diff --git a/definition.py b/definition.py
new file mode 100644
index 0000000000000000000000000000000000000000..e133b08fae6a7f90728af3be0cf6acf646fa0479
--- /dev/null
+++ b/definition.py
@@ -0,0 +1,144 @@
+from __future__ import (absolute_import, division, print_function, unicode_literals)
+from cmath import cos, sin, exp, polar, acos
+from math import pi
+import matplotlib as mpl
+from mpl_toolkits.mplot3d import Axes3D
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
+
+mpl.rcParams['legend.fontsize'] = 10
+
+class Plate:
+    """type = ''LR, 'LP', 'CP'
+    Fast axis unchanged convention (pour un LR)
+    orientation = Right, Left (pour un CP)"""
+    def __init__(self, element, theta = 0, delta = 0, orientation = ""):
+        self.element = element
+        self.delta = delta
+        self.theta = theta
+        self.orientation = orientation
+
+def coef(real, imag):
+    a = 0
+    if real != 0:
+        a = real
+    if imag != 0:
+        a+= imag*1j
+    return(a)
+
+class Photon:
+    def __init__(self, state0, state1):
+        self.state0 = [state0]
+        self.state1 = [state1]
+
+    def state(self):
+        print(self.state0[-1], "|0> + ", self.state1[-1], "|1>")
+
+    def round_state(self,decimal,i):
+        s_0r = round((self.state0[i]).real,decimal) 
+        s_0i = round((self.state0[i]).imag,decimal)
+        s_1r = round((self.state1[i]).real,decimal)
+        s_1i = round((self.state1[i]).imag,decimal) 
+        return(s_0r, s_0i, s_1r, s_1i)
+
+    def is_2D(self,i):
+        s_0r = round((self.state0[i]).real,3) 
+        s_0i = round((self.state0[i]).imag,3)
+        s_1r = round((self.state1[i]).real,3)
+        s_1i = round((self.state1[i]).imag,3) 
+        return (s_0r*s_0i == 0 and s_1r*s_1i == 0 and s_0r*s_1i == 0 and s_1r*s_0i == 0)
+
+    def pur(self,i):
+        rho0, phi0 = polar(self.state0[i])
+        rho1, phi1 = polar(self.state1[i])
+        return (2*acos(rho0), phi1-phi0)
+    
+    def gate(self,plate):
+        alpha = self.state0[-1]
+        beta = self.state1[-1]
+        if plate.element == 'LP':
+            self.state0.append(alpha*cos(plate.theta)*cos(plate.theta) + beta*cos(plate.theta)*sin(plate.theta))
+            self.state1.append(alpha*cos(plate.theta)*sin(plate.theta) + beta*sin(plate.theta)*sin(plate.theta))
+        if plate.element == 'LR':
+            self.state0.append(alpha*(cos(plate.theta)*cos(plate.theta) + exp(1j*plate.delta)*sin(plate.theta)*sin(plate.theta)) + beta*(1-exp(1j*plate.delta))*cos(plate.theta)*sin(plate.theta))
+            self.state1.append(alpha*(1-exp(1j*plate.delta))*cos(plate.theta)*sin(plate.theta) + beta*(sin(plate.theta)*sin(plate.theta) + exp(1j*plate.delta)*cos(plate.theta)*cos(plate.theta)))
+        else:
+            if plate.orientation == "Right":
+                self.state0.append(1/2*(alpha + 1j*beta))
+                self.state1.append(1/2*(beta - 1j*alpha))
+            else:
+                self.state0.append(1/2*(alpha - 1j*beta))
+                self.state1.append(1/2*(beta + 1j*alpha))
+
+    def representation(self,i):
+        
+        #Bloch Sphere
+
+        fig = plt.figure()
+        ax = fig.gca(projection='3d')
+        """thismanager = plt.get_current_fig_manager()
+        thismanager.window.SetPosition((500, 0))
+        thismanager.window.wm_geometry("+500+0")"""
+        ax.set_title('Step '+str(i))
+        theta = np.linspace(0, 2 * np.pi, 100)
+        z = np.zeros(100)
+        x = np.sin(theta)
+        y = np.cos(theta)
+        ax.plot(x, y, z, color = 'black', linestyle='dashed', linewidth=0.5, label='sphere')
+        ax.plot(y, z, x, color = 'black', linestyle='dashed', linewidth=0.5)
+        ax.plot(z, x, y, color = 'black', linestyle='dashed', linewidth=0.5)
+        ax.quiver(0, 0, 0, 0, 0, 1, color = 'black', arrow_length_ratio = 0.1)
+        ax.text(0, 0, 1.1, '|0>', color = 'black')
+        ax.quiver(0, 0, 0, 0, 0, -1, color = 'black', arrow_length_ratio = 0.1)
+        ax.text(0, 0, -1.1, '|1>', color = 'black')
+
+        if i>0:
+            theta, phi = self.pur(i-1)
+            ax.quiver(0, 0, 0, sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta), color = 'red', arrow_length_ratio = 0.1, label ='before')
