IT SCALES.
| AM GETTING QUESTIONS | PRECICT THAT JUST KEEP
FROM CUSTOMERS ABOUT THE HOW MUCHP : THEY WILL REQUIRE REPEATING

SLIGHTLY MORE "MAP AND
SCALABI :
LABILITY OF QUR SOFTWARE DETAILS. REDUCE" UNTIL

HOW EASILY? THEY HANG

0 Not Invented Here . com Barnes * Southworth = Zugale

Architectural Elements for
Scalability, HA & FT

Scalability

* Ability to handle growth

POPPY THE IS THAT THE THINK OF THAT WHEN HOLD ON; I'M
SCALABILITY BEST YOU THINGS THAT SOFTWARE SCALES REWRITING THE
COULD COME GET BIGGER. TOO MUCH IT JUST THIRD ACT.
EXPLODES.
SCALA®BIL
==
L

E Not Invented Here.com Barnes * Southworth = Zugale

Scalability

* Ability to handle growth

* Can be measured as the ability to maintain latency in the face
of increased

* frequency of requests

* number of users

* volume of exchanged data

* distance between clients and servers

* Latency components:
* network latency
* server latency

* Elasticity:
* ability to dynamically adapt and scale resources up or down, based
on demand

— optimized resource utilization: maintain performance, and manage
costs

Mitigate network latency (under
increased load)

 (Data compression)

* (Network protocols optimization)
* Content Delivery Network

* Fog and Edge Computing

Content Delivery Network (CDN)

* Network of geographically distributed server replicas +
DNS to route the client to the closest mirror

e Additional benefits:

 Load balanced between servers (reduces server latency)
* Defense against DoS attacks
* Better fault tolerance .

e Better suited to static content

ning/cdn/what-is-a-cdn/

m/lear

https://www.cloudflare.co

Fog computing and edge computing

* |oT objects generate a * |dea: Leverage the
lot of data middle layers between

» Transmitting them to the cloud and objects
the cloud for processing

and storage is / 2\ Thousands
prObIemaﬁC CLOUD | Data Centers __ w %b
e Too much traffic AR -

* Too much latency roginodes

toan-bien-edge-computing-p3447.html

=
o

Billion

https:// ww.ntccloud.vn/die

Mitigate server latency (under
increased load)

* Cache
* Vertical scaling
* Horizontal scaling: replication + load balancing

Caches

* Principle:
* Keep the most frequently read data close to the user and
serve them without requesting the original server
* Objectives:
* Reduce latency
* Reduce servers load
 [increase fault tolerance]

* At different levels of &)
i &% @
the architecture &L;ap EJLC) e ; P
0
&Y ° W
L rowiece I | .wm_,.,_h.._.“.,,;lj; ‘L_;_*l Orlgin servers {4)

Client-side caching Servar-slde caching

ewojiad-uonedidde-qam/90/1T0Z/W 02 Ww.I03speo|//:sdny

-gom-T-}4ed-uoneziwpndo-aou

/8u1yded-I1anias

DB Caching

Cache Aside

Read Through

Write Through

Write Behind

https://blog.bluzelle.com/things-you-should-know-about-database-caching-2e8451656c2d

Strategies e

App

read data from cache

Cache

lication

1. If data exists in the cache, &

read data from cache
.

-

Application

Cache

- 2. cCache writes data to
database immedialely\

1. Application writes
a datatocache

Application

1. Application constantly

rd

Database

Database

(¢

WYY

: writes data to cache

Application

Cache Database
<" . 2.cCache writes data to
' database once in a while
>
Cache Database

Vertical scaling (scale up)

* Improve or replace the existing server: increase the
capacity of a single server by adding resources (more
powerful CPUs, larger amount of RAM. or exnanded
storage)

1CPU Dual-Core CPU
8 GB RAM 16 GB RAM
1TB SsSD 3 TB 55D

* a single node handles the entire workload, relies on
g multi-threading to process multiple concurrent
requests

udzero.c

Horizontal scaling (scale out)

* Add nodes to the infrastructure and distribute the
load among nodes

WOW,
THEY'RE JUST
AS SEXRY AS

LIKE YOU TO
MEET MY

Z Not Invented Here .com Barnes » Southworth * Zugale

Horizontal scaling (scale out)

* Add nodes to the infrastructure and distribute the
load among nodes

Pool of servers that
One server distribute the load

* Requirements:
* Compliant software architecture
* Load balancing mechanisms

Software architecture for horizontal

Microservices Cloud Architecture

scaling

* Distribute functions
across multiple nodes

% m i C rO - S e rVi Ce S + Microsgrvice 2 Microsgrvice 3 Microsgrvice 4 Microsgrvice 5
middleware

Compute/Database Compute/Database Compute/Database Compute/Database

...AND THEN AN OVERLOADED SERVER
DIVIDES INTO TWO SERVERS THROUGH
A PROCESS KNOWN AS "MITOSIS"!

