
Application Architectures



Layered structure

Division of the work of an application into 3 general 
functions, which can evolve independently:

• Presentation:
user input and commands, and display

• Business logic:
business objects, rules, processing logic, processes

• Data:
storage and logical access



Distribution onto « Tiers »

Distribution of the layers onto multiple machines 
(“tiers”) communicating over a network

data 
management

business 
logic

presentation

ne
tw

or
k

SE
RV

ER
C

LI
EN

T

data 
management

data 
management

data 
management

data 
management

data 
management

data 
management

data 
management

business 
logic

business 
logic

business 
logic

business 
logic

business 
logic

business 
logic

business 
logic

presentation presentation presentation presentation presentationpresentation

thin client heavy clientrich client



Monolithic 
and Single-
tier 
Applications



Monolithic application

The 3 application layers are intimately interlaced in the 
same code base

import java.io.*; 
public class ReadFromFile { 
    public static void main(String[] args) throws Exception  { 
        File file = new File("C:\\Users\\galtier\\Desktop\\test.txt"); 
        BufferedReader br = new BufferedReader(new FileReader(file)); 
        String st; 
        while ((st = br.readLine()) != null) 
            System.out.println(st.toUpperCase()); 
        encrypt(file, "mySecretKey");
    } 
} 

data 
management

business 
logic

presentation



Single-tier Application

The 3 application layers run on the same computer

data 
management

business 
logic

présentation



1st architectural style, but still 
relevant

• The area of “pre-
network” PCs (late 70 ’s 
– mid 80’s)

• Still lots of stand-alone 
apps

htt
ps

:/
/g

am
es

.a
lp

ha
co

de
rs

.c
om

/g
am

es
/b

ox
ar

t/
49

49
4

htt
ps

:/
/p

la
y.

go
og

le
.c

om
/s

to
re

/a
pp

s/
de

ta
ils

?i
d=

co
m

.m
ed

ib
an

g.
an

dr
oi

d.
pa

in
t.t

ab
le

t&
hl

=e
n_

SG
&

gl
=U

S



Advantages of single-tier

• Performance: 0 latency
• Safety by isolation
• Operate even in disconnected mode
• Simplicity (complexity reduced to the one of the code)



Disadvantages of monolithic applications

• Code is complex to learn, 
debug and evolve

• Even a minor upgrade 
requires a complete 
reinstallation of the entire 
application

• A failure in one “layer” 
renders the application 
completely unusable

• Inability to leverage 
heterogeneous technologies

• Not cloud-ready

https://dzone.com
/articles/not-w

anted-com
ic



Disadvantages of single-tier 
applications

• Performances: depend on the capabilities of the host
• Shared resources impossible, requires duplicates (waste of 

resources)
• No fault tolerance
• Nomadism is difficult:

• Access limited to physically logged-in users
• More difficult (if not impossible) to continue a task from a different 

workstation

• Deployment is difficult: 
• Requires actions on each terminal
• To be reinstalled if the underlying system needs to be reinstalled

• From the publisher's point of view:
• No fix possible without user action
• Application vulnerable to reverse engineering

htt
ps

:/
/e

nc
yc

lo
pe

di
a2

.th
ef

re
ed

ic
tio

na
ry

.c
om

/s
ta

nd
al

on
e+

co
m

pu
te

r



Mainframe 
Architectures

https://www.zdnet.fr/actualites/6-idees-recues-qui-empoisonnent-le-mainframe-39892381.htm



Principle

• Supercomputer :
• ensures the data 

persistence, processing, 
and presentation

• proprietary hardware 
and OS (IBM)

• passive clients : 
thin client visualization 
application

htt
ps

:/
/w

w
w

.re
se

ar
ch

ga
te

.n
et

/fi
gu

re
/M

ai
nf

ra
m

e-
Ar

ch
ite

ct
ur

e_
fig

2_
27

54
05

57
2

“host” Architecture

htt
ps

:/
/w

w
w

.re
dd

it.
co

m
/r

/m
ai

nf
ra

m
e/

co
m

m
en

ts
/d

q8
pn

y/
on

lin
e_

ib
m

_z
_d

ay
_o

n_
no

ve
m

be
r_

21
st

/



Advantages

• Performances: handle a very large number of 
simultaneous queries on very large databases

• Consistency, stability and long-term support
• Security
• Reliability (IBM Z customers: 99.9999% uptime)

Robustness: https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html



Performances
• Ability to process a very large number of simultaneous 

queries on very large databases

Batch or real time operation:

• Batch back-office

• Transactional

• Used in banks, insurance companies, airlines...htt
ps

:/
/w

w
w

.ib
m

.c
om

/s
up

po
rt

/k
no

w
le

dg
ec

en
te

r/
zo

sb
as

ic
s/

co
m

.ib
m

.zo
s.

zm
ai

nf
ra

m
e/

zc
on

c_
m

fw
or

kl
ds

.h
tm



Transactions
• Program accessing and/or modifying persistent data
• A good transaction is

• Atomic
• Consistent
• Isolated
• Durable

• Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
• Multiplexing of requests on system resources
• Transaction management (respect of ACID properties)

https://w
w

w
.researchgate.net/figure/The-role-of-a-TP-m

onitor-in-distributed-system
s_fig7_298215186



Extensively used

• 71% of the Fortune 500, 96 of the top 100 banks use 
mainframes 

• process 30 billion business transactions per day, 87% 
of credit card transactions

