Application Architectures

Layered structure

Division of the work of an application into 3 general
functions, which can evolve independently:

* Presentation:

user input and commands, and display

* Business logic:
business objects, rules, processing logic, processes

"

* Data: @
storage and logical access T

Distribution onto « Tiers »

SERVER

network

CLIENT

Distribution of the layers onto multiple machines

(“tiers”) communicating over a network

data data data data data data
management | | management | | management | | management | | management | | management
business business business business
logic logic logic logic
presentation
data data
management | | management
business business business business
logic logic logic logic
presentation presentation presentation presentation presentation presentation
thin client rich client > heavy client

Monolithic
and Single-
tier
Applications

Monolithic application

The 3 application layers are intimately interlaced in the
same code base

data

import java.io.*; management
public class ReadFromFile {
public static void main(Strin args) throws Exception {

File file = new File("C:\\Users\\galtier\\Desktop\\test.txt");
BufferedReader br = new BufferedReader(new FileReader(file));

String st;
while ((st = br.readLine()) !'= null)
System.out.println(st.toUpperCase()); — *| presentation
encrypt(file, "mySecretKey");
} business

} logic

Single-tier Application

Everything is local

Modular Monolith

well-defined modules with strict boundaries, deployed
as a single unit

data
management

business
logic
présentation

Ist architectural style, but still relevant

* The area of “pre- e Still lots of stand-alone
network” PCs (late 70’'s apps
- mid 80’s)

% TEXAS INSTRUMENTS
HOMECOMPUTER

TI-WRITER WO ROCESSOR

https://games.alphacoders.com/games/boxart/49494

https://play.google.com/store/apps/details?id=com.medibang.android.paint.tablet&hl=en_SG&gl=US

Advantages of single-tier

* Performance: O latency

» Safety by isolation

* Operate even in disconnected mode

 Simplicity (complexity reduced to the one of the code)

Code is complex to learn,
debug and evolve

Even a minor upgrade
requires a complete
reinstallation of the entire
application

A failure in one “layer”
renders the application
completely unusable

Inability to leverage
heterogeneous technologies

Not cloud-ready

Disadvantages of monolithic applications

NOT WANTED

down

X 3t Y
THE MON 0 L IT ﬂ
FOR - EXPENSIVE TO SGALE - DIFFICULT TO

MANTAIN - REWARDS - MORE TIME WITH
FAMILY - GOOD SLEEP NIGHTS

zp//:sdny

JIW02-PAJUBM-}OU/SD|I1}IE/WOI U0

Disadvantages of single-tier applic

* Performances: depend on the capabilities of the host

* Shared resources impossible, requires duplicates (waste of
resources)

No fault tolerance

* Nomadism is difficult:
* Access limited to physically logged-in users
* More difficult (if not impossible) to continue a task from a different

workstation
* Deployment is difficult:
* Requires actions on each terminal
* To be reinstalled if the underlying system needs to be reinstalled

* From the publisher's point of view:
* No fix possible without user action
* Application vulnerable to reverse engineering

a

ork.

e

nd

computer

https://encyclopedia2.thefreedictionary.com/standalone+

N
o
=
o O
£g
= 2
SE

<

Principle

“host” Architecture

* Supercomputer :

* ensures the data
persistence, processing,
and presentation

* proprietary hardware
and OS (IBM)
* passive clients :

thin client visualization
application

Terminal

https://www.researchgate.net/figure/Mainframe-Architecture_fig2_275405572

Terminal

Mainframe

=2

Terminal

]

Terminal

on_november_21st/

https://www.reddit.com/r/mainframe/comments/dq8pny/online_ibm_z_day_

Advantages

* Performances: handle a very large number of
simultaneous queries on very large databases

* Consistency, stability and long-term support
* Security
e Reliability (IBM Z customers: 99.9999% uptime)

RO b U St n eSS . https://www.ibmmainframeforum.com/mainframe-videos/topic10889.html

Performances

mfworklds.htm

s.zmainframe/zconc

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zo!

