proc.c 17.1 KB
Newer Older
Wilke Pierre's avatar
Wilke Pierre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "riscv.h"
#include "spinlock.h"
#include "sleeplock.h"
#include "fs.h"
#include "file.h"
#include "proc.h"
#include "defs.h"

struct cpu cpus[NCPU];

struct proc proc[NPROC];

struct list_proc* prio[NPRIO];
struct spinlock prio_lock;

struct proc *initproc;

int nextpid = 1;
struct spinlock pid_lock;

extern void forkret(void);
static void wakeup1(struct proc *chan);

extern char trampoline[]; // trampoline.S

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/* Solution insert et remove

// Needs lock on p and prio_lock[p->priority]
void insert_into_prio_queue(struct proc* p){
  struct list_proc* new = bd_malloc(sizeof(struct list_proc));
  new->next = 0;
  new->p = p;
  if(!prio[p->priority]){
    prio[p->priority] = new;
  }
  else {
    struct list_proc* last = prio[p->priority];
    while(last && last->next){
      last = last->next;
    }
    last->next = new;
  }
}

// Needs lock on p and prio_lock[p->priority]
void remove_from_prio_queue(struct proc* p){
  struct list_proc* old = prio[p->priority];
  struct list_proc* prev = 0;
  struct list_proc* head = old;

  while(old){
    if(old->p == p) {
      if(old == head){
        head = old->next;
      } else {
        prev->next = old->next;
      }
      bd_free(old);
      break;
    }
    prev = old;
    old = old->next;
  }

  prio[p->priority] = head;
}
 */

Wilke Pierre's avatar
Wilke Pierre committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
void
procinit(void)
{
  struct proc *p;
  initlock(&prio_lock, "priolock");
  for(int i = 0; i < NPRIO; i++){
    prio[i] = 0;
  }
  initlock(&pid_lock, "nextpid");
  for(p = proc; p < &proc[NPROC]; p++) {
      initlock(&p->lock, "proc");

      // Allocate a page for the process's kernel stack.
      // Map it high in memory, followed by an invalid
      // guard page.
      char *pa = kalloc();
      if(pa == 0)
        panic("kalloc");
      uint64 va = KSTACK((int) (p - proc));
      kvmmap(va, (uint64)pa, PGSIZE, PTE_R | PTE_W);
      p->kstack = va;
  }
  kvminithart();
}

// Must be called with interrupts disabled,
// to prevent race with process being moved
// to a different CPU.
int
cpuid()
{
  int id = r_tp();
  return id;
}

// Return this CPU's cpu struct.
// Interrupts must be disabled.
struct cpu*
mycpu(void) {
  int id = cpuid();
  struct cpu *c = &cpus[id];
  return c;
}

// Return the current struct proc *, or zero if none.
struct proc*
myproc(void) {
  push_off();
  struct cpu *c = mycpu();
  struct proc *p = c->proc;
  pop_off();
  return p;
}

int
allocpid() {
  int pid;
  
  acquire(&pid_lock);
  pid = nextpid;
  nextpid = nextpid + 1;
  release(&pid_lock);

  return pid;
}

// Look in the process table for an UNUSED proc.
// If found, initialize state required to run in the kernel,
// and return with p->lock held.
// If there are no free procs, return 0.
static struct proc*
allocproc(void)
{
  struct proc *p;

  for(p = proc; p < &proc[NPROC]; p++) {
    acquire(&p->lock);
    if(p->state == UNUSED) {
      goto found;
    } else {
      release(&p->lock);
    }
  }
  return 0;

found:
  p->pid = allocpid();

  // Allocate a trapframe page.
  if((p->tf = (struct trapframe *)kalloc()) == 0){
    release(&p->lock);
    return 0;
  }

  // An empty user page table.
  p->pagetable = proc_pagetable(p);

  p->priority = DEF_PRIO;

  // Set up new context to start executing at forkret,
  // which returns to user space.
  memset(&p->context, 0, sizeof p->context);
  p->context.ra = (uint64)forkret;
  p->context.sp = p->kstack + PGSIZE;

  return p;
}

// free a proc structure and the data hanging from it,
// including user pages.
// p->lock must be held.
static void
freeproc(struct proc *p)
{
  if(p->tf)
    kfree((void*)p->tf);
  p->tf = 0;
  if(p->pagetable)
    proc_freepagetable(p->pagetable, p->sz);
  if(p->cmd)
    bd_free(p->cmd);
  p->cmd = 0;
  p->priority = 0;
  p->pagetable = 0;
  p->sz = 0;
  p->pid = 0;
  p->parent = 0;
  p->name[0] = 0;
  p->chan = 0;
  p->killed = 0;
  p->xstate = 0;
  p->state = UNUSED;
}

