Application Architectures

Layered structure

Division of the work of an application into 3 general
functions, which can evolve independently:

* Presentation:

user input and commands, and display

* Business logic:
business objects, rules, processing logic, processes

"

* Data: @
storage and logical access r

Distribution onto « Tiers »

SERVER

network

CLIENT

Distribution of the layers onto multiple machines

(“tiers”) communicating over a network

data data data data data data
management | | management | | management | | management | | management | | management
business business business business
logic logic logic logic
presentation
data data
management | | management
business business business business
logic logic logic logic
presentation presentation presentation presentation presentation presentation
thin client rich client » heavy client

Monolithic
and Single-
tier
Applications

Monolithic application

The 3 application layers are intimately interlaced in the
same code base

data

import java.io.*; management
public class ReadFromFile {
public static void main(Strin args) throws Exception {

File file = new File("C:\\Users\\galtier\\Desktop\\test.txt");
BufferedReader br = new BufferedReader(new FileReader(file));

String st;
while ((st = br.readLine()) !'= null)
System.out.println(st.toUpperCase()); — *| presentation
encrypt(file, "mySecretKey");
} business

} logic

Single-tier Application

The 3 application layers run on the same computer

data
management

business
logic
présentation

1st architectural style, but still
relevant

* The area of “pre- * Still lots of stand-alone
network” PCs (late 70’s apps
- mid 80’s)

% TEXAS INSTRUMENTS
HOMECOMPUTER

TI-WRITER WO ROCESSOR

s.com/games/boxart/49494

https://games.alphacoder

https://play.google.com/store/apps/details?id=com.medibang.android.paint.tablet&hl=en_SG&gl=US

Advantages of single-tier

* Performance: O latency

» Safety by isolation

* Operate even in disconnected mode

 Simplicity (complexity reduced to the one of the code)

Disadvantages of monolithic applications

* Code is complex to learn,
debug and evolve

* Even a minor upgrade
requires a complete
reinstallation of the entire
application

* Afailure in one “layer”
renders the application
completely unusable

* Inability to leverage
heterogeneous technologies

* Not cloud-ready

NOT WANTED

down

X 3t Y
THE MON 0 L IT ﬂ
FOR - EXPENSIVE TO SGALE - DIFFICULT TO

MANTAIN - REWARDS - MORE TIME WITH
FAMILY - GOOD SLEEP NIGHTS

zp//:sdny

1WO2-PAJUBM-}OU/S3|I1}IB/WOD U0

|

Disadvantages of single-tier
applications e

“I'm a stand-alone PC but |'m lonely and
rt of a popular network.”

* Performances: depend on the capabilities of the host

omputer

* Shared resources impossible, requires duplicates (waste of
resources)

e No fault tolerance

* Nomadism is difficult:
* Access limited to physically logged-in users

* More difficult (if not impossible) to continue a task from a different
workstation

https://encyclopedia2.thefreedictionary.com/standalone+c

* Deployment is difficult:
* Requires actions on each terminal
* To be reinstalled if the underlying system needs to be reinstalled

* From the publisher's point of view:
* No fix possible without user action
* Application vulnerable to reverse engineering

O
Q5
8 5
g8
==
< O
=, <t

Principle

https://www.researchgate.net/figure/Mainframe-Architecture_fig2_275405572

“host” Architecture

* Supercomputer :

e ensures the data Ko My
persistence, processing,
and presentation

* proprietary hardware
and OS (IBM)
* passive clients :

thin client visualization
application

Terminal

Terminal

Mainframe

g O

on_november_21st/

https://www.reddit.com/r/mainframe/comments/dgq8pny/online_ibm_z_day_

Advantages

* Performances: handle a very large number of
simultaneous queries on very large databases

* Consistency, stability and long-term support
* Security
e Reliability (IBM Z customers: 99.9999% uptime)

RO b U St n eSS . https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html

Performances

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_mfworklds.htm

* Ability to process a very large number of simultaneous

qgueries on very large databases

Batch or real time operation:

Batch job

e Batch back-office

Online (interactive) transaction

. =1 Query | —
* Transactional g‘! Reply

] .] Application

". &
ET Input program > ﬁﬂl Output
data F-"rc:cesses data to g 1. data

perform a particular task

Application
rogram
prog
<+———— Accesses shared data on L8

behalf of an online user

e Used in banks, insurance companies, airlines...

HOE002-0

Transactions

* Program accessing and/or modifying persistent data

* A good transaction is
* Atomic
* Consistent
* |solated
* Durable

* Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
* Multiplexing of requests on system resources
* Transaction management (respect of ACID properties)

Server
Reply
Reques

Transaction

981512862 /Sy SWa)sAs-pangLiisip-ul-lojHuow-d | -e-0-3]01-3y | /24n8y/3au-a3eSydieasarmmm//:sdiy

Requests
Client A > Reques,
- (] TP monitor Server |
application | 7 L
Reply
Repl
By Request
Reply Server

e

Extensively used

e 71% of the Fortune 500, 96 of the top 100 banks use
mainframes

* process 30 billion business transactions per day, 87%
of credit card transactions

e 250 billion lines of COBOL code, and 5 billion new lines
each year

* Growth Outlook:
* demand for HPC
* increase in the number of banking transactions
* development of blockchain

Obstacles to growth

* Proprietary solutions

* Huge investment
* but no more than a

(https://pla netmainfr§r$.[o¥gogltgtcmm-mainframe-the-most-

powerful-and-cost-effective-computing-platform-for-business/

* Shortage of skilled
mainframe staff

* but Cobol is easy to learn

e Real alternatives +
migration experience

W
N
N
N
N

https://www.astadia.com/blog/break-free-from-your-z13-mainframe

WE NEED COBOL
PROGRAMMERS FOR
OUR MAINFRAME

MILLENIUM PROBLEM,

\

S dms www.unitedmedia.com

IF YOU SEE ANYONE
WHO LOOKS LIKE

A COBOL PROGRAMMER,,
LET ME KNOW.

ARE YOU A COBOL
PROGRAMMER T

MO, BUT T'M OFTEN
TOLD T LOOK LIKE

N[4AT © 1997 United Festurs Syndicate, Ine.