+            ax.text(sin(theta)*cos(phi)+0.1, sin(theta)*sin(phi)+0.1, cos(theta)+0.1, 'before', color = 'red')
+
+        theta, phi = self.pur(i)
+        ax.quiver(0, 0, 0, sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta), color = 'green', arrow_length_ratio = 0.1, label ='after')
+        ax.text(sin(theta)*cos(phi)+0.1, sin(theta)*sin(phi)+0.1, cos(theta)+0.1, 'after', color = 'green')
+
+        ax.grid(False)
+        ax.axis(False)
+        ax.legend()
+
+        #2D representation
+
+        if self.is_2D(i):
+            fig2 = plt.figure()
+            ax_2D = fig2.add_subplot(111)
+            theta = np.linspace(0, 2 * np.pi, 100)
+            x = np.sin(theta)
+            y = np.cos(theta)
+            ax_2D.plot(x,y, color = 'black', linestyle='dashed', linewidth=0.5, label='circle')
+            ax_2D.quiver(*[0, 0], [0, 1], [1,0], scale = 1, scale_units = 'xy', color = 'black')
+            ax_2D.text(0, 1.1, '|0>', color = 'black')
+            ax_2D.text(1.1, 0, '|1>', color = 'black')
+            ax_2D.grid(False)
+            ax_2D.axis(False)
+            ax_2D.legend()
+            (s_0r, s_0i, s_1r, s_1i) = self.round_state(3,i)
+            if (s_0r != 0 or s_1r != 0):
+                ax_2D.quiver(*[0, 0], [s_1r], [s_0r], scale = 1, scale_units = 'xy', color = 'red', label = 'Phase nul')
+                ax_2D.text(s_1r +0.1, s_0r + 0.1, 'after', color = 'red')
+            else:
+                ax_2D.quiver(*[0, 0], [s_1i], [s_0i], scale = 1, scale_units = 'xy', color = 'red', label = 'Phase pi/2')
+                ax_2D.text(s_1i +0.1, s_0i + 0.1, 'after', color = 'red')
+
+            if i>0:
+                if self.is_2D(i-1):
+                    (s_0r, s_0i, s_1r, s_1i) = self.round_state(3,i-1)
+                    if (s_0r != 0 or s_1r != 0):
+                        ax_2D.quiver(*[0, 0], [s_1r], [s_0r], scale = 1, scale_units = 'xy', color = 'green', label = 'Phase nul')
+                        ax_2D.text(s_1r +0.1, s_0r + 0.1, 'before', color = 'green')
+                    else:
+                        ax_2D.quiver(*[0, 0], [s_1i], [s_0i], scale = 1, scale_units = 'xy', color = 'green', label = 'Phase pi/2')
+                        ax_2D.text(s_1i +0.1, s_0i + 0.1, 'before', color = 'green')
+
+
+        plt.show()
+
diff --git a/interface.py b/interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..2ace76072b6791c5b6ada2e6b80ace301d6963ea
--- /dev/null
+++ b/interface.py
@@ -0,0 +1,209 @@
+from tkinter import *
+from copy import deepcopy
+import pygame as pyg
+from functools import partial
+from definition import Plate, Photon
+from math import pi
+from matplotlib.figure import Figure
+
+#Define the number of plates in our system
+def number_elements(root):
+    v = StringVar(root)
+    v.set(1)
+    entry = Entry(root, textvariable = v, width=2)
+    entry.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    title = Label(root, text = "Choose number of elements", font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief = 'raised')
+    title.grid(column = 2, row = 2)
+    entry.grid(column = 2, row = 3)
+    return v
+
+#Define the initial states of the photon
+def initial_photon(root):
+    title = Label(root, text = "Initial coefficients", font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief = 'raised')
+    title.grid(column = 5, row = 2, columnspan = 5)
+    state0 = StringVar(root)
+    state0.set(0)
+    entry0 = Entry(root, textvariable = state0, width=2)
+    entry0.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    entry0.grid(column = 5, row = 3)
+    label0 = Label(root, text = "|0>", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
+    label0.grid(column = 6, row = 3)
+    labelplus = Label(root, text = "+", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
+    labelplus.grid(column = 7, row = 3)
+    state1 = StringVar(root)
+    state1.set(0)
+    entry1 = Entry(root, textvariable = state1, width=2)
+    entry1.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    entry1.grid(column = 8, row = 3)
+    label1 = Label(root, text = "|1>", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
