#include "types.h" #include "param.h" #include "memlayout.h" #include "riscv.h" #include "spinlock.h" #include "proc.h" #include "defs.h" #include "watchdog.h" struct spinlock tickslock; uint ticks; extern char trampoline[], uservec[], userret[]; // in kernelvec.S, calls kerneltrap(). void kernelvec(); extern int devintr(); static const char * scause_desc(uint64 stval); void trapinit(void) { initlock(&tickslock, "time"); } // set up to take exceptions and traps while in the kernel. void trapinithart(void) { w_stvec((uint64)kernelvec); } int handle_page_fault(struct proc* p, uint64 scause, uint64 stval, uint64 sepc){ uint64 addr = PGROUNDDOWN(stval); acquire(&p->vma_lock); int flags = allocate_if_possible(p->pagetable, p, addr); release(&p->vma_lock); if(flags < 0){ if(flags == ENOVMA){ printf("Could not find VMA associated with addr=%p\n", addr); } else if (flags == ENOMEM){ printf("No more memory could be allocated from the kernel\n"); } else if (flags == ENOFILE){ printf("Could not read file associated with memory area\n"); } else if (flags == EMAPFAILED){ printf("mappages failed for an unknown reason\n"); } else if (flags == EBADPERM){ printf("Bad permission addr=%p, scause=%p\n", addr, scause); } proc_vmprint(p); printf("unrecoverable page fault by pid=%d at sepc=%p stval=%p scause=%x\n", p->pid, sepc, stval, scause); p->killed = 1; return -1; } return 0; } // // handle an interrupt, exception, or system call from user space. // called from trampoline.S // void usertrap(void) { int which_dev = 0; if((r_sstatus() & SSTATUS_SPP) != 0) panic("usertrap: not from user mode"); // send interrupts and exceptions to kerneltrap(), // since we're now in the kernel. w_stvec((uint64)kernelvec); struct proc *p = myproc(); // save user program counter. p->tf->epc = r_sepc(); uint64 scause = r_scause(); if(scause == 8){ // system call if(p->killed) exit(-1); // sepc points to the ecall instruction, // but we want to return to the next instruction. p->tf->epc += 4; // an interrupt will change sstatus &c registers, // so don't enable until done with those registers. intr_on(); syscall(); } else if (scause == 0xf || scause == 0xd) { handle_page_fault(p, scause, r_stval(), r_sepc()); } else if((which_dev = devintr()) != 0){ // ok } else { printf("usertrap(): unexpected scause %p (%s) pid=%d\n", r_scause(), scause_desc(r_scause()), p->pid); printf(" sepc=%p stval=%p\n", r_sepc(), r_stval()); p->killed = 1; } if(p->killed) exit(-1); // give up the CPU if this is a timer interrupt. if(which_dev == 2) yield(); usertrapret(); } // // return to user space // void usertrapret(void) { struct proc *p = myproc(); // turn off interrupts, since we're switching // now from kerneltrap() to usertrap(). intr_off(); // send syscalls, interrupts, and exceptions to trampoline.S w_stvec(TRAMPOLINE + (uservec - trampoline)); // set up trapframe values that uservec will need when // the process next re-enters the kernel. p->tf->kernel_satp = r_satp(); // kernel page table p->tf->kernel_sp = p->kstack + PGSIZE; // process's kernel stack p->tf->kernel_trap = (uint64)usertrap; p->tf->kernel_hartid = r_tp(); // hartid for cpuid() // set up the registers that trampoline.S's sret will use // to get to user space. // set S Previous Privilege mode to User. unsigned long x = r_sstatus(); x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode x |= SSTATUS_SPIE; // enable interrupts in user mode w_sstatus(x); // set S Exception Program Counter to the saved user pc. w_sepc(p->tf->epc); // tell trampoline.S the user page table to switch to. uint64 satp = MAKE_SATP(p->pagetable); // jump to trampoline.S at the top of memory, which // switches to the user page table, restores user registers, // and switches to user mode with sret. uint64 fn = TRAMPOLINE + (userret - trampoline); ((void (*)(uint64,uint64))fn)(TRAPFRAME, satp); } // interrupts and