• 250 billion lines of COBOL code, and 5 billion new lines 
each year

• Growth Outlook:
• demand for HPC
• increase in the number of banking transactions 
• development of blockchain



Obstacles to growth

• Proprietary solutions
• Huge investment

• but no more than a 
server farm

• Shortage of skilled 
mainframe staff

• but Cobol is easy to learn

• Real alternatives + 
migration experience

htt
ps

:/
/w

w
w

.a
st

ad
ia

.c
om

/b
lo

g/
br

ea
k-

fr
ee

-fr
om

-y
ou

r-z
13

-m
ai

nf
ra

m
e

(https://planetmainframe.com/2021/09/the-ibm-mainframe-the-most-
powerful-and-cost-effective-computing-platform-for-business/



2-tier 
Architecture

htt
ps

:/
/w

w
w

.s
oft

w
ar

et
es

tin
gc

la
ss

.c
om

/w
ha

t-i
s-

di
ffe

re
nc

e-
be

tw
ee

n-
tw

o-
tie

r-a
nd

-t
hr

ee
-ti

er
-a

rc
hi

te
ct

ur
e/



The origin: “1.5-tier” Architecture
• Development of LANs

• Advantages: information sharing: 
• better communication
• requires less resources

file server 
(shared data storage, 

but data management service reduced to tree-like organization of files)

local network

workstations / heavy clients

data 
management

business logic

presentation

data



2-tier Architecture

• Central database server
• Manages physical I/O and provides logical data 

manipulation
• Integrity control
• Secure, optimized, transactional access

• Data handling is decoupled from its representation on 
disk, closer to the application logic

SQL

DBMS

data 
managementbusiness logic

presentation



2-tier Architecture limits

• identical problems to single-tier:
Not tolerant to client or server failures, updates require 
user’s action...

• excessive use of stored procedures:
• breaks the principle of single responsibility
• complex to maintain
• adherence with the physical model

• performance :
Server and access network = bottlenecks



Thank you, 2-tier Architecture 

• Microcomputing (previously confined to office 
automation) has taken on a growing role in IS

• The DBMS offer has grown, SQL has become 
widespread

• Has triggered the evolution towards more flexible 
architectural proposals

• Still relevant for simple applications



3-tier to 5-tier 
Architectures

htt
ps

:/
/w

eb
lo

gs
.a

sp
.n

et
/E

rr
or

.c
sh

tm
l?

as
px

er
ro

rp
at

h=
/f

re
dr

ik
no

rm
en

/u
sin

g-
w

eb
-s

er
vi

ce
s-

in
-a

-3
-ti

er
-a

rc
hi

te
ct

ur
e



3-tier

data 
managementbusiness logicpresentation



Example: 
Classical Web Architecture

W
eb-based applications for building, m

anaging and analysing kinetic m
odels of biological system

s - O
ctober 2008 - Briefings in Bioinform

atics



4-tier, 5-tier

htt
ps

:/
/w

w
w

.a
jb

og
gs

.c
om

/o
ur

-e
xp

er
ie

nc
es

/h
ea

lth
-in

fo
rm

ati
on

-t
ec

hn
ol

og
y/

sis
on

lin
e-

su
pp

or
ts

-a
ss

es
sm

en
t/

sis
on

lin
e-

sy
st

em
-a

rc
hi

te
ct

ur
e/

sis
sa

-s
is5

_b
ig

/

data managementbusiness logicpresentation



Perspectives for multi-tier architecture

• Corrects some of the problems of 2-tier architecture
• Maintainability, evolvability, deployment

• Very popular model for non-intensive systems
• But to be completed to meet the challenges of 

reliability, performance, and scalability



Micro-services 
Architecture 



Siloed Architecture
htt

ps
:/

/w
w

w
.s

lid
es

ha
re

.n
et

/im
ci

ns
tit

ut
e/

se
rv

ic
e-

or
ie

nt
ed

-a
rc

hi
te

ct
ur

e-
so

a-
15

-in
tr

od
uc

tio
n-

to
-s

oa



Problems with siloed architecture

• Waste of resources
• Complex maintenance
• Lack of data sharing and consistency
• Complexity of IAM (Identity and Access Management)
• Difficult to scale up
• ...



Microservices Architecture



(Micro)Service Concept

• Black box performing 1 specific task (business or 
technical function)

• Can be used via an API (= contract between the 
customer and the supplier)

• Can call on other services
• Designed to be duplicated → stateless:

• No application state
• Or client-specific state provided in the request
• Or state on external storage shared with other services



Advantages of the microservice 
architecture

• Reuse

• Scaling and fault tolerance thanks to easy duplication

• Fault isolation

• Independent development and deployment

• Ability to use the most appropriate technology for each 
module

• Small development teams





No silver bullet…

• The entropy of the IS increases as well!
• Several examples of strategic retreats on a monolithic 

solution!
• Microservices do not correct design errors.

