
Application Architectures

Layered structure

Division of the work of an application into 3 general
functions, which can evolve independently:

• Presentation:
user input and commands, and display

• Business logic:
business objects, rules, processing logic, processes

• Data:
storage and logical access

Distribution onto « Tiers »

Distribution of the layers onto multiple machines
(“tiers”) communicating over a network

data
management

business
logic

presentation

ne
tw

or
k

SE
RV

ER
C

LI
EN

T

data
management

data
management

data
management

data
management

data
management

data
management

data
management

business
logic

business
logic

business
logic

business
logic

business
logic

business
logic

business
logic

presentation presentation presentation presentation presentationpresentation

thin client heavy clientrich client

Monolithic
and Single-
tier
Applications

Monolithic application

The 3 application layers are intimately interlaced in the
same code base

import java.io.*;
public class ReadFromFile {
 public static void main(String[] args) throws Exception {
 File file = new File("C:\\Users\\galtier\\Desktop\\test.txt");
 BufferedReader br = new BufferedReader(new FileReader(file));
 String st;
 while ((st = br.readLine()) != null)
 System.out.println(st.toUpperCase());
 encrypt(file, "mySecretKey");
 }
}

data
management

business
logic

presentation

Single-tier Application

Everything is local

Modular Monolith

well-defined modules with strict boundaries, deployed
as a single unit

data
management

business
logic

présentation

1st architectural style, but still
relevant

• The area of “pre-
network” PCs (late 70 ’s
– mid 80’s)

• Still lots of stand-alone
apps

htt
ps

:/
/g

am
es

.a
lp

ha
co

de
rs

.c
om

/g
am

es
/b

ox
ar

t/
49

49
4

htt
ps

:/
/p

la
y.

go
og

le
.c

om
/s

to
re

/a
pp

s/
de

ta
ils

?i
d=

co
m

.m
ed

ib
an

g.
an

dr
oi

d.
pa

in
t.t

ab
le

t&
hl

=e
n_

SG
&

gl
=U

S

Advantages of single-tier

• Performance: 0 latency
• Safety by isolation
• Operate even in disconnected mode
• Simplicity (complexity reduced to the one of the code)

Disadvantages of monolithic applications

• Code is complex to learn,
debug and evolve

• Even a minor upgrade
requires a complete
reinstallation of the entire
application

• A failure in one “layer”
renders the application
completely unusable

• Inability to leverage
heterogeneous technologies

• Not cloud-ready

https://dzone.com
/articles/not-w

anted-com
ic

Disadvantages of single-tier
applications

• Performances: depend on the capabilities of the host
• Shared resources impossible, requires duplicates (waste of

resources)
• No fault tolerance
• Nomadism is difficult:

• Access limited to physically logged-in users
• More difficult (if not impossible) to continue a task from a different

workstation

• Deployment is difficult:
• Requires actions on each terminal
• To be reinstalled if the underlying system needs to be reinstalled

• From the publisher's point of view:
• No fix possible without user action
• Application vulnerable to reverse engineering

htt
ps

:/
/e

nc
yc

lo
pe

di
a2

.th
ef

re
ed

ic
tio

na
ry

.c
om

/s
ta

nd
al

on
e+

co
m

pu
te

r

Mainframe
Architectures

https://www.zdnet.fr/actualites/6-idees-recues-qui-empoisonnent-le-mainframe-39892381.htm

Principle

• Supercomputer :
• ensures the data

persistence, processing,
and presentation

• proprietary hardware
and OS (IBM)

• passive clients :
thin client visualization
application

htt
ps

:/
/w

w
w

.re
se

ar
ch

ga
te

.n
et

/fi
gu

re
/M

ai
nf

ra
m

e-
Ar

ch
ite

ct
ur

e_
fig

2_
27

54
05

57
2

“host” Architecture

htt
ps

:/
/w

w
w

.re
dd

it.
co

m
/r

/m
ai

nf
ra

m
e/

co
m

m
en

ts
/d

q8
pn

y/
on

lin
e_

ib
m

_z
_d

ay
_o

n_
no

ve
m

be
r_

21
st

/

Advantages

• Performances: handle a very large number of
simultaneous queries on very large databases