* As load increases, o
duplicate nOdeS % g f) IS ACCURATE.
stateless services

© Not Invented Here .com

Replica IJ Replica 2 I Replica 4 I ReplicaN I

Scaling out

Load balancing

MyWebSite.com
i
How to balance the load between —— ¢ = :
1
R6p|icas of the group of servers t:\‘\, :
1
- |

https://docplayer.net/4134029-Software-as-a-service-saas-on-aws-business-and-architecture-overview.html

Hardware load balancer

uuuuu

* Solution in decline
* non-virtualizable = not deployable in a cloud
* not elastic = must be oversized
* must be duplicated for HA

* more expensive than a subscription to a cloud load
balancing service

DNS-based load balancing

=
()

=

Web Server

(e, 30.30.30.31)

|
|
I
A—
3
Web Server g
(e.g, 30.30.30.32) Client

|
|
|
v

=

L]

s

Web Server

je.., 30.30.30.33)

Authoritative Name Server
{Route)

DNS Query Resolution

Submits DNS Query
Forwards DNS Query
Answersthe DNS Query

Caches and Forwards the Response

Fulfillsthe Request ‘/.

/—5":’""5"‘!'"!"

* Does not take into account the load of the servers

* Low reactivity to failures

How_Does_It_Work.htm

https://docs.vdms.com/cdn/Content/Route/Administration/LB,

Solfware load balancer

* Probe-based decisions
* Smarter balancing than with DNS

 Layer 4 (based on network connections: HAProxy,
Nginx...), Layer 7 (based on HTTP-Headers, URL,
request content... Envoy, Traefik...)

y.com/fr/homepag

https://www.haprox

Horizontal / Vertical Scalability

_ Vertical (scale up) Horizontal (scale out)

increase in server power (CPU, multiplication of resources and
memory, 1/0) distribution of treatments
prinCiple I 111111]
sjjeenaunns wowge oo
Extensibility Limited Important
Elasticity None Yes
Influence on the None Redesign potentially needed
code to make it distributed and stateless
Configuration Easy Complex (LB, middleware...)
Often requires temporary
upgrades downtimes transparent
Un availability High Low

risk

The 3rd dimension of scaling

Axis Z — Scale by service
decomposition

“----------

Axis X — Scale by cloning
(service redundancy)

Data partitioning

* divide large databases into smaller datasets hosted on
different servers

A SINGLE DATABASE IS SPREAD OVER
MANY SERVERS. EACH STORES JUST
A TINY PIECE OF THE WHOLE.

INE GOT
YOUR BROWSING
HISTORY!

g

o Not Invented Hexre .com

Data partitioning

* divide large databases into smaller datasets hosted on
different servers

1 1D | Name
1 1 | Shaun
na 2 | Maria
11D | Name | Sex ” ik -
1 | Shaun | M <
{ID | Name | Sex 7 -’ MH"_E i ™ T Dl sex
111 Shaun| M e ':.J |
|2 | Mara | F < 1] m
1 James
14 TRay_ | M} N (1D Name [sex 2] F
: d—r T \J I] L , e
3 | James | M
Horizontal i 4 | Ray | M Vertical

Sharding =————=———— Sharding

SuipJeys-aseqelep-si-Jeym/SISMSUe/O1"SALRINPI MMM //:sd13y

Peer-to-Peer (P2P) Architecture

 Each node can both
* be a consumer of services offered by others
* provides services to others

* Variants :
* “pure": resource discovery mechanism

* hybrid: with a central server to connect (but then direct
exchanges between peers)

https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html

Advantages of P2P :
example of file sharing

* “natural” scale up
the more a file is requested, the more it is available

* robust

(apart from single point of failure if there is central
connection server)