+    label1.grid(column = 9, row = 3)
+    return state0, state1
+
+#Show the current properties of the plates while defining them
+def display(plate,window):
+    size = len(plate)
+    number_title = Label(window, text = 'Number', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
+    number_title.grid(column = 10, row = 0)
+    type_title = Label(window, text = 'Type', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
+    type_title.grid(column = 11, row = 0)
+    theta_title = Label(window, text = 'Theta', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
+    theta_title.grid(column = 12, row = 0)
+    delta_title = Label(window, text = 'Delta', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
+    delta_title.grid(column = 13, row = 0)
+    orientation_title = Label(window, text = 'Orientation', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
+    orientation_title.grid(column = 14, row = 0)
+    for i in range(size):
+        number = Label(window, text = str(i+1), font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
+        number.grid(column = 10, row = i+1)
+        str_element = StringVar(window)
+        str_element.set('0')
+        str_element = plate[i].element
+        current_element = Label(window, text = str_element, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
+        current_element.grid(column = 11, row = i+1)
+        str_theta = StringVar(window)
+        str_theta.set('0')
+        str_theta = str(plate[i].theta*180/pi) 
+        current_theta = Label(window, text = str_theta, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
+        current_theta.grid(column = 12, row = i+1)
+        str_delta = StringVar(window)
+        str_delta.set('0')
+        str_delta = str(plate[i].delta*180/pi) 
+        current_delta = Label(window, text = str_delta, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
+        current_delta.grid(column = 13, row = i+1)
+        str_orientation = StringVar(window)
+        str_orientation.set('0')
+        str_orientation = plate[i].orientation 
+        current_orientation = Label(window, text = str_orientation, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
+        current_orientation.grid(column = 14, row = i+1)
+
+#Defining the properties of the plates
+def define_elements(window,size):
+    Number = [i for i in range(1,size+1)]
+    Type = ('Linear Retarder', 'Linear Polarizer', 'Circular Polarizer')
+    Inverse_Type = {'Linear Retarder' : 'LR', 'Linear Polarizer' : 'LP', 'Circular Polarizer' : 'CP'}
+    Orientation = ('None', 'Right', 'Left')
+    number_title = Label(window, text = 'Number', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
+    number_title.grid(column = 0, row = 0)
+    type_title = Label(window, text = 'Type', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
+    type_title.grid(column = 1, row = 0)
+    theta_title = Label(window, text = 'Theta', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
+    theta_title.grid(column = 2, row = 0)
+    delta_title = Label(window, text = 'Delta', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
+    delta_title.grid(column = 3, row = 0)
+    orientation_title = Label(window, text = 'Orientation', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
+    orientation_title.grid(column = 4, row = 0)
+    global number
+    number = StringVar(window)
+    number.set(Number[0])
+    om_number = OptionMenu(window, number, *Number)
+    om_number.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000')
+    om_number.grid(column = 0, row = 1)
+    global type
+    type = StringVar(window)
+    type.set(Type[0])
+    om_type = OptionMenu(window, type, *Type)
+    om_type.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    om_type.grid(column = 1, row = 1)
+    global orientation
+    orientation = StringVar(window)
+    orientation.set(Orientation[0])
+    om_orientation = OptionMenu(window, orientation, *Orientation)
+    om_orientation.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    om_orientation.grid(column = 4, row = 1)
+    global theta
+    theta = StringVar(window)
+    theta.set(0)