• Consistency, stability and long-term support
• Security
• Reliability (IBM Z customers: 99.9999% uptime)

Robustness: https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html

Performances
• Ability to process a very large number of simultaneous

queries on very large databases

Batch or real time operation:

• Batch back-office

• Transactional

• Used in banks, insurance companies, airlines...htt
ps

:/
/w

w
w

.ib
m

.c
om

/s
up

po
rt

/k
no

w
le

dg
ec

en
te

r/
zo

sb
as

ic
s/

co
m

.ib
m

.zo
s.

zm
ai

nf
ra

m
e/

zc
on

c_
m

fw
or

kl
ds

.h
tm

Transactions
• Program accessing and/or modifying persistent data
• A good transaction is

• Atomic
• Consistent
• Isolated
• Durable

• Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
• Multiplexing of requests on system resources
• Transaction management (respect of ACID properties)

https://w
w

w
.researchgate.net/figure/The-role-of-a-TP-m

onitor-in-distributed-system
s_fig7_298215186

Extensively used

• 71% of the Fortune 500, 96 of the top 100 banks use
mainframes

• process 30 billion business transactions per day, 87%
of credit card transactions

• 250 billion lines of COBOL code, and 5 billion new lines
each year

• Growth Outlook:
• demand for HPC
• increase in the number of banking transactions
• development of blockchain

Obstacles to growth

• Proprietary solutions
• Huge investment

• but no more than a
server farm

• Shortage of skilled
mainframe staff

• but Cobol is easy to learn

• Real alternatives +
migration experience

htt
ps

:/
/w

w
w

.a
st

ad
ia

.c
om

/b
lo

g/
br

ea
k-

fr
ee

-fr
om

-y
ou

r-z
13

-m
ai

nf
ra

m
e

(https://planetmainframe.com/2021/09/the-ibm-mainframe-the-most-
powerful-and-cost-effective-computing-platform-for-business/

2-tier
Architecture

htt
ps

:/
/w

w
w

.s
oft

w
ar

et
es

tin
gc

la
ss

.c
om

/w
ha

t-i
s-

di
ffe

re
nc

e-
be

tw
ee

n-
tw

o-
tie

r-a
nd

-t
hr

ee
-ti

er
-a

rc
hi

te
ct

ur
e/

The origin: “1.5-tier” Architecture
• Development of LANs

• Advantages: information sharing:
• better communication
• requires less resources

file server
(shared data storage,

but data management service reduced to tree-like organization of files)

local network

workstations / heavy clients

data
management

business logic

presentation

data

2-tier Architecture

• Central database server
• Manages physical I/O and provides logical data

manipulation
• Integrity control
• Secure, optimized, transactional access

• Data handling is decoupled from its representation on
disk, closer to the application logic

SQL

DBMS

data
managementbusiness logic

presentation

2-tier Architecture limits

• identical problems to single-tier:
Not tolerant to client or server failures, updates require
user’s action...

• excessive use of stored procedures:
• breaks the principle of single responsibility
• complex to maintain
• adherence with the physical model

• performance :
Server and access network = bottlenecks

Thank you, 2-tier Architecture
• Microcomputing (previously confined to office automation) has taken on

a growing role in IS
• The DBMS offer has grown, SQL has become widespread
• Has triggered the evolution towards more flexible architectural

proposals

• Still relevant for simple applications

19
70

19
73

19
76

19
79

19
82

19
85

19
88

19
91

19
94

19
96

19
99

Data stored in
proprietary DB on

mainframes

Flat files are shared across
networks and managed

manually

Flat files are shared across
networks and managed

manually

Re
la

tio
na

l m
od

el
 (C

od
d)

In
ve

nti
on

 o
f S

Q
L

SQ
L

be
co

m
es

 A
N

SI
 st

d

La
un

ch
 o

f I
BM

 P
C

Lo
tu

s 1
-2

-3
 k

ill
er

ap

p
fo

r P
C

M
ic

ro
so

ft
an

d
Sy

ba
se

 c
o-

de
ve

lo
p

SQ
L

Se
rv

er

O
ra

cl
e

7
in

tr
od

uc
es

st

or
ed

 p
ro

ce
du

re

Command and Query Responsibility
Segregation (CQRS)

• Separation of reads and writes.
• Often combined with Event Sourcing.
• Improves scalability and performance.

