diff --git a/Circuit/__init__.py b/Circuit/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Elements/__init__.py b/Elements/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/Graphics/__init__.py b/Graphics/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/definition.py b/definition.py
deleted file mode 100644
index 4958740d3917f29e60675e4542d7cdf9d215cb17..0000000000000000000000000000000000000000
--- a/definition.py
+++ /dev/null
@@ -1,136 +0,0 @@
-from __future__ import (absolute_import, division, print_function, unicode_literals)
-from cmath import cos, sin, exp, polar, acos
-from math import pi
-import matplotlib as mpl
-from mpl_toolkits.mplot3d import Axes3D
-import numpy as np
-import matplotlib.pyplot as plt
-from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
-
-mpl.rcParams['legend.fontsize'] = 10
-
-class Plate:
-    """type = ''LR, 'LP', 'CP'
-    Fast axis unchanged convention (pour un LR)
-    orientation = Right, Left (pour un CP)"""
-    def __init__(self, element, theta = 0, delta = 0, orientation = ""):
-        self.element = element
-        self.delta = delta
-        self.theta = theta
-        self.orientation = orientation
-
-class Photon:
-    def __init__(self, state0, state1):
-        self.state0 = [state0]
-        self.state1 = [state1]
-
-    def state(self):
-        print(self.state0[-1], "|0> + ", self.state1[-1], "|1>")
-
-    def round_state(self,decimal,i):
-        s_0r = round((self.state0[i]).real,decimal)
-        s_0i = round((self.state0[i]).imag,decimal)
-        s_1r = round((self.state1[i]).real,decimal)
-        s_1i = round((self.state1[i]).imag,decimal)
-        return(s_0r, s_0i, s_1r, s_1i)
-
-    def is_2D(self,i):
-        s_0r = round((self.state0[i]).real,3)
-        s_0i = round((self.state0[i]).imag,3)
-        s_1r = round((self.state1[i]).real,3)
-        s_1i = round((self.state1[i]).imag,3)
-        return (s_0r*s_0i == 0 and s_1r*s_1i == 0 and s_0r*s_1i == 0 and s_1r*s_0i == 0)
-
-    def pur(self,i):
-        rho0, phi0 = polar(self.state0[i])
-        rho1, phi1 = polar(self.state1[i])
-        return (2*acos(rho0), phi1-phi0)
-
-    def gate(self,plate):
-        alpha = self.state0[-1]
-        beta = self.state1[-1]
-        if plate.element == 'LP':
-            self.state0.append(alpha*cos(plate.theta)*cos(plate.theta) + beta*cos(plate.theta)*sin(plate.theta))
-            self.state1.append(alpha*cos(plate.theta)*sin(plate.theta) + beta*sin(plate.theta)*sin(plate.theta))
-        if plate.element == 'LR':
-            self.state0.append(alpha*(cos(plate.theta)*cos(plate.theta) + exp(1j*plate.delta)*sin(plate.theta)*sin(plate.theta)) + beta*(1-exp(1j*plate.delta))*cos(plate.theta)*sin(plate.theta))
-            self.state1.append(alpha*(1-exp(1j*plate.delta))*cos(plate.theta)*sin(plate.theta) + beta*(sin(plate.theta)*sin(plate.theta) + exp(1j*plate.delta)*cos(plate.theta)*cos(plate.theta)))
-        else:
-            if plate.orientation == "Right":
-                self.state0.append(1/2*(alpha + 1j*beta))
-                self.state1.append(1/2*(beta - 1j*alpha))
-            else:
-                self.state0.append(1/2*(alpha - 1j*beta))
-                self.state1.append(1/2*(beta + 1j*alpha))
-
-    def representation(self,i):
-
-        #Bloch Sphere
-
-        fig = plt.figure()
-        ax = fig.gca(projection='3d')
-        """thismanager = plt.get_current_fig_manager()
-        thismanager.window.SetPosition((500, 0))
-        thismanager.window.wm_geometry("+500+0")"""
-        ax.set_title('Step '+str(i))
-        theta = np.linspace(0, 2 * np.pi, 100)
-        z = np.zeros(100)
-        x = np.sin(theta)
-        y = np.cos(theta)
-        ax.plot(x, y, z, color = 'black', linestyle='dashed', linewidth=0.5, label='sphere')
-        ax.plot(y, z, x, color = 'black', linestyle='dashed', linewidth=0.5)
-        ax.plot(z, x, y, color = 'black', linestyle='dashed', linewidth=0.5)
-        ax.quiver(0, 0, 0, 0, 0, 1, color = 'black', arrow_length_ratio = 0.1)
-        ax.text(0, 0, 1.1, '|0>', color = 'black')
-        ax.quiver(0, 0, 0, 0, 0, -1, color = 'black', arrow_length_ratio = 0.1)
-        ax.text(0, 0, -1.1, '|1>', color = 'black')
-
-        if i>0:
-            theta, phi = self.pur(i-1)