* Ability to process a very large number of simultaneous

gueries on very large databases

Batch or real time operation:

Batch job
. Application
* Batch back-office D put 1 program =™ Output
data Prucesses data to] E .Z-I,;. data

perform a particular task

Online (interactive) transaction

* Transactional Query ,

Reply

-

Application
I rogram
I prog
<+———— Accesses shared data on L8

behalf of an online user

* Used in banks, insurance companies, airlines...

HOE002-0

Transactions

* Program accessing and/or modifying persistent data

* A good transaction is
* Atomic
* Consistent
* |solated
* Durable

* Transactional monitor ("TP monitor")
Schedules transactions executed in parallel
* Multiplexing of requests on system resources
* Transaction management (respect of ACID properties)

Server
Reply
Transaction Reques
Requests
Request
apgllifa:?ion _ () TP monitor | "1 Server @
< & —

Reply

Repl
Reply Server 4@

D

981512867 /8y SWa)sAs-paingLiisip-ul-10}1UOW-d | -e-0-3|0J-3Y | /24nSy/3ou"a3e8ydieasarmmm//:sdiy

Extensively used

e 71% of the Fortune 500, 96 of the top 100 banks use
mainframes

* process 30 billion business transactions per day, 87%
of credit card transactions

* 250 billion lines of COBOL code, and 5 billion new lines
each year

* Growth Outlook:
* demand for HPC
* increase in the number of banking transactions
* development of blockchain

Obstacles to growth

* Proprietary solutions
* Huge investment

W
N
N
N
N

https://www.astadia.com/blog/break-free-from-your-z13-mainframe

* but no more than a
(https://planetmainfrasmg.cr;\n{%glxgtcmm-mainframe-the-most-

powerful-and-cost-effective-computing-platform-for-business/

* Shortage of skilled
mainframe staff

* but Cobol is easy to learn

e Real alternatives +
migration experience

WE NEED COBOL
PROGRAMMERS FOR
OUR MAINFRAME
MILLENTUM PROBLEM,

S dms www.unitedmedia.com

IF YOU SEE ANYONE
WHO LOOKS LIKE

A COBOL PROGRAMMER,,
LET ME KNOW.

N[4AT © 1997 United Festurs Syndicate, Ine.

II!I Mainframe

ARE YOU A COBOL
PROGRAMMER T

MO, BUT T'M OFTEN
TOLD T LOOK LIKE

Azure A

Apps
COBOL, PL/I, Assembler, Natural

Apps
COBOL, PL/I

System management
tools

Print/output mgmt
(CA-SAR, SPOOL)

Scheduling
(TWS-OPC)

Security
(RACF)

Monitoring

Transaction

Transaction

manager manager system
CICS IMS TPM emulator
Batch Batch system
JCL JES JCL

Data migration

IMS, VSAM, Db2,
SEQ ADABAS

Data migration

@
o=

Azure SQL IMS, VSAM,
Database SEQ

System management
tools

Print/output mgmt
(SQL Server Reporting
Services, LRS)

Scheduling
(Azure Scheduler,
Tivoli)

Security
(Azure Active
Directory)

Monitoring

z/OS or Linux

Red Hat, SUSE, Windows Server

ltecture

2-tier
Arch

p
i~
o
=
<
e
<
i,
2
i
g
=

Client Applications

/24N303)1YdJe-131}-931Y}-PUE-I31}-0M]-US3M]S]-20UISHIP-SI-}EUYM/WOI'SSE[IBULSDIDIEMYOS MMM //:SdNY

The origin: “1.5-tier” Architecture

* Development of LANs

workstations / heavy clients

presentation

business logic

l l ’ N E data
i i i management
local network
data
file server

(shared data storage,
but data management service reduced to tree-like organization of files)

* Advantages: information sharing:
* better communication
* requires less resources

2-tier Architecture

presentation data

business logic management
-

DBMS

* Central database server

* Manages physical I/0 and provides logical data
manipulation

* |Integrity control
* Secure, optimized, transactional access

* Data handling is decoupled from its representation on
disk, closer to the application logic