3-tier to 5-tier
Architectures

htt
ps

:/
/w

eb
lo

gs
.a

sp
.n

et
/E

rr
or

.c
sh

tm
l?

as
px

er
ro

rp
at

h=
/f

re
dr

ik
no

rm
en

/u
sin

g-
w

eb
-s

er
vi

ce
s-

in
-a

-3
-ti

er
-a

rc
hi

te
ct

ur
e

3-tier

data
managementbusiness logicpresentation

Example:
Classical Web Architecture

W
eb-based applications for building, m

anaging and analysing kinetic m
odels of biological system

s - O
ctober 2008 - Briefings in Bioinform

atics

4-tier, 5-tier

htt
ps

:/
/w

w
w

.a
jb

og
gs

.c
om

/o
ur

-e
xp

er
ie

nc
es

/h
ea

lth
-in

fo
rm

ati
on

-t
ec

hn
ol

og
y/

sis
on

lin
e-

su
pp

or
ts

-a
ss

es
sm

en
t/

sis
on

lin
e-

sy
st

em
-a

rc
hi

te
ct

ur
e/

sis
sa

-s
is5

_b
ig

/

data managementbusiness logicpresentation

Perspectives for multi-tier architecture

• Corrects some of the problems of 2-tier architecture
• Maintainability, evolvability, deployment

• Very popular model for non-intensive systems
• But to be completed to meet the challenges of

reliability, performance, and scalability

SOA &
Micro-services
Architecture

Siloed Architecture
htt

ps
:/

/w
w

w
.s

lid
es

ha
re

.n
et

/im
ci

ns
tit

ut
e/

se
rv

ic
e-

or
ie

nt
ed

-a
rc

hi
te

ct
ur

e-
so

a-
15

-in
tr

od
uc

tio
n-

to
-s

oa

Problems with siloed architecture

• Early 2000s: growing need for interoperability in
enterprise systems.

• Problem: isolated business applications, hard to
integrate.

• Waste of resources
• Complex maintenance
• Lack of data sharing and consistency
• Complexity of IAM (Identity and Access Management)
• Difficult to scale up
• ...

Microservices Architecture

(Micro)Service Concept

• Black box performing 1 specific task (business or
technical function)

• Can be used via an API (= contract between the
customer and the supplier)

• Can call on other services
• Designed to be duplicated → stateless:

• No application state
• Or client-specific state provided in the request
• Or state on external storage shared with other services

Advantages of the microservice
architecture

• Reuse

• Scaling and fault tolerance thanks to easy duplication

• Fault isolation

• Independent development and deployment

• Ability to use the most appropriate technology for each
module

• Small development teams

Event-Driven Architecture (EDA)

• Components communicate via events
Kafka, RabbitMQ…

• Commonly used in asynchronous microservices

Actor Model

• Each "actor" is an isolated entity that reacts to
messages posted in its own queue

Akka, Erlang/Elixir…

Limits of Microservice Architecture

• Operational Complexity

• Distributed System Challenges
Network latency, service discovery, timeouts,
debugging…

• Data Consistency Management

Limits of Microservice Architecture

• End-to-end Testing Difficulty

• Higher Resource Consumption

• Steeper Learning Curve

Middleware

Solutions to ease the connection between services:
• Locally:

• Inter-process communication: system, MPI, Unix Domain
Socket, etc

• Across the network:
• Synchronous Remote Procedure Call
• Asynchronous Messages