II!I Mainframe

Azure A

Apps
COBOL, PL/I, Assembler, Natural

Apps
COBOL, PL/I

tools

Scheduling
(TWS-OPC)

Security
(RACF)

Monitoring

System management

Print/output mgmt
(CA-SAR, SPOOL)

Transaction Transaction System management
manager manager system tools
CICS IMS TPM emulator Print/output mgmt
(SQL Server Reporting
Services, LRS)
Batch Batch syst
AELEYRIem Scheduling
JCL JES JCL (Azure Scheduler,
Tivoli)
Data migration Data migrati Security
9 ata migration (Azure Active
-——= e A —_— Directory)
== ' .' Monitoring
IMS, VSAM, Db2, Azure SQL IMS, VSAM,
SEQ ADABAS Database SEQ

z/OS or Linux

Red Hat, SUSE, Windows Server

itecture

2-tier
Arch

p
i~
o
=
<
e
<
i,
2
i
g
=

Client Applications

/24N303})1YdJE-I31}-931U3}-PUE-ID1}-OM]-USIM]D[-20UISYIP-SI-}FeyM/W0°'sSe|dSULISDIDIeMPOS MMM //:sdnYy

The origin: “1.5-tier” Architecture

* Development of LANs

presentation

workstations / heavy clients business logic

;, ’: ! g/ data

management

local network

data

file server
(shared data storage,
but data management service reduced to tree-like organization of files)

* Advantages: information sharing:
* better communication
* requires less resources

2-tier Architecture

presentation data

business logic \ management
; §§J il SQL

DBMS

e Central database server

* Manages physical I/0 and provides logical data
manipulation

* |ntegrity control
* Secure, optimized, transactional access

* Data handling is decoupled from its representation on
disk, closer to the application logic

2-tier Architecture limits

* identical problems to single-tier:
Not tolerant to client or server failures, updates require
user’s action...
* excessive use of stored procedures:
* breaks the principle of single responsibility
* complex to maintain
* adherence with the physical model

* performance :
Server and access network = bottlenecks

Thank you, 2-tier Architecture

* Microcomputing (previously confined to office
automation) has taken on a growing role in IS

* The DBMS offer has grown, SQL has become
widespread

* Has triggered the evolution towards more flexible
architectural proposals

* Still relevant for simple applications

Presentation Layer

Business Logic Layer

3

Data Access Layer \ 3-tier to o-tier
S sy ArChitectures

Sourcr

3-tier

Client/Presentation Server/Application Database/
Layer Layer Data Layer
: : : data
presentation business logic
manag ement

Example:
Classical Web Architecture

Users

a a & a a C) & a & Software Technologies

Client-side Programming:

Ajax, Java Applets, Adobe Flex,
JSP/ASPIPHP, Java Script

| Model Forms & Graph Results
| Interface Scripts Tools Analysis

Q §

Server-side Programming:

[Logic Tier | Analysis |
| ' Simulaticon |
| @E ‘Z\ Sk f::l‘;,’;:"” | ge'r;lets,P JEIPIFHPJASP, cel,
ython, Per
IData Handling | Webservers:
|

Storage "Iu’lsusllz:atmn

Retrieval Graph Layout Apache Tomcat

Conversion Central Server Interactivity Apache HTTP
+ XML/SQL

I Data Tier Databases:

MySQL, Oracl
Database, Data Y s

Warehouse and
External Data Sources

Data Formats:

|
|
| XML, SBML, OWL, SQL

sonewuogulolg ul sSuyallg - 800z 420300 - SwialsAs [ea130joiq Jo sjppow dauny SuisAjeue pue SuiSeuew ‘Suip|ing 1oy suoyediidde paseq-gap

4-tier, 5-tier

Client Layer

Browser

Tablet .

AN
&y
S'l."u' a.t: *

Presantation
Layer

Session
State

Management

Businaess
Layer

o '

-

Application
Logic

Processing

v

presentation

Integration
Layer

e

Data Accass

Massagmg

iy
(it
5

Sarvice
Integration

Data
Layer

{0

Database

Dealivary
System

business logic

N

data management

https://www.ajboggs.com/our-experiences/health-information-technology/sisonline-supports-assessment/sisonline-system-architecture/sissa-sis5_big/

Perspectives for multi-tier architecture

* Corrects some of the problems of 2-tier architecture
* Maintainability, evolvability, deployment

* Very popular model for non-intensive systems

* But to be completed to meet the challenges of
reliability, performance, and scalability

Micro-services
Architecture

Siloed Architecture

~ Check PR Check ~ Calculate
Customer Status S Pl Ustomer Status e — = 1ppIng L harges B

w Determine Product |8 = Determine Product |
Avalabiity L Availability

erify [Verify
l._....tr_ur'n-r Credit el Customer Credit

Grider Status

] R o .- -': W RS R iy

TN NN l‘ii |

0
h%rﬁletmg FII'ELI'I-E-E anrehouse LSINEss e
System E.y*stem Syst-n:rm System Mgmt. System Linit Par

https://www.slideshare.net/imcinstitute/service-oriented-architecture-soa-15-introduction-to-soa

Problems with siloed architecture

* Waste of resources

* Complex maintenance

* Lack of data sharing and consistency

e Complexity of IAM (ldentity and Access Management)
* Difficult to scale up

Microservices Architecture

= .mE Composed |
- Business
Instaliation Scheduling Process Customer Order Bill Presentment/Payment Processes .
Check Check Check Check Creat Eieania:
E »
o

M L3 B B9 B4 B BT

Custom AS400 ﬂracle Red Frairie Hnuther External
Marketing Sales Flll-ill'll:.‘-il Viarehouse Trading

System System E]':l-tlm System Mgmt System “onit partner

(Micro)Service Concept

 Black box performing 1 specific task (business or
technical function)

e Can be used via an API (= contract between the
customer and the supplier)

e Can call on other services

* Designed to be duplicated — stateless:
* No application state
* Or client-specific state provided in the request
* Or state on external storage shared with other services

Advantages of the microservice
architecture

* Reuse

* Scaling and fault tolerance thanks to easy duplication
* Fault isolation

* Independent development and deployment

* Ability to use the most appropriate technology for each
module

* Small development teams

DILBERT

BY SCOTT ADAMS

OF MEETINGS.

THE JEFF BEZOS RULE

= =
[L-JE RE GOING TO USE

Fomon e

IF I APPLY
ZEMO'S PARADOX
TO THE SLICE SIZE,
CAN T HAVE TNFINITE
ATTENDEES?

BEZOS SANYS YOU
SHOULD NEVER HAVE A
MEETING THAT IS S0

BIG YOU CAM'T FEED
EVERYONE WITH TLWO

AMD WHAT DOES
IT MEAN TO "FEED”
EVERYOMEF DO THEY
MEED TO BE TOTALLY

[5TOP BEING

=1

: I CAN EAT TWO
PIZZAS BY MYSELF.

ENGINEERS!

HOWJ DO YOU COUNT
THE PFEOPLE LWIHO HAVE
GLUTEN SENSITIVITY
AMD DOMT EAT PIZZAT

D S0 SoodE Adama IS T b Usvesrnyl Liniea

HOW DOES
CHEESE BREAD
FIT INTO THIS?

No silver bullet...

* The entropy of the IS increases as well!

* Several examples of strategic retreats on a monolithic
solution!

