isabsorbing = Meta.parse(str_expr_model_isabsorbing) map_idx_var_model = Dict(value => key for (key, value) in dict_species) model_g = [map_idx_var_model[i] for i = 1:length(list_species)] return quote @everywhere @eval $(MarkovProcesses.generate_code_model_type_def(model_name)) @everywhere @eval $(MarkovProcesses.generate_code_model_type_constructor(model_name)) @everywhere @eval $(MarkovProcesses.generate_code_simulation(model_name, symbol_func_f!, symbol_func_isabsorbing)) @everywhere @eval $expr_model_f! @everywhere @eval $expr_model_isabsorbing getfield(Main, $(Meta.quot(model_name)))($dim_state, $dim_params, $dict_species, $dict_params, $transitions, $(zeros(dim_params)), $(zeros(Int, dim_state)), 0.0, $(Meta.quot(symbol_func_f!)), $(Meta.quot(symbol_func_isabsorbing)); g = $model_g) end end