• Intercommunication between services can lead to a 
higher latency of the application and the network 
quality becomes crucial

htt
ps

:/
/t

w
itt

er
.c

om
/_

ze
nx

_/
st

at
us

/9
99

33
37

40
12

29
02

52
9





Middleware

Solutions to ease the connection between services:
• Locally:

• Inter-process communication: system, MPI, Unix Domain 
Socket, etc

• Across the network:
• Synchronous Remote Procedure Call
• Asynchronous Messages



Remote Procedure Call  (RPC) 
and 
Object Request Broker (ORB)

htt
ps

:/
/w

w
w

.ib
m

.c
om

/s
up

po
rt

/k
no

w
le

dg
ec

en
te

r/
ss

w
_a

ix
_7

2/
co

m
m

pr
og

ra
m

m
in

g/
rp

c_
m

od
.h

tm
l



RPC
• [asynchronous] loose coupling between client and server

• The proxies handle:
• network calls
• format transformations between the client and server

client

fac(int a, int b) {
  temp = a
  for i from 1 to b
    temp = temp * a
  return temp
}

server

sendreceive receive send

application layer

middleware layer

OS and hardware layer

network

emballe le nom 
de la méthode et 
ses paramètres

envoieréceptionne

déballe le 
résultat

pr
ox

y:
 lo

ca
l 

re
pr

es
en

ta
tiv

e 
(o

n 
th

e 
cl

ie
nt

) o
f t

he
 se

rv
er reconstitue l’appel 

avec le nom de la 
méthode et ses 

paramètres

reçoit la requête

emballe le 
résultat

envoie

proxy: local 
representative (on the 

server) of the client

instruction i

r = fac(x, y)

instruction k



(some) RPC implementations and 
frameworks

• Rise:
• 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems
• 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of 

functionalities (transactions, encryption…), more complex to use
• Fall:

• 94: RPC is “fundamentally flawed”: communication latency, partial failures and 
concurrency issues…

• Message passing alternatives

• Rise, again: more features, more supported formats/transports…
• 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP
• 2005: JSON-RPC, lightweight
• 2007: Apache Thrift (init. Facebook): support for multiple serialization format 

(including binary), support for multiple transport protocols, complete stack for 
creating clients and servers

• 2009: Avro (Apache Hadoop)
• 2016: gRPC (Google, open source): messages serialized using Protocol Buffers 

(binary), transported by HTTP/2, multiple features
• 2021: Cap’n Proto (now developed by Cloudflare): performances!



Object Request Broker
• Object oriented RPC: method calls on remote objects
• Most popular technologies:

• CORBA (Common Object Request Broker Architecture) (1991)
• OO-RPC for heterogeneous objects
• but also a set of services

• DCOM (Distributed Component Object Model) (1995), .Net Remoting
• Microsoft-equivalent to CORBA

• Java RMI (Remote Method Invocation) (1998)
• for Java objects

Application
Objects

CORBA 
Domains

health

finance
e-

commerce

CORBA 
Facilities

IHM
QoS 

manag
ement

cryptography

CORBA Services

transaction

events

naming

ORB

specifics

Vertical frameworks
High-level horizontal frameworks

System functions



CORBA perspectives

• Limitations:
• local calls are treated the same as remote calls → inefficient
• complex standard
• difficult to have different versions of a service coexisting
• fewer and fewer experts

• Why hasn't it disappeared?
• still important legacy
• one of the few candidates (with DDS) when there are strong 

real time constraints
Alcatel-Lucent network management system, communications 
between military planes and ESA satellites, air control systems, 
Siemens electrical power plant management system…



Service call

• 1srt generation Web Services:
• Requests and responses transported by SOAP messages, 

usually on top of HTTP
• 4 patterns supported by WSDL:

• Request - response
• One way request
• Notification 
• Request - response

• WS-*: myriad of specifications to complete the messaging 
service 

• Web service in a REST architecture:
• URI-addressed resources
• Requests and responses typically carried over HTTP, 

exploiting the semantics of HTTP methods



Message Oriented 
Middleware



Message Oriented Middleware

• Structure allowing one or more sources to transmit 
messages asynchronously to one or more destinations

• No need to be connected simultaneously
• Not need to know the source / the destination

htt
ps

:/
/w

w
w

.o
re

ill
y.

co
m

/li
br

ar
y/

vi
ew

/e
nt

er
pr

ise
-s

er
vi

ce
-b

us
/0

59
60

06
75

6/
ch

05
.h

tm
l



Optional Features
• Strict FIFO (, guaranteed delivery of messages in the right order) or 

hierarchical organization of messages, priority levels
• Point-to-point: a message read by a destination is no longer available 

for the others, or Publish-Subscribe : all subscribers to the queue 
receive a copy of each message (guaranteed delivery: at least once or 
exactly once)

• message filtering
• encryption/decryption functions, compression/decompression, 

format transformation
• message retention for offline consumers
• message expiration or validity date
• persistence (on physical media)
• reliability (Ack from MOM to sender and Ack from receiver to MOM)
• transactions
• ...