2-tier Architecture limits

* identical problems to single-tier:
Not tolerant to client or server failures, updates require
user’s action...
* excessive use of stored procedures:
* breaks the principle of single responsibility
* complex to maintain
* adherence with the physical model

* performance :
Server and access network = bottlenecks

Thank you, 2-tier Architecture

Microcomputing (previously confined to office automation) has taken on
a growing rolein IS

The DBMS offer has grown, SQL has become widespread

Has triggered the evolution towards more flexible architectural
proposals

Still relevant for simple applications

O 2 S = n

: wn o 9 (O]

3 o & by z 75 3%

o) N > = n T wv o T

S 5 @ p 2 S £ 9

© c s O g =gl %) £ 9

[(o) © N % o o o N Q

B = S % S 3 3o oo

© o % S a — S q>) 2 g

2 = g 52 § 58 5%

Data stored in Flat files are shared across Emergence of client-server
proprietary DB on networks and managed model using relational
mainframes manually DBMS

F & & & & &§ & & & & 9§
N N N N N N N N N N N

Command and Query Responsibility
Segregation (CQRS)

* Separation of reads and writes.
* Often combined with Event Sourcing.
* Improves scalability and performance.

N

Command Service

> Command Model

| 4

Query Service

Storage

Sync

Presentation Layer

Business Logic Layer

3

Data Access Layer \ 3-tier to 5-tier
(M sy’ \rChitectures

Sourcr

3-tier

Client/Presentation Server/Application Database/
Layer Layer Data Layer
. : . data
presentation business logic
man agement

Example:
Classical Web Architecture

Users

a a & a a C) & a & Software Technologies

Client-side Programming:

Ajax, Java Applets, Adobe Flex,
JSP/ASPIPHP, Java Script

| Model Forms & Graph Results
| Interface Scripts Tools Analysis

Q §

[Logic Tier ; Analysis
| E] b J & P Simulation Server-side Programming:
ol Farameler Estimation

Sensiviy Arayis Servlets, JSP/PHPIASP, CGl,

|
7 '
| R_, @ | Python, Perl
I Data Hﬂl"ldlll'tg | Webservers:
Storage "Iu’lsusllz:atmn |
|

Apache Tomcat

Retrigval Graph Layout

Conversion Central Server Interactivity Apache HTTP
+ XML/SQL

I Data Tier Databases:

MySQL, Oracl
Database, Data Y s

Warehouse and
External Data Sources

Data Formats:

|
|
| XML, SBML, OWL, SQL

sonewlojulolg ui sSuyalig - g00¢ 490320 - swialsAs [eaidojolq Jo sjppow dyaup| SuisAjeue pue SuiSeuew ‘8uip|ing Joj suonedijdde paseq-gqap

4-tier, 5-tier

Client Layer

Browser

Tablet .

(N
Oy
i

Presantation
Layer

Session
State

Managemerit

Businaess
Layer

o '

-

Application
Logic

Processing

Business
Web Modal
Service
- s o s o e
% \
V%
presentation business logic

Integration
Layer

e

Data Accass

Massagmg

iy
(it
5

Sarvice
Integration

Data
Layer

{0

Database

Dealivary
System

N

data management

https://www.ajboggs.com/our-experiences/health-information-technology/sisonline-supports-assessment/sisonline-system-architecture/sissa-sis5_big/

Perspectives for multi-tier architecture

* Corrects some of the problems of 2-tier architecture
* Maintainability, evolvability, deployment

* Very popular model for non-intensive systems

* But to be completed to meet the challenges of
reliability, performance, and scalability

SOA &

Micro-services
Architecture

Siloed Architecture

~ Check PR Check ~ Calculate
Customer Status S Pl Ustomer Status e — = 1ppIng L harges B

w Determine Product |8 = Determine Product |
Avalabiity L Availability

erify [Verify
l._....tr_ur'n-r Credit el Customer Credit

Grider Status

] R o .- -': W RS R iy

TN NN l‘ii |

0
h%rﬁletmg FII'ELI'I-E-E anrehouse LSINEss e
System E.y*stem Syst-n:rm System Mgmt. System Linit Par

https://www.slideshare.net/imcinstitute/service-oriented-architecture-soa-15-introduction-to-soa

Problems with siloed architecture

* Early 2000s: growing need for interoperability in
enterprise systems.