Remote Procedure Call (RPC)
and
Object Request Broker (ORB)

htt
ps

:/
/w

w
w

.ib
m

.c
om

/s
up

po
rt

/k
no

w
le

dg
ec

en
te

r/
ss

w
_a

ix
_7

2/
co

m
m

pr
og

ra
m

m
in

g/
rp

c_
m

od
.h

tm
l

RPC
• [asynchronous] loose coupling between client and server

• The proxies handle:
• network calls
• format transformations between the client and server

client

fac(int a, int b) {
 temp = a
 for i from 1 to b
 temp = temp * a
 return temp
}

server

sendreceive receive send

application layer

middleware layer

OS and hardware layer

network

emballe le nom
de la méthode et
ses paramètres

envoieréceptionne

déballe le
résultat

pr
ox

y:
 lo

ca
l

re
pr

es
en

ta
tiv

e
(o

n
th

e
cl

ie
nt

) o
f t

he
 se

rv
er reconstitue l’appel

avec le nom de la
méthode et ses

paramètres

reçoit la requête

emballe le
résultat

envoie

proxy: local
representative (on the

server) of the client

instruction i

r = fac(x, y)

instruction k

(some) RPC implementations and
frameworks

• Rise:
• 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems
• 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of

functionalities (transactions, encryption…), more complex to use
• Fall:

• 94: RPC is “fundamentally flawed”: communication latency, partial failures and
concurrency issues…

• Message passing alternatives

• Rise, again: more features, more supported formats/transports…
• 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP
• 2005: JSON-RPC, lightweight
• 2007: Apache Thrift (init. Facebook): support for multiple serialization format

(including binary), support for multiple transport protocols, complete stack for
creating clients and servers

• 2009: Avro (Apache Hadoop)
• 2016: gRPC (Google, open source): messages serialized using Protocol Buffers

(binary), transported by HTTP/2, multiple features
• 2021: Cap’n Proto (now developed by Cloudflare): performances!

Object Request Broker
• Object oriented RPC: method calls on remote objects
• Most popular technologies:

• CORBA (Common Object Request Broker Architecture) (1991)
• OO-RPC for heterogeneous objects
• but also a set of services

• DCOM (Distributed Component Object Model) (1995), .Net Remoting
• Microsoft-equivalent to CORBA

• Java RMI (Remote Method Invocation) (1998)
• for Java objects

Application
Objects

CORBA
Domains

health

finance
e-

commerce

CORBA
Facilities

IHM
QoS

manag
ement

cryptography

CORBA Services

transaction

events

naming

ORB

specifics

Vertical frameworks
High-level horizontal frameworks

System functions

CORBA perspectives

• Limitations:
• local calls are treated the same as remote calls → inefficient
• complex standard
• difficult to have different versions of a service coexisting
• fewer and fewer experts

• Why hasn't it disappeared?
• still important legacy
• one of the few candidates (with DDS) when there are strong

real time constraints
Alcatel-Lucent network management system, communications
between military planes and ESA satellites, air control systems,
Siemens electrical power plant management system…

Service call

• 1srt generation Web Services:
• Requests and responses transported by SOAP messages,

usually on top of HTTP
• 4 patterns supported by WSDL:

• Request - response
• One way request
• Notification
• Request - response

• WS-*: myriad of specifications to complete the messaging
service

• Web service in a REST architecture:
• URI-addressed resources
• Requests and responses typically carried over HTTP,

exploiting the semantics of HTTP methods

Message Oriented
Middleware

Message Oriented Middleware

• Structure allowing one or more sources to transmit
messages asynchronously to one or more destinations

• No need to be connected simultaneously
• Not need to know the source / the destination

htt
ps

:/
/w

w
w

.o
re

ill
y.

co
m

/li
br

ar
y/

vi
ew

/e
nt

er
pr

ise
-s

er
vi

ce
-b

us
/0

59
60

06
75

6/
ch

05
.h

tm
l

Optional Features
• Strict FIFO (, guaranteed delivery of messages in the right order) or

hierarchical organization of messages, priority levels
• Point-to-point: a message read by a destination is no longer available

for the others, or Publish-Subscribe : all subscribers to the queue
receive a copy of each message (guaranteed delivery: at least once or
exactly once)

• message filtering
• encryption/decryption functions, compression/decompression,

format transformation
• message retention for offline consumers
• message expiration or validity date
• persistence (on physical media)
• reliability (Ack from MOM to sender and Ack from receiver to MOM)
• transactions
• ...