* Segmented P2P file transfer (chunks) system:
* cancels the asymmetry of ADSL

* limits the effects of sudden disconnections from the
supplier

* afile can be globally available without anyone having the
whole file

P2P challenges

* Peer discovery
solutions:

e central node
* Distributed Hash Table

* Free-riders
e solution: incentive mechanisms

* Peer volatility

* Trust
* solution: redundancy and comparison

ff
|
|
i, —
/
L

Elasticity

ability to dynamically adapt and scale resources up or
down as needed

Load not always regular, nor
predictable

ating-the-world.html

* seasonal activity with * rapid growth, little
foreseeable peaks of visibility (marketing
activity (daily, monthly, effects and buzz...)

yearly...)

https://www.pcworld.com/article/3092969/gotta-catch-em-all-5-facts-that-prove-pokmon-go-is-e

o Hourly Conversion Rate Traffic Exp|ode5 o apkmirror.com

E O SimilarWeb

S APKMirror uploade

o Pokémon Go sur ses

o O

2 serveurs \

£

% Visits :

g from 600,000 on 5/7/1¢
5 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 to 4,000,000 on 6/7/16
z

& Sunday . Monday . Tuesday

S @ Wednesday (@ Thursday Friday 5

£ [sawrday o

S1zing

* Undersized
infrastructure:
* Cheap
* Cannot handle the load

e Qversized infrastructure:

* Absorb the load peaks
easily

* Expensive, lots of
wasted resources

* Difficult to predict how
large is large enough

r (1 s constant load)

Load Multiplie

Web Site Capacity Model in AWS vs. Traditional
Hosting

s Bl . // // // /
o nbo d raffic
P Y

35 '{ Wasted capacity /
/‘ 4 - y
y, 7

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of the Day

https://d1.awsstatic.com/whitepapers/aws-web-hosting-best-practices.pdf

Key elements for elasticity

* Dynamic scaling
Resources can be added or removed as needed without
interrupting the service
* Resource provisioning
Ability to allocate additional resources when demand
increases and de-allocate resources when demand decreases
* Automation

to scale resources without manual intervention, ensuring a
rapid and efficient response to changing workloads

Elasticity enabler technologies

* Virtualization of resources + automation

Virtual Machines

* Software emulation of a physical computer

Physical Maghing Virtual Machine

Application

s.com/virtualisation-et-storage.php

http://www.it-n

) vmware 8 herv MVM X PROXMOX &" S VirtualBox

Virtual Machines

* Enable vertical scaling: CPU, memory, and storage can
be adjusted for a VM...

* ... but not a lightweight process...

* Some horizontal scalability: buy more instances from
the cloud provider (laaS cloud model)

Infrastructure
as a Service
Applications Applications
Data Data
Runtime
Middleware

(0]

Middleware
0,

Virtualization Virtualization

Servers Servers

Managed by the user
Managed by the cloud provider

Storage Storage

Networking Networking

On-Premises

|_Applications Jii il Applications |
EEEE | B
|_Runtime QI Runtime |
| Middleware [t il Middleware |
| Virtualization Jii l Virtualization |
| servers NN servers |
| stoge Nl Storage |
| Networking Jli Jil Networking |

s/

-paas-saa

https://blog.dys.com/cloud-iaas

Containers

* Containers share the host operating system's kernel
but are isolated from each other, and encapsulate an
application and its dependencies

CONTAINER

App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Container Manager

Host OS

Infrastructure

& docker @ rkt

/

ntainers,

e.com/blog/vm-vs-co

https://www.backblaz

Containers

* Lighter than VMs, offer faster deployment, well-suited

for horizontal scaling

e CaaS cloud model

laaS

Infrastruciure-as-a-Servica

Application

Contaimar Tech.

Operating System

Storage

Metwork

CaaS

Containgr-as-a-Service

Drata

Application

Containar Tech.

Oiperating System

Wirtualzation

Slorage

Container orchestrator

* tool or platform designed to automate the
deployment, management, scaling, and operation of
containerized applications

* Key functionalities:
* Start, stop containers based on demand or on metrics

* Monitor the containers and restart or replace unresponsive
containers

* Connect containers to the network
* Logging (allow to track performance, diagnose issues...)