Evolution of MOMs
• 95-2010: Earlier versions

• 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
• 1994: TIBCO Rendezvous: high performance
• 1996: Microsoft MSMQ, part of Microsoft Windows Server platform
• 1998: Oracle MQ, now open source
• 1999: FioranoMQ: HP for trading and finance
• 2004: Apache ActiveMQ (open-source, java-based)
• 2007: RabbitMQ (open-source, Erlang-based)

• 2010: Additional features:
• 2011: Kafka: HA, replicate…

• 2010’s: Integration with cloud technologies:
• 2011: Amazon Simple QS
• 2015: Google Cloud Pub/Sub
• 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud 

services
• 2018: Azure Service Bus
• 2019: CloudAMQP (based on RabbitMQ): automatic scaling



Overview





Generic Definition
• Software function (tool, resource, data…)
• Accessed via the network (remote, deployed, @)
• Offered to other software units (M2M)
• Platform- and language-independent

• Can be described and advertised

• 2 roles:
• Service requester = client
• Service provider = server



What is an API?
• a means of exposing business/enterprise resources 

via the Internet to external or internal software 
consumers

• Well-defined interface: contract
• Easily accessible by third parties
• Use of standard protocol(s)

≈ Web Service



Usage
• Services are used as software libraries to build 

applications

• 2 contexts:
• External services
• Internal services



External Services (Partner or 
Public Services)

• open to the partners of the organization (B2B, B2C)

Arun et al.. A novel quality-of-service-aw
are w

eb services com
position using biogeography-based optim

ization algorithm
 (2020)



API becomes more of a priority 
than UI

https://www.postman.com/state-of-api/

Cloudflare traffic: API use in 2021
https://blog.cloudflare.com/landscape-of-api-traffic/

https://nordicapis.com/apis-have-taken-over-software-development/

Programmatic access is considered at least 
as vital as human access, if not more so.

https://blog.cloudflare.com/landscape-of-api-traffic/
https://nordicapis.com/apis-have-taken-over-software-development/


From Basic WS to Managed API

API

Web Standards 
& Protocols

Open to third 
parties

Interfaces / 
contract

Accessible
via network

Managed API trackable and 
monetizable

Service 
Level/Quality 
Agreement

Advertise the 
service, 

subscription

secured, 
authenticated, 

authorized



Benefits of Web Services from 
the Client’s Point of View

• Take advantage of third-party data or programs 
without having to:

• develop, test, update and maintain code
• acquire and maintain a hosting infrastructure

• Easily compose services and replace one 
component by an alternative



Trade-offs for the Client
Developers lost control of the services and the 
services are remote →
• A service might be temporally unavailable
• Performances might become poor
• Data of the client can get lost, divulgated, 

corrupted…
• A service might not longer be maintained
• The service fee might increase
• …



From the Service Provider’s 
Point of View

• Benefits
• Increases revenue
• Extends customer reach

• New form of marketing : B2D “business to developer”
• Stimulates innovation

• Risks
• Decreases ad revenue
• No more control on the final user’s experience



Internal Services (Private 
Services)

• access restricted to the organization

T. Numnonda, IMC Institute



Internal Services: an injunction!
• Jeff Bezos’s mandate (2002)

1. All teams will expose their data and 
functionality through service interfaces.

2. Teams must communicate with each other 
through these interfaces.

3. The only communication allowed is via 
service interface calls over the network.

4. It doesn’t matter what technology they use.
5. All service interfaces, without exception, 

must be designed from the ground up to be 
externalizable. No exceptions.

6. Anyone who doesn’t do this will be fired.
7. Thank you; have a nice day!



2 “Flavors” of Web Services
Process-Oriented Services Resources-Oriented Services

• From static web pages 
to dynamic web pages 
to web applications (UI 
= web browser, 
business processes are 
executed on the server) 
to web services

• REST architectural style, 
“APIs”

• Now ubiquitous, easy 
to set up

• Distributed Information Systems 
required middleware, RPC and 
Object Brokers, were poorly 
adapted to B2B → use web 
protocols for transport and XML as 
IDL and format

• SOAP + WSDL standards
• “first-generation” web services, 

still used for complex applications 
because non-functional standards 
exist for transactions, security…



After this Course…
You will be able to design, set up and take advantage of a 
Service-Oriented Architecture
• find Web Services and understand their interfaces, including 

GraphQL
• write well-designed and documented APIs
• implement in Python and deploy on the cloud REST servers
• write Python clients
• cite several Chuck Norris’s facts
Not covered:
• SOAP and WSDL
• DevOps (deployment, mock tests, load tests…)
• security
• scripted composition of services





*The* Web Services Protocol
• Application-layer protocol
• Client sends service requests using HTTP messages
• Server replies using HTTP messages

https://hackernoon.com/http-made-easy-understanding-the-web-client-server-communication-yz783vg3



When was HTTP first specified?

1981
(IBM PC 5150)

1996
(Google search engine)

1986
(Brain: first computer virus for MS-DOS)

1991
(Linus Torvalds introduces Linux)



Hypertext Transport Protocol
• 1989-90, Tim Berners-Lee’s problem at CERN: 

how to integrate and exchange information held on 
different computers in scattered places?

• Already exist:
• TCP: reliable transport of information on the Internet
• DNS: domain name (“www.centralesupelec.fr”) ↔ IP @ (“138.195.9.117”)

• object in a database that references others

• Put them all together: HTTP
• Retrieve linked documents (resources)
• Accessible via the Internet

Tim Berners-Lee (image CERN)

Human friendly Computer friendly

.



