
Object-oriented programming: basics Classes in Python

Object Oriented Programming in Python
Classes and objects

IS1220 Object Oriented Programming in Python 1/18



Object-oriented programming: basics Classes in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

IS1220 Object Oriented Programming in Python 2/18



Object-oriented programming: basics Classes in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

IS1220 Object Oriented Programming in Python 3/18



Object-oriented programming: basics Classes in Python

Object-oriented programming (OOP)

OOP: a programming paradigm for directly mapping real-life prob-
lems into a program

• it is based on the notion of class (a user-defined data type)

• and objects (instances of a given class)

an object is a data structure that contains:

• data: in form of variables called attributes or fields

• behaviour: in form of procedures called methods

IS1220 Object Oriented Programming in Python 4/18



Object-oriented programming: basics Classes in Python

Real-world objects

real-world objects share two characteristics: they all have a state
and a behaviour

examples of real-world objects

• Dog:

• state: name, color, breed, hungry, ...
• behaviour: barking, fetching, wagging tail, eating, ...

• Bicycle:

• state: current gear, current pedal cadence, current
speed, ...

• behaviour: changing gear, changing pedal cadence,
applying brakes, ...

IS1220 Object Oriented Programming in Python 5/18



Object-oriented programming: basics Classes in Python

Example: class “Bicycle” and class “Rider”

class name

attributes 
(state variables)

methods 
(class interface)

class name

attributes 
(state variables)

methods 
(class interface)

IS1220 Object Oriented Programming in Python 6/18



Object-oriented programming: basics Classes in Python

What is a (software) class ?

class: the blueprint characterising a category of objects

• defines the attributes representing the state of objects

• defines the methods representing the behaviour of objects

several objects can be instantiated from a given class

IS1220 Object Oriented Programming in Python 7/18



Object-oriented programming: basics Classes in Python

What an Object-Oriented program looks like?

an Object-Oriented program consists of:

• a collection of classes definitions

• a collection of objects’ instances

computation: instantiated objects perform the desired computation by
invoking each other methods (i.e. by exchanging messages)

IS1220 Object Oriented Programming in Python 8/18



Object-oriented programming: basics Classes in Python

Outline

1 Object-oriented programming: basics

2 Classes in Python

IS1220 Object Oriented Programming in Python 9/18



Object-oriented programming: basics Classes in Python

Classes in Python

• Class: bundle together data and functionalities

• defining a Class defines a new data type allowing new instances
(objects) of that data type to be created

IS1220 Object Oriented Programming in Python 10/18



Object-oriented programming: basics Classes in Python

Class definition syntax

in Python a class definition looks like this:

class ClassName:
<statement−1>
.
.
.
<statement−N>

Example:

class MyClass:
# this is a comment

# this is an attribute
i = 12345

# this is a method
def f(self):

return 'hello world'

defines a class called MyClass with one attribute named i and one
method named f

IS1220 Object Oriented Programming in Python 11/18



Object-oriented programming: basics Classes in Python

Object instantiation and reference to object members

class MyClass:
i = 12345

def f(self):
return 'hello world'

instantiation of an object of a class: uses function call notation

x = MyClass() # creates an object of type MyClass and associates it to variable x

reference to an object’s attributes and methods: through the . operator

x = MyClass()
x.i # refers to attribute i
x.f() # refers to method f()

IS1220 Object Oriented Programming in Python 12/18



Object-oriented programming: basics Classes in Python

Object initialisation: method init ()

To initialise objects in a specific manner a class must define a special
method called init ()

class Complex:
def __init__(self, realpart, imagpart):

self.r = realpart # declares and initialise an attribute named r
self.i = imagpart # declares and initialise an attribute named i

def display(self):
print('(', self.r, ',' ,self.i, ')') # displays the value if r and i in between brackets

create a Complex object with given initial value and display its values

c = Complex(3,−7)
c.display()
>> ( 3 , −7 )

IS1220 Object Oriented Programming in Python 13/18



Object-oriented programming: basics Classes in Python

Use of self in a class method declaration

remark: a method declared in a class must have at least one attribute
named self

class Complex:
def __init__(self, realpart, imagpart):

self.r = realpart # declares and initialise an attribute named r
self.i = imagpart # declares and initialise an attribute named i

def display(self):
print('(', self.r, ',' ,self.i, ')') # displays the value if r and i in between brackets

what self stands for ?

• it represents an instance object of the class the method belongs to

• an invocation of a method on an instance of the class replaces self
with the invoking object

c = Complex(3,−7) # corresponds to invoking Complex. init (c,3,−7)
c.display() # corresponds to invoking Complex.display(c)

IS1220 Object Oriented Programming in Python 14/18



Object-oriented programming: basics Classes in Python

Class and instance variables

variables of a class may be:

• instance variables: storing data unique to an object

• class variables: storing data shared by all objects instances of the
class

class Dog:
kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

IS1220 Object Oriented Programming in Python 15/18



Object-oriented programming: basics Classes in Python

Inheritance: classes and subclasses

Inheritance: define a class as a subclass of another class

class DerivedClassName(BaseClassName):
<statement−1>
.
.
.
<statement−N>

Example: a class for representing pets

class Pet(object): #class Pet inherits from class object
def __init__(self,name,species):
self.name = name

self.species =species

def getName(self):
return self.name

def getSpecies(self):
return self.species

def __string__(self):
return ”%s is a %s” % (self.name , self.species)

IS1220 Object Oriented Programming in Python 16/18



Object-oriented programming: basics Classes in Python

Example of subclasses: Dog and Cats

class Dog(Pet): #class Dog inherits from class Pet
def __init__(self,name,chases_cats):
Pet.i__init__(self,name,”Dog”)
self.chases_cats = chases_cats

def getChasesCats(self):
return self.chases_cats

class Cat(Pet): #class Cat inherits from class Pet
def __init__(self,name,hates_dogs):
Pet.__init__(self,name,”Cat”)
self.hates_dogs = hates_dogs

def getHatesDog(self):
return self.hates_dogs

>> ginger = Cat(”Ginger”,True)
>> clifford = Dog(”Clifford”,False)
>> barnaby = Pet(”Barnaby”,”Parrot”)
>> holly = Pet(”Holly”,”Dog”)
>> clifford.getName()
>> Clifford

>> ginger.getSpecies()
>> Cat

>> holly.getSpecies()
>> Pet

IS1220 Object Oriented Programming in Python 17/18



Object-oriented programming: basics Classes in Python

isinstance(): checking if an object is an instance of a class

isinstance(’object’,’class’): returns True is object is an instance
of class

>> ginger = Cat(”Ginger”,True)
>> clifford = Dog(”Clifford”,False)
>> barnaby = Pet(”Barnaby”,”Parrot”)
>> holly = Pet(”Holly”,”Dog”)
>> isinstance(clifford, Dog)
>> True

>> isinstance(holly, Dog)
>> False

>> isinstance(holly, Pet)
>> True

IS1220 Object Oriented Programming in Python 18/18


	Object-oriented programming: basics
	Classes in Python