* Problem: isolated business applications, hard to
integrate.

* Waste of resources

* Complex maintenance

* Lack of data sharing and consistency

e Complexity of IAM (ldentity and Access Management)
* Difficult to scale up

Microservices Architecture

= .mE Composed |
- Business
Instaliation Scheduling Process Customer Order Bill Presentment/Payment Processes .
Check Check Check Check Creat Eieania:
E »
o

M L3 B B9 B4 B BT

Custom AS400 ﬂracle Red Frairie Hnuther External
Marketing Sales Flll-ill'll:.‘-il Viarehouse Trading

System System E]':l-tlm System Mgmt System “onit partner

(Micro)Service Concept

 Black box performing 1 specific task (business or
technical function)

e Can be used via an API (= contract between the
customer and the supplier)

 Can call on other services

* Designed to be duplicated — stateless:
* No application state
* Or client-specific state provided in the request
* Or state on external storage shared with other services

Advantages of the microservice
architecture

* Reuse

* Scaling and fault tolerance thanks to easy duplication (= “n-
tier”)

* Fault isolation
* Independent development and deployment

* Ability to use the most appropriate technology for each
module

* Small development teams

DILBERT

BY SCOTT ADAMS

OF MEETINGS.

THE JEFF BEZOS RULE

= =
[L-JE RE GOING TO USE

Fomon e

IF I APPLY
ZEMO'S PARADOX
TO THE SLICE SIZE,
CAN T HAVE TNFINITE
ATTENDEES?

BEZOS SANYS YOU
SHOULD NEVER HAVE A
MEETING THAT IS S0

BIG YOU CAM'T FEED
EVERYONE WITH TLWO

AMD WHAT DOES
IT MEAN TO "FEED”
EVERYOMEF DO THEY
MEED TO BE TOTALLY

[5TOP BEING

=1

: I CAN EAT TWO
PIZZAS BY MYSELF.

ENGINEERS!

HOWJ DO YOU COUNT
THE PFEOPLE LWIHO HAVE
GLUTEN SENSITIVITY
AMD DOMT EAT PIZZAT

D S0 SoodE Adama IS T b Usvesrnyl Liniea

HOW DOES
CHEESE BREAD
FIT INTO THIS?

Event-Driven Architecture (EDA)

* Components communicate via events
Kafka, RabbitMQ...

* Commonly used in asynchronous microservices

Sinks

Sources

vent Data

Actor Model

* Each "actor" is an isolated entity that reacts to
messages posted in its own queue

Akka, Erlang/Elixir... /X\
Actor

Actor

Limits of Microservice Architecture

* Operational Complexity

MIcROSERVICES

A
| ig

MoNSTER [
=

* Distributed System Challenges
Network latency, service discovery, timeouts,
debugging...

HARD ‘BAD' EnGWEER

18 HEAD MoNSTER

iV

* Data Consistency Management

O

Limits of Microservice Architecture

* End-to-end Testing Difficulty
&

N

* Higher Resource Consumption {:@_}ﬂ
e Steeper Learning Curve /

Mfddleware

Middleware

Solutions to ease the connection between services:

* Locally:
* [nter-process communication: system, MPI, Unix Domain
Socket, etc
* Across the network:
* Synchronous Remote Procedure Call
* Asynchronous Messages

https://www.ibm.com/support/knowledgecenter/ssw_aix_72/commprogramming/rpc_mod.html

apparent flow
call
: Manager
Client return Procedures
h
call return return call
Interface
k.