Client-Server Protocol
request / response

Client
(web browser or other application) web server

back-end 
(database…

)

2. HTTP request message

3. create or retrieve file
4. HTTP response message

5. display file

1. user clicks on hyperlink



Resources = addressable files
• Any kind of file: HTML file, JPG image file, binary 

file…
• URL (Uniform Resource Locator)

= protocol + server host name + path on server



Side note about URL and URI
• URI: identifier (name of a restaurant)
• URL: locator (GPS coordinates of the restaurant)

URIs

URLs

All URLs are URIs: 
with the GPS coordinates I arrive to the right 
restaurant

Not all URIs are URLs:
the name of the restaurant gives no 
information on its location



HTML file may include 
references to others resources

• 3 resources are required to display this web page:
• HTML file
• CentraleSupelec logo image
• Pizza image



HTTP Versions
• 1991 – v0.9

• First documented version
• First web browser



Side note on TCP 3-way handshake

https://ssup2.github.io/theory_analysis/TCP_Handshake/



HTTP Versions
• 1996 – v1.0

• One TCP connection per resource

time to 
transmit 
file

initiate TCP 
connection

RTT
request base HTML file

RTT
file received,
connection closed

time to 
transmit 
file

initiate TCP
connectionRTT

request 1st JPEG file

RTT
file received,
connection closed

time to 
transmit 
file

initiate TCP
connectionRTT

request 2nd JPEG file

RTT
file received,
connection closed



HTTP Versions

initiate TCP 
connection

request base HTML file

file received,
connection closed

initiate TCP
connectionrequest 1st JPEG file

file received,
connection closed

initiate TCP
connection

request 2nd JPEG file

file received,
connection closed

with parallel connections

initiate TCP connection

request base HTML file

file received,
connection closed

request 1st  and 2nd JPEG 
files

1st JPEG received,
1st connection closed

initiate 2 
parallel 
TCP
connection
s

2nd JPEG received,
2nd connection closed

• 1996 – v1.0
• One TCP connection per resource



HTTP Versions
• 1999 – v1.1

• Persistent connection

time to 
transmit 
file

initiate TCP 
connection

RTT
request base HTML file

RTT
file received,
connection kept open

time to 
transmit 
file

request 1st JPEG file RTT
file received,
connection kept open time to 

transmit 
file

request 2nd JPEG file RTT
file received,
connection kept open

long inactivity, 
connection closed

GET https://www.centralesupelec.fr/ HTTP/1.1
Host: www.centralesupelec.fr
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Connection: keep-alive
Upgrade-Insecure-Requests: 1



HTTP Versions
• 1999 – v1.1

• Persistent connection

time to 
transmit 
file

initiate TCP 
connection

RTT
request base HTML file

RTT
file received,
connection kept open

time to 
transmit 
file

request 1st JPEG file RTT
file received,
connection kept open time to 

transmit 
file

request 2nd JPEG file RTT
file received,
connection kept open

long inactivity, 
connection closed

initiate TCP 
connection

RTT
request base HTML file

file received,
request 1st and 2nd JPEG 
files

2nd file received

time to 
transmit 
file

1st file received

with pipelining



HTTP Versions
• 2015 – v2

• Server “pushes” content
• [and other optimizations]

HTML file

initiate TCP 
connection

RTT
request base HTML file

RTT
files received :
• HTML file
• 1st JPEG file
• 2nd JPEG file

1st JPEG file
2nd JPEG file



Optional Reading Exercise
• Find the document which describes HTTP/2.
• What is the “head-of-line blocking” (HOL blocking) 

problem observed in HTTP/1.1?
• Read the beginning of the FAQ at 

https://http2.github.io/faq/



Reading: Results
• HTTP/2 is defined in RFC 7540.
• HOL blocking:

• Imagine a HTTP client that sends to a server 2 requests 
over the same TCP connection, and that the first 
response is "large" in content length while the second 
response is "small" in content length.

• Due to the nature of the HTTP 1.x protocol, the second 
response must wait for the first response to complete: 
the second response is head-of-line blocked by the first 
response.

• HTTP/2 is fully multiplexed (instead of ordered and 
blocking), allowing multiple request and response 
messages to be in flight at the same time (it’s even 
possible to intermingle parts of one message with 
another on the wire).



HTTP Messages
• 2 kinds of messages

• Request
• Response

• In ASCII (HTTP 1.x)



HTTP Requests Commands
• GET

• retrieves an object
• no request body

• HEAD
• same response as GET but empty response body (used to test the 

access to or the "freshness" of the object without actually 
downloading it)

• POST
• results in the creation of a new resource on the server
• usual request: contains data
• usual response: URL of the created resource 

• PUT
• updates an existing resource
• request usually contains data

• DELETE
• deletes a resource 



HTTP Request Format

request line

[header lines]

[body part]

method/action/command:
GET, POST, HEAD… sp URI

of object sp HTTP
version cr lf

header field name : value cr lf

body

carriage return character: \r

line-feed character:\n

cr lf

empty line

Host : value cr lf

header field name : value cr lf



HTTP GET Request Example

GET /node/44 HTTP/1.1\r\n
Host: mapi.centralesupelec.fr\r\n
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0) Gecko/20100101 Firefox/50.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Connection: keep-alive\r\n
\r\n



HTTP POST Request Example

POST /post.php HTTP/1.1\r\n
Host: posttestserver.com\r\n
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0) Gecko/20100101 Firefox/50.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Content-Type: text/xml\r\n
Content-Length: 27\r\n
Connection: keep-alive\r\n
\r\n
firstname=John\nlastname=Doe



Request Parameters
3 symbols to add parameters to an URL:

• ? concatenates the URL and the string of parameters
• & separates multiple parameters
• = assigns a value to a parameter

GET /products?priceMin=10&priceMax=40

 



HTTP Response Format

status line

[header lines]

[body part]

