using BenchmarkTools using pygmalion using MarkovProcesses println("Pygmalion:") str_m = "enzymatic_reaction" str_d = "abc_er" pygmalion.load_model(str_m) l_var = [:E, :S, :ES, :P] str_oml = "E,S,ES,P,R,time" ll_om = split(str_oml, ",") x0 = State(95.0, 95.0, 0.0, 0.0, 0.0, 0.0) p_true = Parameters(1.0, 1.0, 1.0) u = Control(10.0) tml = 1:400 g_all = create_observation_function([ObserverModel(str_oml, tml)]) so = pygmalion.simulate(f, g_all, x0, u, p_true; on = nothing, full_timeline = true) function random_trajectory_value_pyg(so::SystemObservation) n_states = get_number_of_observations(so, :P) return to_vec(so, "P", rand(1:n_states)) end function random_trajectory_state_pyg(so::SystemObservation) n_states = get_number_of_observations(so, :P) return to_vec(so, so.oml, rand(1:n_states)) end # Bench @timev random_trajectory_value_pyg(so) b1_pyg = @benchmark random_trajectory_value_pyg($so) @show minimum(b1_pyg), mean(b1_pyg), maximum(b1_pyg) println("MarkovProcesses:") MarkovProcesses.load_model("ER") ER.time_bound = 10.0 σ = MarkovProcesses.simulate(ER) function random_trajectory_value(σ::AbstractTrajectory) n_states = length_states(σ) return σ[:P][rand(1:n_states)] end # Bench @timev random_trajectory_value(σ) b1 = @benchmark random_trajectory_value($σ) @show minimum(b1), mean(b1), maximum(b1)