* Microservices do not correct design errors.

oNDLI T MIcROSERVICES

K e
A # RAR)
= | é‘iL

18 HEAD MoNSTER

_/status/999333740122902529

* Intercommunication between services can lead to a
higher latency of the application and the network
quality becomes crucial

https://twitter.com/_zenx

Mfddleware

Middleware

Solutions to ease the connection between services:

* Locally:
* [nter-process communication: system, MPI, Unix Domain
Socket, etc
* Across the network:
* Synchronous Remote Procedure Call
* Asynchronous Messages

https://www.ibm.com/support/knowledgecenter/ssw_aix_72/commprogramming/rpc_mod.html

apparent flow
call
: Manager
Client return Procedures
h
call return return call
Interface
k.

Client Stub Server Stub
call return return l call
RPC Runtime '[RPC Runtime

Library Library
network
messages

Client process Server process

and

Remote Procedure Call Flow

Remote Procedure Call

Object Request Broker

(RPC)

(ORB)

RPC

[asynchronous] loose coupling between client and server

client server
instruction 1 fac(int a, int b) {
v temp =
o for 1 from 1 to b
—» = -
r fac(x, y) application laydr temp = temp * a
v return temp
instruction k }
|
| v
déballe le emballe le nom reconstitue I'appel emballe le
résultat de la méthode et avec le nom de la résultat
ses parametres méthode et ses
I parametres
; A
réceptionne envoie recoit la requéte envoie
J OS and hardware layer [
. send f » receilve
receive < HELVOIX send

* The proxies handle:
* network calls
e format transformations between the client and server

(some) RPC implementations and
frameworks

* Rise:
e 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems

* 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of
functionalities (transactions, encryption...), more complex to use

e Fall;

* 94: RPC is “fundamentally flawed”: communication latency, partial failures and
concurrency issues...

* Message passing alternatives

* Rise, again: more features, more supported formats/transports...

* 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP

* 2005: JSON-RPC, lightweight

e 2007: Apache Thrift (init. Facebook): support for multiple serialization format
(including binary), support for multiple transport protocols, complete stack for
creating clients and servers

e 2009: Avro (Apache Hadoop)

* 2016: gRPC (Google, open source): messages serialized using Protocol Buffers
(binary), transported by HTTP/2, multiple features

e 2021: Cap’n Proto (now developed by Cloudflare): performances!

Object Request Broker

* Object oriented RPC: method calls on remote objects

* Most popular technologies:
* CORBA (Common Object Request Broker Architecture) (1991)

* OO-RPC for heterogeneous objects
* but also a set of services

High-level horizontal frameworks)
Vertical frameworks System functions

CORBA CORBA CORBA Services
Domains Facilities

Application
Objects

‘@

cryptography
QoS

@ € manag
commerce ement

ORB

* DCOM (Distributed Component Object Model) (1995), .Net Remoting
* Microsoft-equivalent to CORBA

* Java RMI (Remote Method Invocation) (1998)

* for Java objects

CORBA perspectives

* Limitations:
* local calls are treated the same as remote calls = inefficient
* complex standard
* difficult to have different versions of a service coexisting
* fewer and fewer experts

* Why hasn't it disappeared?
* still important legacy
* one of the few candidates (with DDS) when there are strong

real time constraints

Alcatel-Lucent network management system, communications
between military planes and ESA satellites, air control systems,
Siemens electrical power plant management system...

Service call

* 1srt generation Web Services:
* Requests and responses transported by SOAP messages,
usually on top of HTTP

* 4 patterns supported by WSDL:
* Request - response
* One way request
* Notification
* Request - response

* WS-*: myriad of specifications to complete the messaging
service

* Web service in a REST architecture:

e URI-addressed resources

* Requests and responses typically carried over HTTP,
exploiting the semantics of HTTP methods

n
U

Client

~[Msg1

e I -

o

Message Oriented

Send

Destination

Middleware

i * I -

Client

J1-[]-
U u

Message Oriented Middleware

* Structure allowing one or more sources to transmit
messages asynchronously to one or more destinations
* No need to be connected simultaneously
* Not need to know the source / the destination

T
E Message based
g communications
2 Application A Application B
E Messaging APl Messaging APl
: - - Messaging Message -

Messaging dhient | system o Messaging client

Message

Message oriented middleware

https://www.oreilly.com/lib

Optional Features

e Strict FIFO (, guaranteed delivery of messages in the right order) or
hierarchical organization of messages, priority levels

* Point-to-point: a message read by a destination is no longer available
for the others, or Publish-Subscribe : all subscribers to the queue
receive a copy of each message (guaranteed delivery: at least once or
exactly once)

* message filtering

* encryption/decryption functions, compression/decompression,
format transformation

* message retention for offline consumers

* message expiration or validity date

* persistence (on physical media)

e reliability (Ack from MOM to sender and Ack from receiver to MOM)
* transactions

Evolution of MOMs

e 95-2010: Earlier versions
e 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
1994: TIBCO Rendezvous: high performance
1996: Microsoft MSMQ, part of Microsoft Windows Server platform
1998: Oracle MQ, now open source
1999: FioranoMQ: HP for trading and finance
2004: Apache ActiveMQ (open-source, java-based)
e 2007: RabbitMQ (open-source, Erlang-based)

e 2010: Additional features:
e 2011: Kafka: HA, replicate...

* 2010’s: Integration with cloud technologies:
* 2011: Amazon Simple QS
e 2015: Google Cloud Pub/Sub

e 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud
services

e 2018: Azure Service Bus
e 2019: CloudAMQP (based on RabbitMQ): automatic scaling

Overview

- .

= d"cd : v :ﬂ%m
U .

3 =I=[=EE =i =
Z a5 . B
o = : 00
o Mainframe PCs & ; Web ; Cloud

5 Servers

:

=

o

=

v

""'H'*

o

= :

< Maonaolithic " Client Server M-Tier = Service Oriented

service -

Generic Definition

e Software function (tool, resource, data...)
e Accessed via the network (remote, deployed, @)

e Offered to other software units (M2M)
* Platform- and language-independent

e Can be described and advertised

* 2 roles:
* Service requester = client
* Service provider = server

What is an API?

