

Origins
• Representational State Transfer – REST: defined in

2000 Roy Fielding’s PhD dissertation (after he
worked on HTTP 1.1 and URI RFCs)
• Web application =
• network of Web resources (a virtual state-machine)
• where the user progresses through the application by

selecting resource identifiers and resource operations
(application state transitions), resulting in the next
resource's representation (the next application state)
being transferred to the end user for their use.

• An architectural style, not a standard nor a protocol

Principles of RESTful
Architecture (1/2)

• A resource
• is identified using an URI,
• references

• one entity (eg. user Paul) or
• a set of entities (eg. all male users)

• URI doesn’t change (but the referenced entity might)
• and can have multiple representations (JSON, XML…).

• The representation of a resource contains enough
information for the client to request a change to its
state.
• Messages include enough information to describe how

to process them (eg. Content type)
• HATEOS (Hypermedia as the Engine of Application State)

HATEOAS Example

request

response if balance > 0

response if balance < 0

Principles of RESTful
Architecture (2/2)

• Separation of concerns between the client (user
interface concerns) and the server (data storage
and processing concerns)
• Stateless communication: the server only stores

resources states while the client is in charge of
providing the application state.
• Responses should define the extent to which they

can be cached.
• A client may not be directly connected to the end-

server: there can be proxies, an additional security
layer, and the server might call other servers to
complete the service.

Semantics of HTTP methods
HTTP

method
Operation on
the resource

URIs: examples HTTP
response

status

location
header

safe idem
potent

GET read GET /serv/users
GET /serv/users/34

200 no yes Yes

POST create POST /serv/users
body
{
 name: “Toto"
}

201 Yes no no

PUT update PUT /serv/users/34
body
{
 name: “Jacques"
}

200, 204 no no Yes

DELETE delete DELETE /serv/users/34 200,
204, 202

no no yes

Example of scenario
• Book a room:

POST http://myhotel.com/reservations?date=“12/03/2021”&nights=2&persons=4

Server replies with reservation number 123

• Display reservation:

GET http://myhotel.com/reservations/123

• Update the reservation:

PUT http://myhotel.com/reservations/123?persons=3

• Cancel the reservation:

DELETE http://myhotel.com/reservations/123

Best Practices for well-designed
RESTful APIs

• Use only nouns for a URI:
/getAllReservations GET /reservations

• Use plural nouns:
GET /reservations for all reservations
GET /reservations/123 for a specific reservation

• GET method should not alter the state of a resource
• Use sub-resources for relationships between

resources
GET /reservations/123/persons/1: first occupant of the
reservation #123

• Use “content-type” and “accept” HTTP headers to
specify input/output format
• Provide proper HTTP status codes

Best Practices for well-designed
RESTful APIs

• Offer filtering and paging capabilities for large data
sets

GET /reservations?date=28/02/2021
GET /reservations?from=5&to=25

• Version the API
2 strategies:
• In the URI: GET /api/v2/reservations/123

• Easy to use with a web browser
• Non-compliant with REST principle “one resource = one URI”

• In the accept header:
GET /api/reservations/123 accept: application/v2
• More complex for the client
• More REST-compliant

	Slide 1
	Origins
	Principles of RESTful Architecture (1/2)
	HATEOAS Example
	Principles of RESTful Architecture (2/2)
	Semantics of HTTP methods
	Example of scenario
	Best Practices for well-designed RESTful APIs
	Best Practices for well-designed RESTful APIs (2)