-            ax.quiver(0, 0, 0, sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta), color = 'red', arrow_length_ratio = 0.1, label ='before')
-            ax.text(sin(theta)*cos(phi)+0.1, sin(theta)*sin(phi)+0.1, cos(theta)+0.1, 'before', color = 'red')
-
-        theta, phi = self.pur(i)
-        ax.quiver(0, 0, 0, sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta), color = 'green', arrow_length_ratio = 0.1, label ='after')
-        ax.text(sin(theta)*cos(phi)+0.1, sin(theta)*sin(phi)+0.1, cos(theta)+0.1, 'after', color = 'green')
-
-        ax.grid(False)
-        ax.axis(False)
-        ax.legend()
-
-        #2D representation
-
-        if self.is_2D(i):
-            fig2 = plt.figure()
-            ax_2D = fig2.add_subplot(111)
-            theta = np.linspace(0, 2 * np.pi, 100)
-            x = np.sin(theta)
-            y = np.cos(theta)
-            ax_2D.plot(x,y, color = 'black', linestyle='dashed', linewidth=0.5, label='circle')
-            ax_2D.quiver(*[0, 0], [0, 1], [1,0], scale = 1, scale_units = 'xy', color = 'black')
-            ax_2D.text(0, 1.1, '|0>', color = 'black')
-            ax_2D.text(1.1, 0, '|1>', color = 'black')
-            ax_2D.grid(False)
-            ax_2D.axis(False)
-            ax_2D.legend()
-            (s_0r, s_0i, s_1r, s_1i) = self.round_state(3,i)
-            if (s_0r != 0 or s_1r != 0):
-                ax_2D.quiver(*[0, 0], [s_1r], [s_0r], scale = 1, scale_units = 'xy', color = 'red', label = 'Phase nul')
-                ax_2D.text(s_1r +0.1, s_0r + 0.1, 'after', color = 'red')
-            else:
-                ax_2D.quiver(*[0, 0], [s_1i], [s_0i], scale = 1, scale_units = 'xy', color = 'red', label = 'Phase pi/2')
-                ax_2D.text(s_1i +0.1, s_0i + 0.1, 'after', color = 'red')
-
-            if i>0:
-                if self.is_2D(i-1):
-                    (s_0r, s_0i, s_1r, s_1i) = self.round_state(3,i-1)
-                    if (s_0r != 0 or s_1r != 0):
-                        ax_2D.quiver(*[0, 0], [s_1r], [s_0r], scale = 1, scale_units = 'xy', color = 'green', label = 'Phase nul')
-                        ax_2D.text(s_1r +0.1, s_0r + 0.1, 'before', color = 'green')
-                    else:
-                        ax_2D.quiver(*[0, 0], [s_1i], [s_0i], scale = 1, scale_units = 'xy', color = 'green', label = 'Phase pi/2')
-                        ax_2D.text(s_1i +0.1, s_0i + 0.1, 'before', color = 'green')
-
-
-        plt.show()
-
diff --git a/interface.py b/interface.py
deleted file mode 100644
index aaeb2d1a1e5b0a7f1325bf891bcf4e931e103dfd..0000000000000000000000000000000000000000
--- a/interface.py
+++ /dev/null
@@ -1,209 +0,0 @@
-from tkinter import *
-from copy import deepcopy
-import pygame as pyg
-from functools import partial
-from definition import Plate, Photon
-from math import pi
-from matplotlib.figure import Figure
-
-#Define the number of plates in our system
-def number_elements(root):
-    v = StringVar(root)
-    v.set(1)
-    entry = Entry(root, textvariable = v, width=2)
-    entry.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    title = Label(root, text = "Choose number of elements", font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief = 'raised')
-    title.grid(column = 2, row = 2)
-    entry.grid(column = 2, row = 3)
-    return v
-
-#Define the initial states of the photon
-def initial_photon(root):
-    title = Label(root, text = "Initial coefficients", font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief = 'raised')
-    title.grid(column = 5, row = 2, columnspan = 5)
-    state0 = StringVar(root)
-    state0.set(0)
-    entry0 = Entry(root, textvariable = state0, width=2)
-    entry0.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    entry0.grid(column = 5, row = 3)
-    label0 = Label(root, text = "|0>", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
-    label0.grid(column = 6, row = 3)
-    labelplus = Label(root, text = "+", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
-    labelplus.grid(column = 7, row = 3)
-    state1 = StringVar(root)
-    state1.set(0)
-    entry1 = Entry(root, textvariable = state1, width=2)
-    entry1.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    entry1.grid(column = 8, row = 3)
-    label1 = Label(root, text = "|1>", font = ('Bahnschrift SemiLight','30'), fg = '#000000', bg = '#ffffff')