* a2 means of exposing business/enterprise resources
via the Internet to external or internal software
consumers

* Well-defined interface: contract
* Easily accessible by third parties
e Use of standard protocol(s)

=~ Web Service

Usage

e Services are used as software libraries to build
applications

e 2 contexts:
e External services
* |nternal services

External Services (Partner or
Public Services)

e open to the partners of the organization (B2B, B2C)

opezjwpdo paseq-AydesSoadolq Suisn uoyisod

oSje u

(0zoz) Wyl

APl becomes more of a priority
th:nl“

early 90% of developers use APIs el ¢ Programmableich
% of developers (Q3 2020 n=15,299)

16000
https://nordicapis.com/apis-have-taken-over-software-development/

Growth in API Collections

= 14000
2 12000
Z 10000
Not using é s
APls T 6w !
= 4000
uill]
0 T T T
JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY . :
2006 2008 2010 2012 2014 2016 2018 :
Cloudflare traffic: APl use in 2021
Third-party APIs https://blog.cloudflare.com/landscape-of-api-traffic/
69% Traffic composition by content type
AP|

B web

B Media

Feb 2021 B Other

B Text

. Binary

Dec 2021
0% 25% 50% 75% 100%
Issues Jobs VentureBeat MQ Subscriv
Programmatic access is considered at least o -
. . How APIs became the buildin
as vital as human acCcess, if not more so. 8

blocks for software

gra\/iteel (@) Platform How it works Use Cases Why Gravitee Resources

API-First As The Norm

Adopting an API-first strategy will be increasingly common in the future. In fact, Postman’s 202(

https://www.postman.com/state-of-api/

fonnd that 29 204 af teams have alreadv decioned and defined APTc and schema hefare thev ever

https://blog.cloudflare.com/landscape-of-api-traffic/
https://nordicapis.com/apis-have-taken-over-software-development/

From Basic WS to Managed API

Web Standards
& Protocols

Interfaces /
contract

Open to third
parties

Accessible
via network

Advertise the
service,
subscription

trackable and Service
. Managed API Level/Quality
monetizable
Agreement

secured,
authenticated,
authorized

+Strateqy s '(esearr.h : :
mrﬂ'fanf m E evalvation *

sams I scope”

Tt @~

Benefits of Web Services from
the Client’s Point of View

* Take advantage of third-party data or programs
without having to:
* develop, test, update and maintain code
* acquire and maintain a hosting infrastructure

* Easily compose services and replace one
component by an alternative

Trade-offs for the Client

Developers lost control of the services and the
services are remote =

* A service might be temporally unavailable
* Performances might become poor

* Data of the client can get lost, divulgated,
corrupted...

* A service might not longer be maintained
* The service fee might increase

From the Service Provider’s
Point of View

* Benefits O Expedia
* |ncreases revenue

* Extends customer reach
* New form of marketing : B2D “business to developer”

e Stimulates innovation

* Risks
* Decreases ad revenue
* No more control on the final user’s experience

Internal Services (Private
Services)

* access restricted to the organization
Monolithic Systems Reuse Services via Re-composition

T. Numnonda, IMC Institute

Internal Services: an injunction!

 Jeff Bezos's mandate (2002)

1. All teams will expose their data and
functionality through service interfaces.

2. Teams must communicate with each other
through these interfaces.

3. The only communication allowed is via
service interface calls over the network.

4. It doesn’t matter what technology they use.

5. All service interfaces, without exception,
must be designed from the ground up to be
externalizable. No exceptions.

6. Anyone who doesn’t do this will be fired.

7. Thank you; have a nice day!

2 “Flavors” of Web Services

Process-Oriented Services Resources-Oriented Services

* Distributed Information Systems e From static web pages
required middleware, RPC and

Object Brokers, were poorly to dynamlc web Pages
adaptedI to B2B — use Weg to web applications (Ul
protocols for transport and XML as _
IDL and format B Web browser,
- SOAP + WSDL standards business processes are
* “first-generation” web services, executed on the server)

still used for complex applications to web services
because non-functional standards

exist for transactions, security... * REST architectural style,

(¢ ﬂ P I S)}
® SOAP service ® REST service REST API

* Now ubiquitous, easy
to-setup

After this Course...

You will be able to design, set up and take advantage of a
Service-Oriented Architecture

* find Web Services and understand their interfaces, including
GraphQL

* write well-designed and documented APIs
* implement in Python and deploy on the cloud REST servers

* write Python clients

* cite several Chuck Norris’s facts

Not covered:

* SOAP and WSDL

* DevOps (deployment, mock tests, load tests...)
* security

* scripted composition of services &

The Web Services Protocol

* Application-layer protocol
* Client sends service requests using HTTP messages
* Server replies using HTTP messages

:ll.::]t!‘ s HTTP Qecbue:»'“
\ ~ ka:.&’
K 9 %
-
x ru.m.L-l:‘.
:.::::\C\'g
Browses NIWIW
l \VER Seruer
\.,lr
@ .%IF:{/ —] %
| Helloorld ! 10 Rasponst

https://hackernoon.com/http-made-easy-understanding-the-web-client-server-communication-yz783vg3

When was HTTP first specified?

(Brain: first computer virus for MS-DQOS)

GOquE.

1991 1996

(Linus Torvalds introduces Linux) (Google search engine)

Hypertext Transport Protocol

e 1989-90, Tim Berners-Lee’s problem at CERN:

how to integrate and exchange information held on
different computers in scattered places?

* Already exist:
* TCP: reliable transport of information on the Internet
e DNS: domain name (“www.centralesupelec.fr”) €2 IP @ (“138.195.9.117”)
v Y

* object in a database that references others

* Put them all together: HTTP -
* Retrieve linked documents (resources) ===

e Accessible via the Internet i

i‘g Tim Berners-Lee (image cern)

Client-Server Protocol
request / response

Client

(web browser or other application) web server

l\Vindows

e | back-end
amoEos (database...
1. user clicks on hyperlink .)
> -
2. HTTP request message .
N’

4. HTTP response message

3. create or retrieve file

=

Resources = addressable files

* Any kind of file: HTML file, JPG image file, binary
file...

e URL (Uniform Resource Locator)
= protocol + server host name + path on server

ew History B#okmarks Tools Help
B uAA AtH ctics || Uni... 18

('_ (L) @ https about/administrative-services/departments/athletics vEll & Q

ABOUT UAA ACADEMICS ADMISSIONS ATHLETICS RESEARCH

ué"A Administrative Services

LIMIVERSITY of ALASKA ANCHORAGE

«- > ADMINISTRATIVE SERVICES > DEPARTMENTS > UAA ATHLETICS A-Z Calen

UAA Athletics

side note about URL and URI

* URI: identifier (name of a restaurant)
e URL: locator (GPS coordinates of the restaurant)

All URLs are URIs:
with the GPS coordinates | arrive to the right
restaurant

Not all URIs are URLs:
the name of the restaurant gives no
information on its location

HTML file may include
references to others resources

* 3 resources are required to display this web page:
° HTML ﬁle Eil gdit View History gf::akmarks Tools Help

file://fhom...ample.html x

P Ce ntra IeS u pe I ec Iogo i ma ge € (O file:;/{/home/galtier/Desktop/example.html ¢ » =
. . This is an example of HTML file.
® P 1ZZ a | m a ge :;1; ::age to include below is located on a remote web

Whjle the next one is a local one:

And 1f you click here, you're taken to Alaska.