Client Stub Server Stub
call return return l call
RPC Runtime '[RPC Runtime

Library Library
network
messages

Client process Server process

Remote Procedure Call Flow

Remote Procedure Call (RPC)
and
Object Request Broker (ORB)

RPC

* [asynchronous] loose coupling between client and server

client

server

instruction 1i

v
» r = fac(x, vy application lay¢g
v
instruction

—

;

fac(int a, int b) {
temp = a
for 1 from 1 to b
temp = temp * a
return temp

} \—¢

déballe le emballe le nom reconstitye I'appel emballe le
résultat de la méthode et avec le nom de la résultat
ses parameétres méthode et ses
paranmeétres
l A
réceptionne envoie recoit la[requéte envoie
J OS and hardware layer
. send hetwor receive
recelive < send

* The proxies handle:
* network calls

* format transformations between the client and server

(some) RPC implementations and
frameworks

* Rise:
e 80’s: Sun RPC (as part of NFS protocol): simple, limited to Unix systems

* 90’s: DCE RPC (Open Software Foundation): platform-independent, rich set of
functionalities (transactions, encryption...), more complex to use

e Fall:

* 94: RPCis “fundamentally flawed”: communication latency, partial failures and
concurrency issues...

* Message passing alternatives

* Rise, again: more features, more supported formats/transports...
* 98: XML-RPC: data are XML-formatted and exchanged over HTTP -> SOAP
e 2005: JSON-RPC, lightweight

e 2007: Apache Thrift (init. Facebook): support for multiple serialization format
(including binary), support for multiple transport protocols, complete stack for
creating clients and servers

e 2009: Avro (Apache Hadoop)

* 2016: gRPC (Google, open source): messages serialized using Protocol Buffers
(binary), transported by HTTP/2, multiple features

e 2021: Cap’n Proto (now developed by Cloudflare): performances!

Object Request Broker

* Object oriented RPC: method calls on remote objects

* Most popular technologies:
* CORBA (Common Object Request Broker Architecture) (1991)
* OO-RPC for heterogeneous objects

* butalso a set of services High-level horizontal frameworks _
Vertical frameworks System functions

(6(0]2{27. CORBA CORBA Services
Domains Facilities

Application
Objects

‘@

cryptography
_ QoS
e- manag
commerce ement

ORB

 DCOM (Distributed Component Object Model) (1995), .Net Remoting
* Microsoft-equivalent to CORBA

e Java RMI (Remote Method Invocation) (1998)
* for Java objects

CORBA perspectives

* Limitations:
* local calls are treated the same as remote calls = inefficient
* complex standard
* difficult to have different versions of a service coexisting
* fewer and fewer experts

* Why hasn't it disappeared?
* still important legacy
e one of the few candidates (with DDS) when there are strong

real time constraints

Alcatel-Lucent network management system, communications
between military planes and ESA satellites, air control systems,
Siemens electrical power plant management system...

Service call

* 1srt generation Web Services:

* Requests and responses transported by SOAP messages,
usually on top of HTTP

* 4 patterns supported by WSDL:
* Request - response
* One way request
* Notification
* Request - response

* WS-*: myriad of specifications to complete the messaging
service

* Web service in a REST architecture:

e URI-addressed resources

* Requests and responses typically carried over HTTP,
exploiting the semantics of HTTP methods

n
U

Client

~[Msg1

- T

ol

Message Oriented

Send

Destination

Middleware

i * I -

Client

J1-[]-
U u

Message Oriented Middleware

* Structure allowing one or more sources to transmit
messages asynchronously to one or more destinations
* No need to be connected simultaneously
* Not need to know the source / the destination

rvice-bus/0596006756/ch05.html

Message based
communications
Application A Application B
E Messaging APl Messaging APl
; - - Messaging Message -
Messaging dhient | system o Messaging client
Message

https://www.oreilly.com/libi

Message oriented middleware

Optional Features

* Strict FIFO (, guaranteed delivery of messages in the right order) or
hierarchical organization of messages, priority levels

* Point-to-point: a message read by a destination is no longer available for the
others, or Publish-Subscribe : all subscribers to the queue receive a copy of
each message (guaranteed delivery: at least once or exactly once)

* message filtering

* encryption/decryption functions, compression/decompression, format
transformation

* message retention for offline consumers

* message expiration or validity date

e persistence (on physical media)

* reliability (Ack from MOM to sender and Ack from receiver to MOM)

* transactions

Evolution of MOMSs

* 95-2010: Earlier versions
* 1994: IBM MQSeries (now IBM MQ): pioneer commercial MOM
* 1994: TIBCO Rendezvous: high performance
e 1996: Microsoft MSMQ, part of Microsoft Windows Server platform
e 1998: Oracle MQ, now open source
* 1999: FioranoMQ: HP for trading and finance
* 2004: Apache ActiveMQ (open-source, java-based)
* 2007: RabbitMQ (open-source, Erlang-based)

e 2010: Additional features:
e 2011: Kafka: HA, replicate...