+    entry_theta = Entry(window, textvariable = theta, width=3)
+    entry_theta.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
+    entry_theta.grid(column = 2, row = 1)
+    global delta
+    delta = StringVar(window)
+    delta.set(0)
+    entry_delta = Entry(window, textvariable = delta, width=3)
+    entry_delta.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000')
+    entry_delta.grid(column = 3, row = 1)
+    def give_plate():
+        global number
+        global type
+        global theta
+        global delta
+        global orientation
+        global plate
+        new_plate = Plate(Inverse_Type[type.get()],float(theta.get())*pi/180, float(delta.get())*pi/180, orientation.get())
+        print(new_plate.element, new_plate.theta, new_plate.delta, new_plate.orientation)
+        plate[int(number.get())-1] = new_plate
+        display(plate,window)
+    button = Button(window, fg="#ffffff",text= "Validate", command=give_plate, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+    button.grid(column = 4, row = 6)
+    button_quit = Button(window, text="Finish", fg="#ffffff", command=window.destroy, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+    button_quit.grid(column = 0, row = 6)
+    #return (Inverse_Type[type.get()],theta.get(), delta.get(), orientation.get())
+
+class Time:
+    def __init__(self, k, photon, window):
+        self.k = k
+        self.photon = photon
+        self.window = window
+    def bloch_sphere(self):
+        (self.photon).representation(self.k)
+    def do(self):
+        state_in_k = Button(self.window, text="State", fg="#ffffff", command=self.bloch_sphere, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+        state_in_k.grid(column = 2*self.k, row = 0, pady = 20)
+
+#Simulation of the optical path
+def optical_path(window, photon):
+    length = len(photon.state0)
+    for i in range(length):
+        time = Time(i,photon,window)
+        time.do()       
+        if i != length-1:
+            plate_number = Label(window, text = 'Plate' + str(i+1), font = ('Bahnschrift Semibold','15'), fg = '#000000', bg = '#ffffff', relief = 'raised')
+            plate_number.grid(column = 2*i+1, row = 0)
+
+#Global software
+def graphical_grid_init():
+    root = Tk()
+    root.geometry("+150+20")
+    root.config(bg = '#ffffff')
+    root.title('PhotoniCS')
+    titre = Label(root, text = "PhotoniCS", font = ('Bahnschrift SemiBold Condensed','60'), fg = '#000000', bg = '#bbbbbb', relief= 'groove')
+    titre.grid(column = 4, row = 0)
+    button = Button(root, text="Quit", fg="#ffffff", command=quit, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+    button.grid(column = 0, row = 6)
+    global v
+    v = number_elements(root)
+    global plate
+    global state0
+    global state1
+    state0, state1 = initial_photon(root)
+    "pyg.mixer.init()"
+    def define():
+            #bg_music= pyg.mixer.Sound("bg.wav")
+            #bg_music.play()
+            #pyg.mixer.music.set_volume(0.5)
+            window = Toplevel()
+            window.config(bg = '#ffffff')
+            window.geometry('+100+350')
+            global plate
+            plate = [Plate('LR') for i in range(int(v.get()))]
+            define_elements(window,int(v.get()))
+    button = Button(root, fg="#ffffff",text= "Define", command=define, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+    button.grid(column = 2, row = 6)
+    def simulate():
+            #bg_music= pyg.mixer.Sound("bg.wav")
+            #bg_music.play()
+            #pyg.mixer.music.set_volume(0.5)
+            photon = Photon(float(state0.get()),float(state1.get()))
+            global plate
+            for i in range(int(v.get())):
+                photon.gate(plate[i])
+            window = Toplevel()
+            window.config(bg = '#ffffff')
+            optical_path(window,photon)
+            window.geometry('+150+20')
+            #pyg.mixer.quit()
+    button_simulate = Button(root, fg="#ffffff",text= "Simulate", command=simulate, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
+    button_simulate.grid(column = 7, row = 6)
+    root.mainloop()
+
+graphical_grid_init()
\ No newline at end of file