<html>

<head><title="HTML Example"/></head>

'body>

This is an example of HTML file.</br>

rhe j to include below is located on a remote web server.</br>

taken to Alaska.
</body>
</html>

HTML * TabWwidth:8 « Ln 5. Col 20 hd "

HTTP Versions

1991 -v0.9

1991

* First documented version

* First web browser

WorldWideWeh

Info

Navigate The World Wide Web project

Document

= World Wide Web

Links Whatis Hypertext?

Style Sumimary -- AW

Frint.

Page layout.

Windows WorldWideWeb - Summary
Services

Hide

Gluit The WWW project merges the technigques of information retrieval and hypertext to make an easy hut powerful global

information system,
The projectis based on the philosophy that much academic information should be freely available to anyone. It

avigation aims to allow information sharing within internationally dispersed teams, and the dissemination of information by

support groups. Originally aimed at the High Energy Physics community, it has spread to other areas and attracted

< Previous | Backup || next> much interest in user suppor, resource discovery and collaborative work areas.

Reader view
Home Help

The WWh world consists of documents, and links. Indexes are special documents which, rather than being read,
may he searched. The result of such a search is another ("virtual") document containing links to the documents
found. A simple protocaol {* HTTP) is used to allow a browser program to reguest a keyword search by a remote
information server.

The weh contains documents in many formats. Thase documents which are hypertext, (real or virtual) contain links
to other documents, or places within documents. All documents, whether real, virtual or indexes, ook similarta the
reader and are contained within the same addressing scheme.

To follow alink, a reader clicks with 2 mouse (or types in a number if he or she has no mouse). To search and
index, areader gives keywords (or other search criteria). These are the anly operations necessary to access the
entire world of data.

{nfprmation provider viaw
The WWh browsers can access many existing data systems via existing protocols (FTP, NNTF) or via HTTP and a.

gatewsay. In this way, the critical mass of data is quickly exceeded, and the increasing use of the system by readers
and infarmation suppliers encourage each other.

Making aweb is as simple as writing a few SGML files which pointto your existing data. Making it public involves

running the FTF or HTTP daeman , and making atleast ane link inta yourweh from anather. In fact, any file

available by anonymous FTF can be immediately linked into 2 web. The very small startup effortis designed to
nniribufinns Af the nther end nf the scale larne infumation orovide P sarver

this

ed

T T e PP T TS LT T e, T T T TE T ST T o T ST TS o

such asto find a node in common between two groups, or path linking two nodes.

which use a given module. Another example is atrace starting with more than one node,

Side note on 1 CP 3'Way handshake

Client Server
CLOSED CLOSED
B SYN LISTEN
connect) <4 SYN_SENT M
- ACK SYN_RECEIVED
N
[DATA
send(. rev0 7 ESTABLISHED M
DATA+ACK
+ ESTABLISHED
ACK
close() or _+'-
process killed = — FIN
FIN_WAIT 1
ACK CLOSE WAIT
FIN._WAIT 2 FIN
LAST ACK
TIME_WAIT ACK .
CLOSED CLOSED

https://ssup2.github.io/theory_analysis/TCP_Handshake/

“} bind(), listen()

— accept()

= send(), recv()

:}_ close() or
process killed

K o

HTTP Versions & &
--I

° 1996 -v1.0 1991 1996
* One TCP connection per resource

4
initiate TCP
connection i TT———___
‘‘‘‘‘ >
request base HTMLfile g ————"7
RTT time o
. . } transmit
file received, file
connection closed —
T ey
request 1t JPEG file
time to
. . transmit
file received, file
connection closed = e TP
. RTT Icnorlmectlon_-—‘—ﬁ:;’
request 2" JPEG file -
RTT time to.
. . transmit
file received, file

connection closed

HTTP Versions

e 1996 -v1.0
* One TCP connection per resource

initiate TCP
connection

request base HTML file

file received,
connection closed

request 1t JPEG file

file received,
connection closed

request 2" JPEG file

file received,
connection closed

- inmate FeP

—_—
]
—_—
—_

S
connection- ——-—

~ nitiate FGP— — _ _
connection. ————

—

o
u-.
q\
N

2
&

x"-g

1991

initiate TCP connection
request base HTML file

file received,
connection closed

request 1st and 2™ JPEG——___

files

1st JPEG received,
1st connection closed
2n JPEG received,
2 connection closed

1996

with parallel connections

<4

R

g

—_—
]
—_—
—_

R initiate 2

H parallel
4-—~ TCP
T i4=_connection
—
\:

v

HTTP Versions

* 1999 -v1.1
* Persistent connection

initiate TCP
connection

request base HTML fi

file received,
connection kept open

request 15t JPEG file

file received,
connection kept open
request 2 JPEG file
file received,
connection kept open

long inactivity,
connection closed

le

RTT

RTT

time to
} transmit

file

time to_

time to
transmit
file

o »

O
o X B
q\ Q) Q
4‘ «:‘
1901 1996 1809

GET https://www.centralesupelec.fr/ HTTP/1.1
Host: www.centralesupelec.fr

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86
Accept: text/html,application/xhtml+xml,applica
Accept-Language: en-US,en;g=0.5
Accept-Encoding: gzip, deflate, br

Connection: keep-alive
Upgrade-Insecure-Requests: 1

M

HTTP Versions « &« &
B

° 1999 — V1.1 1991 1996 1890
* Persistent connection

with pipelining

initiate TCP initiate TCP

connecton [T TT———_ connection
RTT =

—_—
]
—_—
—_

request base HTML file request base HTML file

time to time to

file received, a } transmit , _ } transmit
connection kept open file file recelvelzd, | file
Si n

request 1t JPEG file time to request 1= and 2" JPE

RTT } t - files
_ _ ransmit
file received, file
connection kept opef time to 15t file received
request 2" JPEG file } transmit 2n file received —
file received, file

connection kept open

long inactivity,
connection closed v 4 v v

HTTP Versions® . «

* 2015 -v2

e Server “pushes” content
e [and other optimizations]

initiate TCP
connection

request base HTML file

files received :
* HTML file

e 1t JPEG file
e 20 JPEG file

RTT

1999

1991

HTML file
1st JPEG file
2" JPEG file

File Edit View History Bookmarks Tools Help

5 HTTPf2: the Future ...

€ (O @ | https://http2.akamai.com/ @ || Q search »

(ﬁ 270

HTTP/2 is the future of the Web, and it is here!

This is a demo of HTTP/2's impact on your download of many small tiles
making up the Akamai Spinning Globe.

HTTPA.1 HTTP/2

Latency: Latency:
Load time: Load time:

Namn ~rancant inenirad bu Ralana's

Optional Reading Exercise

* Find the document which describes HTTP/2.