Evolution of MOMs
• 95-2010: Earlier versions

• 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
• 1994: TIBCO Rendezvous: high performance
• 1996: Microsoft MSMQ, part of Microsoft Windows Server platform
• 1998: Oracle MQ, now open source
• 1999: FioranoMQ: HP for trading and finance
• 2004: Apache ActiveMQ (open-source, java-based)
• 2007: RabbitMQ (open-source, Erlang-based)

• 2010: Additional features:
• 2011: Kafka: HA, replicate…

• 2010’s: Integration with cloud technologies:
• 2011: Amazon Simple QS
• 2015: Google Cloud Pub/Sub
• 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud

services
• 2018: Azure Service Bus
• 2019: CloudAMQP (based on RabbitMQ): automatic scaling

Middleware -
MOM vs RPC

htt
ps

:/
/b

lo
gs

.m
ul

es
oft

.c
om

/d
ev

-g
ui

de
s/

ho
w

-t
o-

tu
to

ria
ls/

w
hy

-m
es

sa
gi

ng
-q

ue
ue

s-
su

ck
/

RPC MOM

Métaphore Appel téléphonique Bureau de poste

Nature de l’appel Synchrone (bloquant) : le client attend la
réponse

Asynchrone (non bloquant) : le client peut
continuer

Séquençage Client/Serveur Ordre strict : le serveur doit être
disponible avant l’appel

Pas d’ordre fixe : messages stockés en file
d’attente

Communication Directe entre le client et le serveur Via une file de messages intermédiaires

Équilibrage de charge Intégré au framework (gRPC) ou
nécessite un outil externe

Automatique via la distribution dans les
queues

Tolérance aux pannes Faible : une panne bloque le client ou
requiert un retry manuel

Forte : les messages restent dans la queue

Filtrage des messages Non pris en charge Facile à mettre en place

Performance Rapide mais bloquant Moins rapide (à cause du passage par une
queue intermédiaire)

Gestion des transactions Complexe : nécessite un protocole
comme 2PC

Plus simple

Fonctionnement
aynchrone

Nécessite une gestion plus ou moins
complexe de threads

Natif

Overview

Aspect Monolith 2-tier 3-tier Microservices
Definition Single codebase

integrating all
responsibilities

Client handles
logic/UI, server
handles data

Separation into
presentation,
business logic,
and data

Independent
services each
handling a
specific
responsibility

Coupling Strong Moderate Loose (per layer) Very loose (per
service)

Scalability Hard (global
redeployment)

Server is
bottleneck

Layer-wise
scalability
possible

Individual
services scale
independently

Complexity Simple initially,
grows with code
size

Medium
(network + data
layer)

Higher (requires
coordination)

High
(orchestration,
observability...)

Deployment One-step
deployment

Centralized (DB
server + client
update)

Deploy per layer Deploy per
service

Maintenance Hard when the
code grows

Easier DB
maintenance

Moderate Easier (dedicated
team per service)

Aspect Monolith 2-tier 3-tier Microservices
Maintenance Hard when the

code grows
Easier DB
maintenance

Moderate Easier (dedicated
team per service)

Technologies Often a single
stack

Heterogeneous
between client
and server

Each layer may
use optimal stack

Freedom to
choose the best
tech per service

Fault Tolerance One crash →
total failure

Server crash =
whole app down

Better fault
isolation

Very good
(service isolation
+ redundancy)

Cloud
Compatibility

Poor (stateful,
tight coupling)

Moderate Good Excellent (cloud-
native)

Security Basic (local) Better control at
server

Stronger control
possible

High granularity
in security
policies per
service

Mobility /
Remote Access

Poor (local) Somewhat
limited

Good with web-
based UI

Excellent (API-
based, device-
agnostic)