-    label1.grid(column = 9, row = 3)
-    return state0, state1
-
-#Show the current properties of the plates while defining them
-def display(plate,window):
-    size = len(plate)
-    number_title = Label(window, text = 'Number', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
-    number_title.grid(column = 10, row = 0)
-    type_title = Label(window, text = 'Type', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
-    type_title.grid(column = 11, row = 0)
-    theta_title = Label(window, text = 'Theta', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
-    theta_title.grid(column = 12, row = 0)
-    delta_title = Label(window, text = 'Delta', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
-    delta_title.grid(column = 13, row = 0)
-    orientation_title = Label(window, text = 'Orientation', font = ('Bahnschrift Semibold','25'), fg = '#ffffff', bg = '#aaaaaa', relief= 'groove')
-    orientation_title.grid(column = 14, row = 0)
-    for i in range(size):
-        number = Label(window, text = str(i+1), font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
-        number.grid(column = 10, row = i+1)
-        str_element = StringVar(window)
-        str_element.set('0')
-        str_element = plate[i].element
-        current_element = Label(window, text = str_element, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
-        current_element.grid(column = 11, row = i+1)
-        str_theta = StringVar(window)
-        str_theta.set('0')
-        str_theta = str(plate[i].theta*180/pi) 
-        current_theta = Label(window, text = str_theta, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
-        current_theta.grid(column = 12, row = i+1)
-        str_delta = StringVar(window)
-        str_delta.set('0')
-        str_delta = str(plate[i].delta*180/pi) 
-        current_delta = Label(window, text = str_delta, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
-        current_delta.grid(column = 13, row = i+1)
-        str_orientation = StringVar(window)
-        str_orientation.set('0')
-        str_orientation = plate[i].orientation 
-        current_orientation = Label(window, text = str_orientation, font = ('Bahnschrift SemiBold Condensed','20'), fg = '#000000', bg = '#ffffff')
-        current_orientation.grid(column = 14, row = i+1)
-
-#Defining the properties of the plates
-def define_elements(window,size):
-    Number = [i for i in range(1,size+1)]
-    Type = ('Linear Retarder', 'Linear Polarizer', 'Circular Polarizer')
-    Inverse_Type = {'Linear Retarder' : 'LR', 'Linear Polarizer' : 'LP', 'Circular Polarizer' : 'CP'}
-    Orientation = ('None', 'Right', 'Left')
-    number_title = Label(window, text = 'Number', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
-    number_title.grid(column = 0, row = 0)
-    type_title = Label(window, text = 'Type', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
-    type_title.grid(column = 1, row = 0)
-    theta_title = Label(window, text = 'Theta', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
-    theta_title.grid(column = 2, row = 0)
-    delta_title = Label(window, text = 'Delta', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
-    delta_title.grid(column = 3, row = 0)
-    orientation_title = Label(window, text = 'Orientation', font = ('Bahnschrift Semibold','30'), fg = '#000000', bg = '#ffffff', relief= 'raised')
-    orientation_title.grid(column = 4, row = 0)
-    global number
-    number = StringVar(window)
-    number.set(Number[0])
-    om_number = OptionMenu(window, number, *Number)
-    om_number.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000')
-    om_number.grid(column = 0, row = 1)
-    global type
-    type = StringVar(window)
-    type.set(Type[0])
-    om_type = OptionMenu(window, type, *Type)
-    om_type.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    om_type.grid(column = 1, row = 1)
-    global orientation
-    orientation = StringVar(window)
-    orientation.set(Orientation[0])
-    om_orientation = OptionMenu(window, orientation, *Orientation)
-    om_orientation.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    om_orientation.grid(column = 4, row = 1)
-    global theta
-    theta = StringVar(window)
-    theta.set(0)