HTTP
version

sp status
code

sp status
phrase

cr lf

header field name : value cr lf

body

carriage return character: \r

line-feed character:\n

cr lf

header field name : value cr lf

empty line



Status Codes
• 2xx: success

• 200 OK

• 3xx: further action required
• 301 Moved Permanently: the new URL is specified in a 

header field

• 4xx: client error 
• 400 Bad Request: badly formulated query
• 404 Not Found: object does not exist on the server

• 5xx: server-side error
• 505 HTTP Version Not Supported



HTTP Response Example

HTTP/1.1 200 OK
Date: Wed, 01 Feb 2017 12:48:22 GMT
Server: Apache/2.4.10 (Debian)
[…]
Content-language: fr
Content-Encoding: gzip
Content-Length: 4740
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

...........;.r.8...W...-{.(.KO..!K..-.$..q;.(...D.4..T.v.\.....q.{...Z.2_....b.....(l....Df"..Hn...|....}.WQ..m.........">O;V..)IY./:.'b.b../.d.q.,
WD.sR)..J.....L:9.C..MC...X.I...
J..(...'"....J. D....d%bN,. $..Y..........z.............y(.MS....#.qV.....>.9.j.0
s&...v.M...')......m8..<=.i..%B........S.x}.J.:V..{.".HM..4b..!.YJ......X{i...l.;.T.X}....N.r .<d...#.........S..h..Y.?H9..pXyA.....pv..TMN....{.....1W.. E...h..(...IY..d.&.2E8.c.>(i.r...50.
..#Oa. ...V..EPj..G...A..D.K...Z1..c.h,b.4..b.3...I.6..La..>.L8#l.U.\.......2..y!...S.,.....%.....>..ID......$....ve.1U..\...%'.z.J..d......G.7.......M......:.^....z........4`.J..8.~......i..a8...`.x..q..6....O....88~.o...w...7...7....'.>..........t...Cj..=....OvY...:.V..$O...a...=8..=Iy...........................k..[5.....O..l.....j.Z.K....;..P1.x.l......D..z..8..'..
N..^



HTTP Response Example

HTTP/1.1 404 Not Found
Date: Wed, 01 Feb 2017 13:14:55 GMT
Server: Apache/2.4.10 (Debian)
[…]
Content-language: fr
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

305d
<!DOCTYPE html>
<html lang="fr" dir="ltr" prefix="content: http://purl.org/rss/1.0/modules/content/  dc: ht
<div id="block-zircon-content" class="block block-system block-system-main-block">
      La page demand..e n'a pas pu ..tre trouv..e.
  </div>



Optional Reading
• What is HTTP error code 418?

htt
ps

:/
/w

w
w

.n
ep

er
.fr

/2
02

3/
01

/1
6/

le
s-

ea
st

er
-e

gg
s-

de
-g

oo
gl

e-
41

8-
te

ap
ot

/





Optional Lab Exercise
• Use putty or telnet to connect to port 80 of a web 

server (http://www.columbia.edu for instance) and 
issue HTTP/1.x requests (get /~fdc/sample.html). 
Observe the responses.
telnet serverName 80

• For HTTPS, use:
openssl s_client -connect 
serverName:443

(note: this exercise is limited to HTTP/1.x because 
HTTP/2 is no longer textual but uses binary format 
commands)

http://www.columbia.edu/~fdc/sample.html


Lab: Results
telnet www.columbia.edu 80
Trying 128.59.105.24...
Connected to source.failover.cc.columbia.edu.
Escape character is '^]'.
HEAD /~fdc/sample.html HTTP/1.1
Host: www.columbia.edu

HTTP/1.1 200 OK
Date: Sun, 19 Feb 2023 09:15:26 GMT
Server: Apache
Last-Modified: Fri, 17 Sep 2021 19:26:14 GMT
Accept-Ranges: bytes
Content-Length: 34974
Vary: Accept-Encoding,User-Agent
Content-Type: text/html
Set-Cookie: BIGipServer~CUIT~www.columbia.edu-80-pool=1764244352.20480.0000; expires=Sun, 19-Feb-2023 15:15:26 GMT; path=/; Httponly

typed out request

received response

opens a TCP connection on web server port 80 and sends 
everything that is typed



Lab: Results
openssl s_client -connect edition.cnn.com:443
CONNECTED(00000003)
...CERTIFICATE STUFF…
---
GET /travel HTTP/1.1
Host: edition.cnn.com

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 220918
Content-Type: text/html; charset=utf-8
cache-control: max-age=60
Date: Sun, 19 Feb 2023 09:22:49 GMT
[...]

<!doctype html><html lang="en"><head><meta http-equiv="x-ua-compatible" 
content="ie=edge"/><title data-rh="true">CNN Travel | Global Destinations, Tips 
&amp; Video</title><meta data-rh="true" name="theme-color" 
content="#31315b"/><meta data-rh="true" charSet="utf-8"/><meta data-rh="true" 
name="viewport" content="width=device-width, initial-scale=1"/><meta data-
rh="true" name="description" content="Get travel tips and inspiration with insider 
guides, fascinating stories, video experiences and stunning photos."/><meta data-
rh="true" name="section" content="travel"/><meta data-rh="true"

typed out request

received response

opens an SSL connection  on web server port 443 and 
sends everything that is typed



Lab: Results
openssl s_client -connect edition.cnn.com:443
CONNECTED(00000003)
...CERTIFICATE STUFF…
---
GET /travel HTTP/1.1
host edition.cnn.com

HTTP/1.1 400 Bad Request
Connection: close
Content-Length: 11
content-type: text/plain; charset=utf-8
x-served-by: cache-cdg20763

Bad Requestclosed

typed out request
(correct syntax is
Host: edition.cnn.com)

received response



HTTP Server is Stateless
• A stateless protocol does not require the server to 

retain information or status about each user for the 
duration of multiple requests.