* What is the “head-of-line blocking” (HOL blocking)
problem observed in HTTP/1.1?

* Read the beginning of the FAQ at
https://http2.github.io/faq/

Reading: Results

* HTTP/2 is defined in RFC 7540.

* HOL blocking:

* Imagine a HTTP client that sends to a server 2 requests
over the same TCP connection, and that the first
response is "large" in content length while the second
response is "small" in content length.

* Due to the nature of the HTTP 1.x protocol, the second
response must wait for the first response to complete:
the second response is head-of-line blocked by the first
response.

 HTTP/2 is fully multiplexed (instead of ordered and
blocking), allowing multiple request and response
messages to be in flight at the same time (it's even
possible to intermingle parts of one message with
another on the wire).

HTTP Messages

* 2 kinds of messages
* Request
* Response

* In ASCII (HTTP 1.x)

HTTP Requests Commands

° GET

* retrieves an object
* no request body

* HEAD

* same response as GET but empty response body (used to test the
access to or the "freshness" of the object without actually
downloading it)

* POST

* results in the creation of a new resource on the server

* usual request: contains data

* usual response: URL of the created resource

* PUT

* updates an existing resource
* request usually contains data

* DELETE

* deletes a resource

HTTP Request Format

/ carriage return character: \r
4/[ine-feec{ character:\n

request line If

cr If

[header lines]

cr If

empty line

HTTP GET Request Example

GET /node/44 HTTP/1.1\r\n

Host: mapi.centralesupelec.fr\r\n

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0) Gecko/20100101 Firefox/50.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n

Accept-Encoding: gzip, deflate\r\n

Connection: keep-alive\r\n

\r\n

HTTP POST Request Example

POST /post.php HTTP/1.1\r\n
Host: posttestserver.com\r\n
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0) Gecko/20100101 Firefox/50.0\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n

Accept-Encoding: gzip, deflate\r\n

Content-Type: text/xml\r\n

Content-Length: 27\r\n

Connection: keep-alive\r\n

\r\n

firstname=John\nlastname=Doe

Request Parameters

3 symbols to add parameters to an URL:
* ? concatenates the URL and the string of parameters
» & separates multiple parameters
* = assigns a value to a parameter

GET /products?priceMin=10&priceMax=40

HTTP Response Format

status line

carriage return character: \r

ine-feed character:\n

cr

[header lines]

cr

empty line

Status Codes

® 2XX: success
e 200 OK

* 3xx: further action required
* 301 Moved Permanently: the new URL is specified in a
header field
* 4xx: client error
* 400 Bad Request: badly formulated query
* 404 Not Found: object does not exist on the server

° 5XX: Server-Side error Fih;ern E:iatig:nlntAr;Tc::Zl:-:;:)i:::ufre::;que—pages Outils Aide
* 505 HTTP Version Not Supported el

Les plus visités v @ Getting Started [&]Latest Headlines + [EJGoogl

HTTP Response Example

HTTP/1.1 200 OK

Date: Wed, 01 Feb 2017 12:48:22 GMT
Server: Apache/2.4.10 (Debian)

[...]

Content-language: fr

Content-Encoding: gzip

Content-Length: 4740

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

........... :.1.8..W..-{.(.KO..'K..-.$..g;.(...D.4.TVv\.....q.{...Z.2_....b.....(I....Df "..Hn...] ... WQ..m....
WD.sR)..J.....L.:9.C..MC.. . X.I..

J..(...""...J. D....d%bN,. $.Y.......... y A y(.MS....#.gV.....>.9.j.0
S&...V.M...') m8..<=.i..%B........ Sx}J VL HM.4b. YD XL XN <dL S..
#Oa. ..V..EPj..G...A..D.K...Z1..c.h,b.4..b.3...1.6..La..>.L8#.U\.......2..y!...5.,.....%.....>..ID...

HTTP Response Example

HTTP/1.1 404 Not Found

Date: Wed, 01 Feb 2017 13:14:55 GMT
Server: Apache/2.4.10 (Debian)

[...]

Content-language: fr

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

305d

<IDOCTYPE html>

<html lang="fr" dir="Itr" prefix="content: http://purl.org/rss/1.0/modules/content/ dc: ht
<div id="block-zircon-content" class="block block-system block-system-main-block">

La page demand..e n'a pas pu ..tre trouv..e.
</div>

Optional Reading

e What is HTTP error code 4187

/10de3)-8T1-93008-9p-5339-1915€9-59| /9T /T0/£Z0C /) 1adaummm//:sdny

Hyper Text Coffee Pot Control Protocol

Article Talk

From Wikipedia, the free encyclopedia

The Hyper Text Coffee Pot Contrel Protocol (HTCPCP) is a facetious communication protocol for
controlling, monitoring, and diagnosing coffee pots. It is specified in RFC 2324 7, published on 1 April 1998
as an April Fools' Day RFC 12 as part of an April Fools prank B! An extension, HTCPCP-TEA, was published
as RFC 7168 on 1 April 2014 to support brewing teas, which is also an April Fools' Day RFC.

Protocol [edit]

RFC 2324 was written by Larry Masinter, who describes it as a satire, saying "This has a serious purpose —
it identifies many of the ways in which HTTP has been extended inappropriately.""! The wording of the
protocol made it clear that it was not entirely serious; for example. it notes that "there is a strong. dark, rich
requirement for a protocol designed espressoly [sic] for the brewing of coffee”.

Despite the joking nature of its origins, or perhaps because of it, the protocol has remained as a minor
presence online. The editor Emacs includes a fully functional client side implementation of it.[® and a
number of bug reports exist complaining about Mozilla's lack of support for the protocol.l”! Ten years after
the publication of HTCPCP, the Web-Controlled Coffee Consortium (WC3) published a first draft of
"HTCPCP Vocabulary in RDF"Elin parody of the World Wide Web Consortium's (W3C) "HTTP Vocabulary
in RDF" (2]

On April 1, 2014, RFC 7168 extended HTCPCP to fully handle teapots 4]

Commands and replies |edi]

HTCPCP is an extension of HTTF. HTCPCP reguests are identified with the Uniform Resource |dentifier (URI)

scheme coffee (orthe corresponding word in any other of the 29 listed languages) and contain several
additions to the HTTP methods:

BREW ar Causes the HTCPCP server to brew coffee. Using POST for this purpose is deprecated. A new
POST HTTP request header field "Accept-Additions” is proposed, supporting optional additions including

Cream. Whole-milk, Vanilla, Raspberry, Whisky, Aquavit, etc.
GET "Retrieves" coffee from the HTCPCP server.
PROPFIND Returns metadata about the coffee.
WHEN Says "when", causing the HTCPCP server to stop pouring milk into the coffee (if applicable).