-    entry_theta = Entry(window, textvariable = theta, width=3)
-    entry_theta.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000' )
-    entry_theta.grid(column = 2, row = 1)
-    global delta
-    delta = StringVar(window)
-    delta.set(0)
-    entry_delta = Entry(window, textvariable = delta, width=3)
-    entry_delta.config(font = ('Bahnschrift SemiLight','25'), bg = '#cccccc', fg = '#000000')
-    entry_delta.grid(column = 3, row = 1)
-    def give_plate():
-        global number
-        global type
-        global theta
-        global delta
-        global orientation
-        global plate
-        new_plate = Plate(Inverse_Type[type.get()],float(theta.get())*pi/180, float(delta.get())*pi/180, orientation.get())
-        print(new_plate.element, new_plate.theta, new_plate.delta, new_plate.orientation)
-        plate[int(number.get())-1] = new_plate
-        display(plate,window)
-    button = Button(window, fg="#ffffff",text= "Validate", command=give_plate, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-    button.grid(column = 4, row = 6)
-    button_quit = Button(window, text="Finish", fg="#ffffff", command=window.destroy, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-    button_quit.grid(column = 0, row = 6)
-    #return (Inverse_Type[type.get()],theta.get(), delta.get(), orientation.get())
-
-class Time:
-    def __init__(self, k, photon, window):
-        self.k = k
-        self.photon = photon
-        self.window = window
-    def bloch_sphere(self):
-        (self.photon).representation(self.k)
-    def do(self):
-        state_in_k = Button(self.window, text="State", fg="#ffffff", command=self.bloch_sphere, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-        state_in_k.grid(column = 2*self.k, row = 0, pady = 20)
-
-#Simulation of the optical path
-def optical_path(window, photon):
-    length = len(photon.state0)
-    for i in range(length):
-        time = Time(i,photon,window)
-        time.do()
-        if i != length-1:
-            plate_number = Label(window, text = 'Plate' + str(i+1), font = ('Bahnschrift Semibold','15'), fg = '#000000', bg = '#ffffff', relief = 'raised')
-            plate_number.grid(column = 2*i+1, row = 0)
-
-#Global software
-def graphical_grid_init():
-    root = Tk()
-    root.geometry("+150+20")
-    root.config(bg = '#ffffff')
-    root.title('PhotoniCS')
-    titre = Label(root, text = "PhotoniCS", font = ('Bahnschrift SemiBold Condensed','60'), fg = '#000000', bg = '#bbbbbb', relief= 'groove')
-    titre.grid(column = 4, row = 0)
-    button = Button(root, text="Quit", fg="#ffffff", command=quit, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-    button.grid(column = 0, row = 6)
-    global v
-    v = number_elements(root)
-    global plate
-    global state0
-    global state1
-    state0, state1 = initial_photon(root)
-    "pyg.mixer.init()"
-    def define():
-            #bg_music= pyg.mixer.Sound("bg.wav")
-            #bg_music.play()
-            #pyg.mixer.music.set_volume(0.5)
-            window = Toplevel()
-            window.config(bg = '#ffffff')
-            window.geometry('+100+350')
-            global plate
-            plate = [Plate('LR') for i in range(int(v.get()))]
-            define_elements(window,int(v.get()))
-    button = Button(root, fg="#ffffff",text= "Define", command=define, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-    button.grid(column = 2, row = 6)
-    def simulate():
-            #bg_music= pyg.mixer.Sound("bg.wav")
-            #bg_music.play()
-            #pyg.mixer.music.set_volume(0.5)
-            photon = Photon(float(state0.get()),float(state1.get()))
-            global plate
-            for i in range(int(v.get())):
-                photon.gate(plate[i])
-            window = Toplevel()
-            window.config(bg = '#ffffff')
-            optical_path(window,photon)
-            window.geometry('+150+20')
-            #pyg.mixer.quit()
-    button_simulate = Button(root, fg="#ffffff",text= "Simulate", command=simulate, font = ('Bahnschrift SemiLight','20','bold'), relief = 'raised', bg = 'black')
-    button_simulate.grid(column = 7, row = 6)
-    root.mainloop()
-
-graphical_grid_init()
diff --git a/main.py b/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391