exceptions from kernel code go here via kernelvec, // on whatever the current kernel stack is. void kerneltrap() { int which_dev = 0; uint64 sepc = r_sepc(); uint64 sstatus = r_sstatus(); uint64 scause = r_scause(); if((sstatus & SSTATUS_SPP) == 0) panic("kerneltrap: not from supervisor mode"); if(intr_get() != 0) panic("kerneltrap: interrupts enabled"); if((which_dev = devintr()) == 0){ printf("scause %p (%s)\n", scause, scause_desc(scause)); printf("sepc=%p stval=%p\n", r_sepc(), r_stval()); panic("kerneltrap"); } // give up the CPU if this is a timer interrupt. if(which_dev == 2 && myproc() != 0 && myproc()->state == RUNNING) yield(); // the yield() may have caused some traps to occur, // so restore trap registers for use by kernelvec.S's sepc instruction. w_sepc(sepc); w_sstatus(sstatus); } void clockintr() { acquire(&watchdog_lock); acquire(&tickslock); if (watchdog_time && ticks - watchdog_value > watchdog_time){ panic("watchdog !!!"); } ticks++; wakeup(&ticks); release(&tickslock); release(&watchdog_lock); } // check if it's an external interrupt or software interrupt, // and handle it. // returns 2 if timer interrupt, // 1 if other device, // 0 if not recognized. int devintr() { uint64 scause = r_scause(); if((scause & 0x8000000000000000L) && (scause & 0xff) == 9){ // this is a supervisor external interrupt, via PLIC. // irq indicates which device interrupted. int irq = plic_claim(); if(irq == UART0_IRQ){ uartintr(); } else if(irq == VIRTIO0_IRQ || irq == VIRTIO1_IRQ ){ virtio_disk_intr(irq - VIRTIO0_IRQ); } else { // the PLIC sends each device interrupt to every core, // which generates a lot of interrupts with irq==0. } if(irq) plic_complete(irq); return 1; } else if(scause == 0x8000000000000001L){ // software interrupt from a machine-mode timer interrupt, // forwarded by timervec in kernelvec.S. if(cpuid() == 0){ clockintr(); } // acknowledge the software interrupt by clearing // the SSIP bit in sip. w_sip(r_sip() & ~2); return 2; } else { return 0; } } static const char * scause_desc(uint64 stval) { static const char *intr_desc[16] = { [0] "user software interrupt", [1] "supervisor software interrupt", [2] "<reserved for future standard use>", [3] "<reserved for future standard use>", [4] "user timer interrupt", [5] "supervisor timer interrupt", [6] "<reserved for future standard use>", [7] "<reserved for future standard use>", [8] "user external interrupt", [9] "supervisor external interrupt", [10] "<reserved for future standard use>", [11] "<reserved for future standard use>", [12] "<reserved for future standard use>", [13] "<reserved for future standard use>", [14] "<reserved for future standard use>", [15] "<reserved for future standard use>", }; static const char *nointr_desc[16] = { [0] "instruction address misaligned", [1] "instruction access fault", [2] "illegal instruction", [3] "breakpoint", [4] "load address misaligned", [5] "load access fault", [6] "store/AMO address misaligned", [7] "store/AMO access fault", [8] "environment call from U-mode", [9] "environment call from S-mode", [10] "<reserved for future standard use>", [11] "<reserved for future standard use>", [12] "instruction page fault", [13] "load page fault", [14] "<reserved for future standard use>", [15] "store/AMO page fault", }; uint64 interrupt = stval & 0x8000000000000000L; uint64 code = stval & ~0x8000000000000000L; if (interrupt) { if (code < NELEM(intr_desc)) { return intr_desc[code]; } else { return "<reserved for platform use>"; } } else { if (code < NELEM(nointr_desc)) { return nointr_desc[code]; } else if (code <= 23) { return "<reserved for future standard use>"; } else if (code <= 31) { return "<reserved for custom use>"; } else if (code <= 47) { return "<reserved for future standard use>"; } else if (code <= 63) { return "<reserved for custom use>"; } else { return "<reserved for future standard use>"; } } }