• Successive requests from a given client to a server 
are not treated as a chain but rather as separate 
requests, independent from the previous ones. 



What we get is not what we 
want.

add chair to shopping cart

add ball to shopping cart

HTTP POST chair

HTTP POST ball

Build a web page with a chair in it.

Build a web page with a ball in it.



Cookies

Shhhhh… they’re in here 
somewhere. Dad’s always 
talking about the cookies 

in his computer.



Cookie Example

add chair to 
shopping cart

regular HTTP request
POST chair Received request: contains no cookie

Create a new cookieId: 16
Add 16 ↔ chair in DB
Build a web page with a chair in it.

HTTP response header:
set-cookie: id=16

Back-end 
database

BigStore.com

16 ↔ chairReceived response: contains set-cookie
Add BigStore.com ↔ 16 in cookies file

BigStore.com ↔ 16

Cookies 
file



Cookie Example

add ball to shopping cart
BigStore in cookies file
Include cookie in request

HTTP request
POST ball
cookie: id=16

Received request: contains cookie 16
Add “ball” to list of item for id 16 in DB
Build a web page with a chair and a 
ball in it.

regular HTTP response

Back-end 
database

BigStore.com

16 ↔ chair,
ball

BigStore.com ↔ 16
Cookies 

file



Uses
create a user session layer on top of stateless HTTP
• content adaptation (recommendation based on 

previous visits etc.).
• shopping carts (e-business)
• session definition at application layer (Web mail)
• authorization
• ...



Suspicions

• Invasion of privacy



Third-party advertising cookies

regular HTTP request

set HTTP response header:
set-cookie: id=BS16, Domain=BrandJoe.com

BigStore.com

BrandJoe.com ↔ BS16

Cookies 
file

BrandJoe.com

HTTP request
cookie: id=BS16

This user was 
on 

BigStore.com 
before



Web Cache (proxy server)

• to satisfy the requests 
without involving the 
real server

• browser must be 
configured to send all 
HTTP requests to cache

• reduced traffic on 
Internet, improved 
response time

client

Proxy
server

client

HTTP request

HTTP resp
onse

HTTP request HTTP request

origin 
server

origin 
server

HTTP response HTTP resp
onse



Caching Example 
assumptions
• average object size = 1Mbits
• avg. request rate from institution's browsers = 15/sec
• delay from Internet router side to any origin server 

and back to router = 2 sec
consequences
• utilization on LAN = 15%
• utilization on access link = 100%
• total delay = Internet delay + access delay + LAN 

delay
  = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

15 Mbps 
Access link

Internet delay= 2 s



Caching Example (cont)
possible solution
• increase bandwidth of access link to 100 Mbps
consequence
• utilization on LAN = 15%
• utilization on access link = 15%
• total delay = Internet delay + access delay  + LAN 

delay
  = 2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

100Mbps 
Access link



Caching Example (cont)
possible solution: 
• install cache

consequence
• suppose hit rate is 0.4 (40% requests will be 

satisfied almost immediately, 60% requests satisfied 
by origin server)

• utilization of access link reduced to 60%, resulting 
and in negligible delays (say 10 msec)

• avg total delay = Internet delay + access delay + LAN 
delay =0.6 * 2.01 secs * + 0.4 * 10 millisecs <1.3 
secs

origin
servers

public
 Internet

institutional
network 100 Mbps LAN

15 Mbps 
Access link

institutional
cache



Conditional GET

browser proxy server 

GET foo.gif cache miss

GET foo.gif

foo.gif, last-modified 12/03/11 12:00

foo.gif
a week later ...

GET foo.gif
cache hit

GET foo.gif if-modified-since 12/03/11 12:00

status code 304 (not modified), Empty body
foo.gif



Other Uses
• Allow multiple users to get a resource which access 

is limited to the proxy.
• Track and log web accesses.
• Deny access to a list of web sites.





Origins
• Representational State Transfer – REST: defined in 

2000 Roy Fielding’s PhD dissertation (after he 
worked on HTTP 1.1 and URI RFCs)

• Web application = 
• network of Web resources (a virtual state-machine)
• where the user progresses through the application by 

selecting resource identifiers and resource operations 
(application state transitions), resulting in the next 
resource's representation (the next application state) 
being transferred to the end user for their use. 

• An architectural style, not a standard nor a protocol



Principles of RESTful 
Architecture (1/2)

• A resource 
• is identified using an URI, 
• references 

• one entity (eg. user Paul) or 
• a set of entities (eg. all male users)

• URI doesn’t change (but the referenced entity might)
• and can have multiple representations (JSON, XML…).

• The representation of a resource contains enough 
information for the client to request a change to its 
state.

• Messages include enough information to describe how 
to process them (eg. Content type)

• HATEOS (Hypermedia as the Engine of Application State)



HATEOAS Example

request

response if balance > 0

response if balance < 0



Principles of RESTful 
Architecture (2/2)

• Separation of concerns between the client (user 
interface concerns) and the server (data storage 
and processing concerns)

• Stateless communication: the server only stores 
resources states while the client is in charge of 
providing the application state.