* 2010’s: Integration with cloud technologies:
* 2011: Amazon Simple QS
e 2015: Google Cloud Pub/Sub

e 2018: IBM Event Stream (based on Kafka), easily integrates with IBM cloud
services

* 2018: Azure Service Bus
* 2019: CloudAMQP (based on RabbitMQ): automatic scaling

Middleware -
MOM vs RPC

Métaphore

Nature de I'appel
Séquencage Client/Serveur

Communication

Equilibrage de charge
Tolérance aux pannes

Filtrage des messages

Performance
Gestion des transactions

Fonctionnement
aynchrone

Appel téléphonique

Synchrone (bloquant) : le client attend la

réponse

Ordre strict : le serveur doit étre
disponible avant I'appel

Directe entre le client et le serveur

Intégré au framework (gRPC) ou
nécessite un outil externe

Faible : une panne bloque le client ou
requiert un retry manuel

Non pris en charge

Rapide mais bloquant

Complexe : nécessite un protocole
comme 2PC

Nécessite une gestion plus ou moins
complexe de threads

And then he said that

he respected my preference
. for message queues, but he just
lb. wanted to move on.

Bureau de poste

Asynchrone (non bloquant) : le client peut
continuer

Pas d'ordre fixe : messages stockés en file
d’attente

Via une file de messages intermédiaires

Automatique via la distribution dans les
queues

Forte : les messages restent dans la queue

Facile a mettre en place

Moins rapide (a cause du passage par une
queue intermédiaire)

Plus simple

Natif

https://blogs.mulesoft.com/dev-guides/how-to-

Overview

- .

= d"cd : v :ﬂ%m
U .

3 =I=[=EE =i =
Z a5 . B
o = : 00
o Mainframe PCs & ; Web ; Cloud

5 Servers

:

=

o

=

v

""'H'*

o

= :

< Maonaolithic " Client Server M-Tier = Service Oriented

Definition

Coupling

Scalability

Complexity

Deployment

Maintenance

App
“

Single codebase
integrating all
responsibilities

Strong

Hard (global
redeployment)

Simple initially,
grows with code
Size

One-step
deployment

Hard when the
code grows

Client

Client handles
logic/Ul, server
handles data

Moderate

Server is
bottleneck

Medium
(network + data
layer)

Centralized (DB
server + client
update)

Easier DB
maintenance

w

Separation into
presentation,
business logic,
and data

Loose (per layer)

Layer-wise
scalability
possible

Higher (requires
coordination)

Deploy per layer

Moderate

Independent
services each
handling a
specific
responsibility
Very loose (per
service)

Individual
services scale
independently
High
(orchestration,
observability...)

Deploy per
service

Easier (dedicated
team per service)

Maintenance

Technologies

Fault Tolerance

Cloud
Compatibility

Security

Mobility /
Remote Access

App
“

Hard when the
code grows

Often a single
stack

One crash =
total failure

Poor (stateful,

tight coupling)

Basic (local)

Poor (local)

Client

Easier DB
maintenance

Heterogeneous
between client
and server

Server crash =
whole app down

Moderate

Better control at
server

Somewhat
limited

Moderate

Each layer may
use optimal stack

Better fault
isolation

Good

Stronger control
possible

Good with web-
based Ul

Easier (dedicated
team per service)

Freedom to
choose the best
tech per service

Very good
(service isolation
+ redundancy)

Excellent (cloud-
native)

High granularity
in security
policies per
service

Excellent (API-
based, device-
agnostic)