RED HAT

‘ ‘ -'._-. | E:)onlz iEelr\IPEt!;l r rlnF T

kubernetes MYy

Container orchestrator

* Enable horizontal scaling: you can easily scale
applications by adding or removing container
instances

* KaaS cloud model which enables end users to deploy
and manage Kubernetes clusters in on-demand and
self-service mode

IaaS K8s-aaS CaaS
Runtime
plane plane

VM Infra, Audit log, Nw. VM Infra, Audit log, Nw. VM Infra, Audit log, Nw.
Security, Storage encr Security, Storage encr Security, Storage encr

Function as a Service (FaaS)

* cloud model where individual stateless pieces of code
are executed in response to events or triggers, the
Faa$S platform dynamically allocates resources to
execute functions, and scales down when there's no

activity
* highly cost-effective for sporadic workloads
laaS Caas FaaS
““““““ e T

App1 App2 App1 App2 App1 App2

Runtime Runtime Runtime Runtime

< >Azure Functions
Google
Cloud
Functions

Resilience

e Fault Tolerance:

* continue operation, or at least gracefully degrade, even in
the presence of failures

* High Availability:

* minimize downtime, recover quickly from failures

* A common strategy: redundancy and replication

It's the intern, he didn't know how
to develop an AV, so he was manually
answering AP calls all day and all (It was never going 1o last. One If it were me

night. One day he just snapped... guy answering every AP call... | would have done
it differently...

I'd have oraanised some
redundancy, masbe with 3 interns,
to maoke sure there was some
rotation and a fallback...

That makes
sense. | thought =
B\ that service was i

oS | pretiy slow... &£

Redundancy

* Active-passive, active-active redundancies...

— \WRITE O
“— READ
REPLICATION \ ﬁ
0 0
o) /" \
i/ §p B
- || |
Actwe Passwe Slavesg E % Masters | =) |=| =
PAC theorem applies here...
(Impossible to ensure
simultaneously
* Partition tolerance,
* Availability and
* Geographical distribution * Consistency)

* Disk mirroring, redundant network connections,
redundant power supply, etc.

Mainframes clustering

System z (or LPAR)
z0S

channels

Control unit

506

System or LPAR

Coupling
facility

—

CF channels

System z (or LPAR)
z0S

channels

T

Control unit

30

ZOEE0E5-0

Service layer

Data layer

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_clusterPISys.htm

Example of HA&FT Architecture

MyWebSite.com
@ DNS

Auto Scaling group : Web Tier

Web Server

ELB: Web Tier

Web Server

Edge Caching

High Volume Static
Contentis edge
cached using
CloudFront

\Availability Zone#1

|
€l

| -
I Backups
I Amazon 53 used

I Availability Zone #n , for storing Static
“““““““““““ Objectsand

Backups

https://docplayer.net/4134029-Software-as-a-service-saas-on-aws-business-and-architecture-overview.html

Availability Zone 2 J

Concluding Thoughts

* Scaling calls for the seamless integration of both
architectural and technical solutions

* Requires a systemic approach: targeted optimization may
not yield global benefits

* Requires a multi-skilled team, with software design to
commercial solutions experience

	Slide 1
	Architectural Elements for Scalability, HA & FT
	Scalability
	Scalability (2)
	Mitigate network latency (under increased load)
	Content Delivery Network (CDN)
	Fog computing and edge computing
	Mitigate server latency (under increased load)
	Caches
	DB Caching Strategies
	Vertical scaling (scale up)
	Horizontal scaling (scale out)
	Horizontal scaling (scale out) (2)
	Software architecture for horizontal scaling
	Load balancing
	Hardware load balancer
	DNS-based load balancing
	Solfware load balancer
	Horizontal / Vertical Scalability
	The 3rd dimension of scaling
	Data partitioning
	Data partitioning (2)
	Peer-to-Peer (P2P) Architecture
	Advantages of P2P : example of file sharing
	P2P challenges
	Elasticity
	Load not always regular, nor predictable
	Sizing
	Key elements for elasticity
	Elasticity enabler technologies
	Virtual Machines
	Virtual Machines (2)
	Containers
	Containers (2)
	Container orchestrator
	Container orchestrator (2)
	Function as a Service (FaaS)
	Resilience
	Redundancy
	Mainframes clustering
	Example of HA&FT Architecture
	Concluding Thoughts