• Responses should define the extent to which they 
can be cached.

• A client may not be directly connected to the end-
server: there can be proxies, an additional security 
layer, and the server might call other servers to 
complete the service.



Semantics of HTTP methods
HTTP 

method
Operation on 
the resource

URIs: examples HTTP 
response 

status

location 
header

safe idem
potent

GET read GET /serv/users
GET /serv/users/34

200 OK no yes Yes

POST create POST /serv/users
# body
{
  name: “Toto"
}

201 
Created

Yes no no

PUT

PATCH

update

partial 
update

PUT /serv/users/34
# body
{
  name: “Jacques"
}

200, 204 
No 

Content

no no Yes

DELETE delete DELETE /serv/users/34 200, 
204, 202 
Accepted

no no yes



Example of scenario
• Book a room:

POST http://myhotel.com/reservations?date=“12/03/2021”&nights=2&persons=4

Server replies with reservation number 123

• Display reservation:

GET http://myhotel.com/reservations/123

• Update the reservation:

PATCH http://myhotel.com/reservations/123?persons=3

• Cancel the reservation:

DELETE http://myhotel.com/reservations/123



Best Practices for well-designed 
RESTful APIs

• Use only nouns for a URI:
/getAllReservations GET /reservations

• Use plural nouns:
GET /reservations for all reservations
GET /reservations/123 for a specific reservation

• GET method should not alter the state of a resource
• Use sub-resources for relationships between 

resources
GET /reservations/123/persons/1: first occupant of the 
reservation #123

• Use “content-type” and “accept” HTTP headers to 
specify input/output format

• Provide proper HTTP status codes



Best Practices for well-designed 
RESTful APIs

• Offer filtering and paging capabilities for large data 
sets

GET /reservations?date=28/02/2021
GET /reservations?from=5&to=25

• Version the API
2 strategies:
• In the URI: GET /api/v2/reservations/123

• Easy to use with a web browser
• Non-compliant with REST principle “one resource = one URI”

• In the accept header:
GET /api/reservations/123 accept: application/v2
• More complex for the client
• More REST-compliant


	Application Architectures
	Layered structure
	Distribution onto « Tiers »
	Monolithic and Single-tier Applications
	Monolithic application
	Single-tier Application
	1st architectural style, but still relevant
	Advantages of single-tier
	Disadvantages of monolithic applications
	Disadvantages of single-tier applications
	Mainframe Architectures
	Principle
	Advantages
	Performances
	Transactions
	Extensively used
	Obstacles to growth
	2-tier Architecture
	The origin: “1.5-tier” Architecture
	2-tier Architecture (2)
	2-tier Architecture limits
	Thank you, 2-tier Architecture
	3-tier to 5-tier Architectures
	3-tier
	Example: Classical Web Architecture
	4-tier, 5-tier
	Perspectives for multi-tier architecture
	Micro-services Architecture
	Siloed Architecture
	Problems with siloed architecture
	Microservices Architecture
	(Micro)Service Concept
	Advantages of the microservice architecture
	Slide 34
	No silver bullet…
	Slide 36
	Middleware
	Remote Procedure Call (RPC) and Object Request Broker (ORB)
	RPC
	(some) RPC implementations and frameworks
	Object Request Broker
	CORBA perspectives
	Service call
	Message Oriented Middleware
	Message Oriented Middleware (2)
	Optional Features
	Evolution of MOMs
	Overview
	Slide 49
	Generic Definition
	What is an API?
	Usage
	External Services (Partner or Public Services)
	API becomes more of a priority than UI
	From Basic WS to Managed API
	Benefits of Web Services from the Client’s Point of View
	Trade-offs for the Client
	From the Service Provider’s Point of View
	Internal Services (Private Services)
	Internal Services: an injunction!
	2 “Flavors” of Web Services
	After this Course…
	Slide 63
	*The* Web Services Protocol
	Slide 65
	Hypertext Transport Protocol
	Client-Server Protocol request / response
	Resources = addressable files
	Side note about URL and URI
	HTML file may include references to others resources
	HTTP Versions
	Side note on TCP 3-way handshake
	HTTP Versions (2)
	HTTP Versions (3)
	HTTP Versions (4)
	HTTP Versions (5)
	HTTP Versions (6)
	Optional Reading Exercise
	Reading: Results
	HTTP Messages
	HTTP Requests Commands
	HTTP Request Format
	HTTP GET Request Example
	HTTP POST Request Example
	Request Parameters
	HTTP Response Format
	Status Codes
	HTTP Response Example
	HTTP Response Example (2)
	Optional Reading
	Slide 91
	Optional Lab Exercise
	Lab: Results
	Lab: Results (2)
	Lab: Results (3)
	HTTP Server is Stateless
	What we get is not what we want.
	Cookies
	Cookie Example
	Cookie Example (2)
	Uses
	Suspicions
	Third-party advertising cookies
	Web Cache (proxy server)
	Caching Example
	Caching Example (cont)
	Caching Example (cont) (2)
	Conditional GET
	Other Uses
	Slide 110
	Origins
	Principles of RESTful Architecture (1/2)
	HATEOAS Example
	Principles of RESTful Architecture (2/2)
	Semantics of HTTP methods
	Example of scenario
	Best Practices for well-designed RESTful APIs
	Best Practices for well-designed RESTful APIs (2)