Resource
Efficiency

Data

Management

Testing

Learning Curve

Initial Cost

Use Case

App
“

Efficient locally,
but hard to scale

Local storage
Complex due to
tight coupling
Low

Low

Small tools,
desktop apps

Client

Better use of
centralized DB

Central DB

Easy unit tests,
hard integration
tests

Moderate

Low (except DB
server)

Database
management
systems

ul

Moderate
(centralized
logic/data)

Central DB with
shared logic

Easier per layer

Higher

Higher (infra +
roles)

Enterprise-grade
apps, CMS

May be heavy
(multiple
containers)

Decentralized or
shared through
APls

Unit tests easy,
integration tests
harder

Steep (DevOps,
distributed
systems)

High
(orchestration
tools, Cl/CD)

Large-scale
systems (Netflix,
Amazon)

Conclusion

* Separation of Concerns enables better modularity,
maintainability, and evolution of systems

* Application architectures evolved from monolithic and

single-tier setups to multi-tier, SOA, and microservice-based
systems

* Each architecture presents trade-offs in terms of
performance, complexity, scalability, and fault tolerance

— There is no one-size-fits-all architecture — the best choice
depends on context, constraints, and future goals.

* Looking Ahead:

* Trends: Serverless, event-driven systems, function-as-a-service,
edge computing...

* Ongoing challenge: balancing agility, cost, and resilience in an
increasingly distributed world

Transition challenges

Migrating isn’t just a technical refactoring — it’s an
organizational and cultural shift.

— See Use Cases

Transition technical challenges

1. Service Boundaries Are Hard to Define
Where do you split? By function? By domain? Wrong choices lead to tight coupling
again.

2. Inter-Service Communication Replaces Function Calls
Simple local function calls become remote API calls (with all the failure modes that
implies).

3. Incremental Migration Is Tricky

* Strangling the monolith gradually is complex: both architectures must coexist for a
while.

* You need backward compatibility, adapters, routing layers...

4. Team Reorganization
* You may need to align teams to services (Conway’s Law).
* Autonomy requires product ownership, not just feature delivery.

5. Tooling Maturity Required

* Microservices rely heavily on infrastructure: logging, tracing, service mesh, secrets
management...

* Without solid tools, you'll suffer from visibility gaps.

6. Increased Deployment Frequency

Great in theory! But your CI/CD, monitoring, alerting, and rollback mechanisms need to
scale with it.

	Application Architectures
	Layered structure
	Distribution onto « Tiers »
	Monolithic and Single-tier Applications
	Monolithic application
	Single-tier Application
	Modular Monolith
	1st architectural style, but still relevant
	Advantages of single-tier
	Disadvantages of monolithic applications
	Disadvantages of single-tier applications
	Mainframe Architectures
	Principle
	Advantages
	Performances
	Transactions
	Extensively used
	Obstacles to growth
	2-tier Architecture
	The origin: “1.5-tier” Architecture
	2-tier Architecture (2)
	2-tier Architecture limits
	Thank you, 2-tier Architecture
	Command and Query Responsibility Segregation (CQRS)
	3-tier to 5-tier Architectures
	3-tier
	Example: Classical Web Architecture
	4-tier, 5-tier
	Perspectives for multi-tier architecture
	SOA & Micro-services Architecture
	Siloed Architecture
	Problems with siloed architecture
	Microservices Architecture
	(Micro)Service Concept
	Advantages of the microservice architecture
	Slide 36
	Event-Driven Architecture (EDA)
	Actor Model
	Limits of Microservice Architecture
	Limits of Microservice Architecture (2)
	Slide 41
	Middleware
	Remote Procedure Call (RPC) and Object Request Broker (ORB)
	RPC
	(some) RPC implementations and frameworks
	Object Request Broker
	CORBA perspectives
	Service call
	Message Oriented Middleware
	Message Oriented Middleware (2)
	Optional Features
	Evolution of MOMs
	Middleware - MOM vs RPC
	Overview
	Slide 55
	Slide 56
	Slide 57
	Conclusion
	Transition challenges
	Transition technical challenges