// Create a page table for a given process,
// with no user pages, but with trampoline pages.
pagetable_t
proc_pagetable(struct proc *p)
{
  pagetable_t pagetable;

  // An empty page table.
  pagetable = uvmcreate();

  // map the trampoline code (for system call return)
  // at the highest user virtual address.
  // only the supervisor uses it, on the way
  // to/from user space, so not PTE_U.
  mappages(pagetable, TRAMPOLINE, PGSIZE,
           (uint64)trampoline, PTE_R | PTE_X);

  // map the trapframe just below TRAMPOLINE, for trampoline.S.
  mappages(pagetable, TRAPFRAME, PGSIZE,
           (uint64)(p->tf), PTE_R | PTE_W);

  return pagetable;
}

// Free a process's page table, and free the
// physical memory it refers to.
void
proc_freepagetable(pagetable_t pagetable, uint64 sz)
{
  uvmunmap(pagetable, TRAMPOLINE, PGSIZE, 0);
  uvmunmap(pagetable, TRAPFRAME, PGSIZE, 0);
  if(sz > 0)
    uvmfree(pagetable, sz);
}

// a user program that calls exec("/init")
// od -t xC initcode
uchar initcode[] = {
  0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x05, 0x02,
  0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x05, 0x02,
  0x9d, 0x48, 0x73, 0x00, 0x00, 0x00, 0x89, 0x48,
  0x73, 0x00, 0x00, 0x00, 0xef, 0xf0, 0xbf, 0xff,
  0x2f, 0x69, 0x6e, 0x69, 0x74, 0x00, 0x00, 0x01,
  0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00
};

// Set up first user process.
void
userinit(void)
{
  struct proc *p;

  p = allocproc();
  initproc = p;
  
  // allocate one user page and copy init's instructions
  // and data into it.
  uvminit(p->pagetable, initcode, sizeof(initcode));
  p->sz = PGSIZE;

  // prepare for the very first "return" from kernel to user.
  p->tf->epc = 0;      // user program counter
  p->tf->sp = PGSIZE;  // user stack pointer

  safestrcpy(p->name, "initcode", sizeof(p->name));
  p->cmd = strdup("init");
  p->cwd = namei("/");
  p->state = RUNNABLE;

  release(&p->lock);
}

// Grow or shrink user memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
  uint sz;
  struct proc *p = myproc();

  sz = p->sz;
  if(n > 0){
    if((sz = uvmalloc(p->pagetable, sz, sz + n)) == 0) {
      return -1;
    }
  } else if(n < 0){
    sz = uvmdealloc(p->pagetable, sz, sz + n);
  }
  p->sz = sz;
  return 0;
}

// Create a new process, copying the parent.
// Sets up child kernel stack to return as if from fork() system call.
int
fork(void)
{
  int i, pid;
  struct proc *np;
  struct proc *p = myproc();

  // Allocate process.
  if((np = allocproc()) == 0){
    return -1;
  }

  // Copy user memory from parent to child.
  if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0){
    freeproc(np);
    release(&np->lock);
    return -1;
  }
  np->sz = p->sz;

  np->parent = p;

  // copy saved user registers.
  *(np->tf) = *(p->tf);

  // Cause fork to return 0 in the child.
  np->tf->a0 = 0;

  // increment reference counts on open file descriptors.
  for(i = 0; i < NOFILE; i++)
    if(p->ofile[i])
      np->ofile[i] = filedup(p->ofile[i]);
  np->cwd = idup(p->cwd);

  safestrcpy(np->name, p->name, sizeof(p->name));
  np->cmd = strdup(p->cmd);
  pid = np->pid;

  np->state = RUNNABLE;

  release(&np->lock);

  return pid;
}

// Pass p's abandoned children to init.
// Caller must hold p->lock.
void
reparent(struct proc *p)
{
  struct proc *pp;

  for(pp = proc; pp < &proc[NPROC]; pp++){
    // this code uses pp->parent without holding pp->lock.
    // acquiring the lock first could cause a deadlock
    // if pp or a child of pp were also in exit()
    // and about to try to lock p.
    if(pp->parent == p){
      // pp->parent can't change between the check and the acquire()
      // because only the parent changes it, and we're the parent.
      acquire(&pp->lock);
      pp->parent = initproc;
      // we should wake up init here, but that would require
      // initproc->lock, which would be a deadlock, since we hold
      // the lock on one of init's children (pp). this is why
      // exit() always wakes init (before acquiring any locks).
      release(&pp->lock);
    }
  }
}