It also defines two error responses:

XA 14 languages v

Read Edit View history

Hyper Text Coffee Pot Control
Protocol

N
SAN

&/

Back-end infrastructure of errord18.net, which
implements HTCPCP

International Internet Engineering Task
standard Force

Developed by Larry Masinter
Introduced April 1, 1998

Website rfc2324 >

C @ O [9] https://ww

vw.google.com/teapat/

Google

418. I'm a teapot

The requested entity body is short and stout.
Tip me over and pour me out.

y @& a
&
Y
~ @S
)&

486 Mot Acceptable The HTCPCP server is unable to provide the requested addition for some reason; the response should indicate a list of
available additions. The RFC observes that "In practice. most automated coffee pots cannot currently provide additions.”

418 I'm a teapot The HTCPCP server is a teapot; the resulting entity body "may be short and stout” (a reference to the song "I'm a Little

Teapot"). Demanstrations of this behaviour exist [1110]

Optional Lab Exercise

* Use putty or telnet to connect to port 80 of a web
server (http://www.columbia.edu for instance) and
issue HTTP/1.x requests (get /~fdc/sample.html).
Observe the responses.

telnet serverName 80

* For HTTPS, use:

openssl s_client -connect
serverName: 443

(note: this exercise is limited to HTTP/1.x because
HTTP/2 is no longer textual but uses binary format
commands)

http://www.columbia.edu/~fdc/sample.html

Lab: Results

l telnet www.columbia.edu 80
Trying 128.59.105.24...
Connected to source.failover.cc.columbia.edu.
Escape character is '"*|'.

typed out request

Lab: Results
Copenssl s client connect edition.cnn.com:443

CONNECTED(OOOOOOO3) |

...CERTIFICATE STUFF... opens an SSL connection on web server port 443 and
~ sends everything that is typed

GET /travel HTTP/1.1

typed out request

"HTTP/1.1 200 OK

<!doctype html><html [ang="en"><head><meta http-ecuiv="x-ua-compatible"

content="ie=edge"/><title data-rh="true">CNN Travel | /Global Destinations, Tips

& Video</title><meta data-rh="true" name="themne-color"
Lcontent="#31315b"/><meta data-rh="true" charSet="uif-8"/><meta data-rh="true"

Lab: Results

openssl s_client -connect edition.cnn.com:443
CONNECTED(00000003)
...CERTIFICATE STUFF...

received response

HTTP Server Is Stateless

* A stateless protocol does not require the server to
retain information or status about each user for the
duration of multiple requests.

* Successive requests from a given client to a server
are not treated as a chain but rather as separate
requests, independent from the previous ones.

What we get Is not what we

want.

add chair to shopping cart

add ball to shopping cart

g

~g

W

.

&

Build a web page with a chair in it.

Build a web page with a ball in it.

Cookies

© Original Arist

Reprod ctidrmrightsTobtainable from
1 B "f-"'..-l""lﬁ-‘ﬂ""“- 1l [

w23 toonstock.com

-

Shhhhh. .. they're in here

somewhere. Dad’s always

talKing about the cooKies
in his computer.

\- J

Cookie Example

BigStore.com

|

‘s\?

add chair to ular HTTP request

shopping cart POST chair " Received request: contains no cookie

Create a new cookield: 16
Add 16 < chairin DB

. Build a web page with a chair i

|
. . . HTTP response header:
Received response: contains set-cookie - .
: : . set-cookie: id=1(
Add BigStore.com < 16 in cookies file e o

)

Back-end
database

Cookies
file

Cookie Example

BigStore.com

-~ ﬂ Back-end

database

add ball to shopping cart
BigStore in cookies file TTP request ball
Include cookie in request

a POST bal Received request: contains cookie 16

cookie: 1d=16 Add “ball” to list of item for id 16 in DB
Build a web page with a chair and a

. ball in it.
ér

@regular HTTP response

Cookies g
file §%8g BigStore.com & 16

Uses

create a user session layer on top of stateless HTTP

e content adaptation (recommendation based on
previous visits etc.).

* shopping carts (e-business)
* session definition at application layer (Web mail)
e authorization

Suspicions

* |[nvasion of privacy

Third-party advertising cookies

.

<4

"iM BrandJoe.com ¢ BS16

BigStore.com

ular HTTP request
. setHTTPresponse header:

set-cookie: 1d=BS16, Domain=BrandJoe.com

HTTP reques
cookie:

id=BS16

5t

(¢]
O
on

BrandJoe.com

BigStore.com
before

Web Cache (proxy server)

* to satisfy the requests
without involving the
real server

origin
server

* browser must be
configured to send all
HTTP requests to cache

[o]
Proxy £
server

* reduced traffic on
Internet, improved
response time

client

origin
server

Caching Example

assumptions
* average object size = 1Mbits
* avg. request rate from insti ﬁor@s h@mﬂ%ersi%ﬁ/sec

public

* delay from Internet router sid =\ G i@in server
and back torouter=2sec

consequences st
e utilization on LAN = 15% instiuuionat

T 100 Mbps LAN

* utilization on access link = 1 gy ;

* total delay = Internet delay + access aelay + LAN
delay

= 2 sec + minutes + milliseconds

Caching Example (cont)

possible solution
* increase bandwidth of access link to 100 Mbps

consequence i g oo
* utilization on LAN = 15% i pusc

Internet

* utilization on access link = 15% " e

* total delay = Internet delay + access gelay + LAN

d e I ay institutional
TS | 100 Mbps LAN

= 2 sec + msecs + msecs

often a costly upgrade

Caching Example (cont)

possible solution:
* install cache

) g o

@ servers
public

consequence e @

 suppose hit rate is 0.4 (40% requ &2 will be
satisfied almost immediately, 60% regtiests satisfied

by origin server) e
ope . . netawork, 100 Mbps LAN
* utilization of access link req gy, g @ @

@ resulting

institutional

==

and in negligible delays (say e ...c—_,

 avg total delay = Internet delay + access ‘delay + LAN
delay =0.6 * 2.01 secs * + 0.4 * 10 millisecs <1.3
secs

Conditional GET

i i

browser proxy server
. GET foo.gif cache niiss |
GET foo.gif
foo.gif, last-modified 12/03/11 12:00
foo.gif |
a week later ...

cacHe hit

GET foo.gif if-modified-since 12/03/11 12:00
| status code 304 (not modified), Empty body
foo.gif 1

Other Uses

* Allow multiple users to get a resource which access
is limited to the proxy.

* Track and log web accesses.
* Deny access to a list of web sites.