Aspect Monolith 2-tier 3-tier Microservices
Resource
Efficiency

Efficient locally,
but hard to scale

Better use of
centralized DB

Moderate
(centralized
logic/data)

May be heavy
(multiple
containers)

Data
Management

Local storage Central DB Central DB with
shared logic

Decentralized or
shared through
APIs

Testing Complex due to
tight coupling

Easy unit tests,
hard integration
tests

Easier per layer Unit tests easy,
integration tests
harder

Learning Curve Low Moderate Higher Steep (DevOps,
distributed
systems)

Initial Cost Low Low (except DB
server)

Higher (infra +
roles)

High
(orchestration
tools, CI/CD)

Use Case Small tools,
desktop apps

Database
management
systems

Enterprise-grade
apps, CMS

Large-scale
systems (Netflix,
Amazon)

Conclusion
• Separation of Concerns enables better modularity,

maintainability, and evolution of systems
• Application architectures evolved from monolithic and

single-tier setups to multi-tier, SOA, and microservice-
based systems

• Each architecture presents trade-offs in terms of
performance, complexity, scalability, and fault tolerance

→ There is no one-size-fits-all architecture — the best
choice depends on context, constraints, and future goals.
• Looking Ahead:

• Emerging trends: Serverless, event-driven systems, function-
as-a-service, edge computing

• Ongoing challenge: balancing agility, cost, and resilience in an
increasingly distributed world

Transition challenges
1. Service Boundaries Are Hard to Define

Where do you split? By function? By domain? Wrong choices lead to tight coupling again.

2. Inter-Service Communication Replaces Function Calls
Simple local function calls become remote API calls (with all the failure modes that
implies).

3. Incremental Migration Is Tricky
• Strangling the monolith gradually is complex: both architectures must coexist for a while.
• You need backward compatibility, adapters, routing layers…

4. Team Reorganization
• You may need to align teams to services (Conway’s Law).
• Autonomy requires product ownership, not just feature delivery.

5. Tooling Maturity Required
• Microservices rely heavily on infrastructure: logging, tracing, service mesh, secrets

management…
• Without solid tools, you'll suffer from visibility gaps.

6. Increased Deployment Frequency
Great in theory! But your CI/CD, monitoring, alerting, and rollback mechanisms need to
scale with it.

	Application Architectures
	Layered structure
	Distribution onto « Tiers »
	Monolithic and Single-tier Applications
	Monolithic application
	Single-tier Application
	Modular Monolith
	1st architectural style, but still relevant
	Advantages of single-tier
	Disadvantages of monolithic applications
	Disadvantages of single-tier applications
	Mainframe Architectures
	Principle
	Advantages
	Performances
	Transactions
	Extensively used
	Obstacles to growth
	2-tier Architecture
	The origin: “1.5-tier” Architecture
	2-tier Architecture (2)
	2-tier Architecture limits
	Thank you, 2-tier Architecture
	Command and Query Responsibility Segregation (CQRS)
	3-tier to 5-tier Architectures
	3-tier
	Example: Classical Web Architecture
	4-tier, 5-tier
	Perspectives for multi-tier architecture
	SOA & Micro-services Architecture
	Siloed Architecture
	Problems with siloed architecture
	Microservices Architecture
	(Micro)Service Concept
	Advantages of the microservice architecture
	Slide 36
	Event-Driven Architecture (EDA)
	Actor Model
	Limits of Microservice Architecture
	Limits of Microservice Architecture (2)
	Slide 41
	Middleware
	Remote Procedure Call (RPC) and Object Request Broker (ORB)
	RPC
	(some) RPC implementations and frameworks
	Object Request Broker
	CORBA perspectives
	Service call
	Message Oriented Middleware
	Message Oriented Middleware (2)
	Optional Features
	Evolution of MOMs
	Middleware - MOM vs RPC
	Overview
	Slide 55
	Slide 56
	Slide 57
	Conclusion
	Transition challenges (2)