// Exit the current process.  Does not return.
// An exited process remains in the zombie state
// until its parent calls wait().
void
exit(int status)
{
  struct proc *p = myproc();

  if(p == initproc)
    panic("init exiting");

  // Close all open files.
  for(int fd = 0; fd < NOFILE; fd++){
    if(p->ofile[fd]){
      struct file *f = p->ofile[fd];
      fileclose(f);
      p->ofile[fd] = 0;
    }
  }

  begin_op(ROOTDEV);
  iput(p->cwd);
  end_op(ROOTDEV);
  p->cwd = 0;

  // we might re-parent a child to init. we can't be precise about
  // waking up init, since we can't acquire its lock once we've
  // acquired any other proc lock. so wake up init whether that's
  // necessary or not. init may miss this wakeup, but that seems
  // harmless.
  acquire(&initproc->lock);
  wakeup1(initproc);
  release(&initproc->lock);

  // grab a copy of p->parent, to ensure that we unlock the same
  // parent we locked. in case our parent gives us away to init while
  // we're waiting for the parent lock. we may then race with an
  // exiting parent, but the result will be a harmless spurious wakeup
  // to a dead or wrong process; proc structs are never re-allocated
  // as anything else.
  acquire(&p->lock);
  struct proc *original_parent = p->parent;
  release(&p->lock);
  
  // we need the parent's lock in order to wake it up from wait().
  // the parent-then-child rule says we have to lock it first.
  acquire(&original_parent->lock);

  acquire(&p->lock);

  // Give any children to init.
  reparent(p);

  // Parent might be sleeping in wait().
  wakeup1(original_parent);

  p->xstate = status;
  p->state = ZOMBIE;

  release(&original_parent->lock);

  // Jump into the scheduler, never to return.
  sched();
  panic("zombie exit");
}

// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(uint64 addr)
{
  struct proc *np;
  int havekids, pid;
  struct proc *p = myproc();

  // hold p->lock for the whole time to avoid lost
  // wakeups from a child's exit().
  acquire(&p->lock);

  for(;;){
    // Scan through table looking for exited children.
    havekids = 0;
    for(np = proc; np < &proc[NPROC]; np++){
      // this code uses np->parent without holding np->lock.
      // acquiring the lock first would cause a deadlock,
      // since np might be an ancestor, and we already hold p->lock.
      if(np->parent == p){
        // np->parent can't change between the check and the acquire()
        // because only the parent changes it, and we're the parent.
        acquire(&np->lock);
        havekids = 1;
        if(np->state == ZOMBIE){
          // Found one.
          pid = np->pid;
          if(addr != 0 && copyout(p->pagetable, addr, (char *)&np->xstate,
                                  sizeof(np->xstate)) < 0) {
            release(&np->lock);
            release(&p->lock);
            return -1;
          }
          freeproc(np);
          release(&np->lock);
          release(&p->lock);
          return pid;
        }
        release(&np->lock);
      }
    }

    // No point waiting if we don't have any children.
    if(!havekids || p->killed){
      release(&p->lock);
      return -1;
    }
    
    // Wait for a child to exit.
    sleep(p, &p->lock);  //DOC: wait-sleep
  }
}

// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns.  It loops, doing:
//  - choose a process to run.
//  - swtch to start running that process.
//  - eventually that process transfers control
//    via swtch back to the scheduler.
void
scheduler(void)
{
  struct proc *p;
  struct cpu *c = mycpu();
  
  c->proc = 0;
  for(;;){
    // Avoid deadlock by giving devices a chance to interrupt.
    intr_on();

    // Run the for loop with interrupts off to avoid
    // a race between an interrupt and WFI, which would
    // cause a lost wakeup.
    intr_off();

    int found = 0;
    for(p = proc; p < &proc[NPROC]; p++) {
      acquire(&p->lock);
      if(p->state == RUNNABLE) {
        // Switch to chosen process.  It is the process's job
        // to release its lock and then reacquire it
        // before jumping back to us.
        p->state = RUNNING;
        c->proc = p;
        swtch(&c->scheduler, &p->context);

        // Process is done running for now.
        // It should have changed its p->state before coming back.
        c->proc = 0;

        found = 1;
      }

      // ensure that release() doesn't enable interrupts.
      // again to avoid a race between interrupt and WFI.
      c->intena = 0;

537
      // release(&p->lock);
Wilke Pierre's avatar
Wilke Pierre committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    }
    if(found == 0){
      asm volatile("wfi");
    }
  }
}