Oorigins

* Representational State Transfer - REST: defined in
2000 Roy Fielding’s PhD dissertation (after he
worked on HTTP 1.1 and URI RFCs)

* Web application =
* network of Web resources (a virtual state-machine)
* where the user progresses through the application by
selecting resource identifiers and resource operations
(application state transitions), resulting in the next

resource's representation (the next application state)
being transferred to the end user for their use.

* An architectural style, not a standard nor a protocol

Principles of RESTful
Architecture (1/2)

* A resource
* is identified using an URI,

* references
e one entity (eg. user Paul) or
e aset of entities (eg. all male users)

* URI doesn’t change (but the referenced entity might)
e and can have multiple representations (JSON, XML...).

* The representation of a resource contains enough
information for the client to request a change to its
state.

* Messages include enough information to describe how
to process them (eg. Content type)

 HATEOS (Hypermedia as the Engine of Application State)

HATEOAS Example

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length:

<?xml version="1.8"7?=
<account=>
<account_number=12345</account_number>
<balance currency="usd"=100.08</balance=
<link rel="deposit" href="https://bank.example.com/accounts/12345/deposit" /=
<link rel="withdraw" href="https://bank.example.com/accounts/12345/withdraw" /=
<link rel="transfer" href="https://bank.example.com/accounts/12345/transfer" /=
<link rel="close" href="https://bank.example.com/accounts/12345/status" /=
</account=

response if balance > Q

request

GET faccounts/12345 HTTP/1.1
Host: bank.example.com
Accept: application/xml

HTTP/1.1 2868 OK
Content-Type: application/xml
Content-Length:

<?xml version="1.0"7=
. _ <account>
response if balance <0 <account_number=12345</account_number=
<balance currency="usd"=-25.00</balance>
<link rel="deposit" href="https://bank.example.com/accounts/12345/deposit" />
</account>

»

Principles of RESTful
Architecture (2/2)

e Separation of concerns between the client (user
interface concerns) and the server (data storage
and processing concerns)

* Stateless communication: the server only stores
resources states while the client is in charge of
providing the application state.

* Responses should define the extent to which they
can be cached.

* A client may not be directly connected to the end-
server: there can be proxies, an additional security
layer, and the server might call other servers to
complete the service.

Semantics of HTTP methods

HTTP Operation on URIs: examples HTTP location safe idem
method | the resource response header potent
status
yes Yes

read GET /serv/users 200 OK no
GET /serv/users/34
POST create POST /serv/users 201 Yes no no
body Created
{
name: “Toto"
}
PUT update PUT /serv/users/34 200, 204 no no Yes
body No
{ Content
PATCH partial name: “Jacques"”
update }
DELETE delete DELETE /serv/users/34 200, no no yes

204, 202
Accepted

Example of scenario

* Book a room:

POST http://myhotel.com/reservations?date=“12/03/2021"&nights=2&persons=4
Server replies with reservation number 123

* Display reservation:

GET http://myhotel.com/reservations/123

* Update the reservation:

PATCH http://myhotel.com/reservations/123?persons=3

* (Cancel the reservation:

DELETE http://myhotel.com/reservations/123

Best Practices for well-designhed
RESTful APIs

* Use only nouns for a URI:

* Use plural nouns:

e GET method should not alter the state of a resource

* Use sub-resources for relationships between
resources

e Use “content-type” and “accept” HTTP headers to
specify input/output format

* Provide proper HTTP status codes

Best Practices for well-designhed
RESTful APIs

* Offer filtering and paging capabilities for large data
sets

* Version the API

2 strategies:
* |n the URI:

@) Easy to use with a web browser
Non-compliant with REST principle “one resource = one URI”

* |n the accept header:

Q More complex for the client
O More REST-compliant

	Application Architectures
	Layered structure
	Distribution onto « Tiers »
	Monolithic and Single-tier Applications
	Monolithic application
	Single-tier Application
	1st architectural style, but still relevant
	Advantages of single-tier
	Disadvantages of monolithic applications
	Disadvantages of single-tier applications
	Mainframe Architectures
	Principle
	Advantages
	Performances
	Transactions
	Extensively used
	Obstacles to growth
	2-tier Architecture
	The origin: “1.5-tier” Architecture
	2-tier Architecture (2)
	2-tier Architecture limits
	Thank you, 2-tier Architecture
	3-tier to 5-tier Architectures
	3-tier
	Example: Classical Web Architecture
	4-tier, 5-tier
	Perspectives for multi-tier architecture
	Micro-services Architecture
	Siloed Architecture
	Problems with siloed architecture
	Microservices Architecture
	(Micro)Service Concept
	Advantages of the microservice architecture
	Slide 34
	No silver bullet…
	Slide 36
	Middleware
	Remote Procedure Call (RPC) and Object Request Broker (ORB)
	RPC
	(some) RPC implementations and frameworks
	Object Request Broker
	CORBA perspectives
	Service call
	Message Oriented Middleware
	Message Oriented Middleware (2)
	Optional Features
	Evolution of MOMs
	Overview
	Slide 49
	Generic Definition
	What is an API?
	Usage
	External Services (Partner or Public Services)
	API becomes more of a priority than UI
	From Basic WS to Managed API
	Benefits of Web Services from the Client’s Point of View
	Trade-offs for the Client
	From the Service Provider’s Point of View
	Internal Services (Private Services)
	Internal Services: an injunction!
	2 “Flavors” of Web Services
	After this Course…
	Slide 63
	The Web Services Protocol
	Slide 65
	Hypertext Transport Protocol
	Client-Server Protocol request / response
	Resources = addressable files
	Side note about URL and URI
	HTML file may include references to others resources
	HTTP Versions
	Side note on TCP 3-way handshake
	HTTP Versions (2)
	HTTP Versions (3)
	HTTP Versions (4)
	HTTP Versions (5)
	HTTP Versions (6)
	Optional Reading Exercise
	Reading: Results
	HTTP Messages
	HTTP Requests Commands
	HTTP Request Format
	HTTP GET Request Example
	HTTP POST Request Example
	Request Parameters
	HTTP Response Format
	Status Codes
	HTTP Response Example
	HTTP Response Example (2)
	Optional Reading
	Slide 91
	Optional Lab Exercise
	Lab: Results
	Lab: Results (2)
	Lab: Results (3)
	HTTP Server is Stateless
	What we get is not what we want.
	Cookies
	Cookie Example
	Cookie Example (2)
	Uses
	Suspicions
	Third-party advertising cookies
	Web Cache (proxy server)
	Caching Example
	Caching Example (cont)
	Caching Example (cont) (2)
	Conditional GET
	Other Uses
	Slide 110
	Origins
	Principles of RESTful Architecture (1/2)
	HATEOAS Example
	Principles of RESTful Architecture (2/2)
	Semantics of HTTP methods
	Example of scenario
	Best Practices for well-designed RESTful APIs
	Best Practices for well-designed RESTful APIs (2)