// Switch to scheduler.  Must hold only p->lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->noff, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
  int intena;
  struct proc *p = myproc();

  if(!holding(&p->lock))
    panic("sched p->lock");
  if(mycpu()->noff != 1)
    panic("sched locks");
  if(p->state == RUNNING)
    panic("sched running");
  if(intr_get())
    panic("sched interruptible");

  intena = mycpu()->intena;
  swtch(&p->context, &mycpu()->scheduler);
  mycpu()->intena = intena;
}

// Give up the CPU for one scheduling round.
void
yield(void)
{
  struct proc *p = myproc();
  acquire(&p->lock);
  p->state = RUNNABLE;
  sched();
  release(&p->lock);
}

// A fork child's very first scheduling by scheduler()
// will swtch to forkret.
void
forkret(void)
{
  static int first = 1;

  // Still holding p->lock from scheduler.
  release(&myproc()->lock);

  if (first) {
    // File system initialization must be run in the context of a
    // regular process (e.g., because it calls sleep), and thus cannot
    // be run from main().
    first = 0;
    fsinit(minor(ROOTDEV));
  }

  usertrapret();
}

// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
  struct proc *p = myproc();
  
  // Must acquire p->lock in order to
  // change p->state and then call sched.
  // Once we hold p->lock, we can be
  // guaranteed that we won't miss any wakeup
  // (wakeup locks p->lock),
  // so it's okay to release lk.
  if(lk != &p->lock){  //DOC: sleeplock0
    acquire(&p->lock);  //DOC: sleeplock1
    release(lk);
  }

  // Go to sleep.
  p->chan = chan;
  p->state = SLEEPING;

  sched();

  // Tidy up.
  p->chan = 0;

  // Reacquire original lock.
  if(lk != &p->lock){
    release(&p->lock);
    acquire(lk);
  }
}

// Wake up all processes sleeping on chan.
// Must be called without any p->lock.
void
wakeup(void *chan)
{
  struct proc *p;

  for(p = proc; p < &proc[NPROC]; p++) {
    acquire(&p->lock);
    if(p->state == SLEEPING && p->chan == chan) {
      p->state = RUNNABLE;
    }
    release(&p->lock);
  }
}

// Wake up p if it is sleeping in wait(); used by exit().
// Caller must hold p->lock.
static void
wakeup1(struct proc *p)
{
  if(!holding(&p->lock))
    panic("wakeup1");
  if(p->chan == p && p->state == SLEEPING) {
    p->state = RUNNABLE;
  }
}

// Kill the process with the given pid.
// The victim won't exit until it tries to return
// to user space (see usertrap() in trap.c).
int
kill(int pid)
{
  struct proc *p;

  for(p = proc; p < &proc[NPROC]; p++){
    acquire(&p->lock);
    if(p->pid == pid){
      p->killed = 1;
      if(p->state == SLEEPING){
        // Wake process from sleep().
        p->state = RUNNABLE;
      }
      release(&p->lock);
      return 0;
    }
    release(&p->lock);
  }
  return -1;
}

// Copy to either a user address, or kernel address,
// depending on usr_dst.
// Returns 0 on success, -1 on error.
int
either_copyout(int user_dst, uint64 dst, void *src, uint64 len)
{
  struct proc *p = myproc();
  if(user_dst){
    return copyout(p->pagetable, dst, src, len);
  } else {
    memmove((char *)dst, src, len);
    return 0;
  }
}

// Copy from either a user address, or kernel address,
// depending on usr_src.
// Returns 0 on success, -1 on error.
int
either_copyin(void *dst, int user_src, uint64 src, uint64 len)
{
  struct proc *p = myproc();
  if(user_src){
    return copyin(p->pagetable, dst, src, len);
  } else {
    memmove(dst, (char*)src, len);
    return 0;
  }
}

// Print a process listing to console.  For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
  static char *states[] = {
  [UNUSED]    "unused",
  [SLEEPING]  "sleep ",
  [RUNNABLE]  "runble",
  [RUNNING]   "run   ",
  [ZOMBIE]    "zombie"
  };
  struct proc *p;
  char *state;

  printf("\nPID\tPPID\tPRIO\tSTATE\tCMD\n");
  for(p = proc; p < &proc[NPROC]; p++){
    if(p->state == UNUSED)
      continue;
    if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
      state = states[p->state];
    else
      state = "???";
    printf("%d\t%d\t%d\t%s\t'%s'",
           p->pid,
           p->parent ? p->parent->pid : -1,
           p->priority,
           state,
           p->cmd
           );
    printf("\n");
  }
}

// No lock to avoid wedging a stuck machine further.
void priodump(void){
  for (int i = 0; i < NPRIO; i++){
    struct list_proc* l = prio[i];
    printf("Priority queue for priority = %d: ", i);
    while(l){
      printf("%d ", l->p->pid);
      l = l->next;
    }
    printf("\n");
  }
}