From c1356bffa3e2d1f87026024045d1fb9827622241 Mon Sep 17 00:00:00 2001 From: Yandi <yandirzm@gmail.com> Date: Sun, 22 Jan 2023 18:41:45 +0100 Subject: [PATCH] [Normalizing the input] --- create_submission.py | 1 - dataloader.py | 1 + main.py | 15 ++++++++++----- train.py | 17 ++++++++++------- 4 files changed, 21 insertions(+), 13 deletions(-) diff --git a/create_submission.py b/create_submission.py index 126caf8..935934f 100644 --- a/create_submission.py +++ b/create_submission.py @@ -71,7 +71,6 @@ def create_submission(model, transform, device): with torch.no_grad(): for X in tqdm.tqdm(test_loader): X = X.to(device) - print(X.shape) ############################################# # This is where you inject your knowledge # About your model diff --git a/dataloader.py b/dataloader.py index 0f131ea..9c9df4d 100644 --- a/dataloader.py +++ b/dataloader.py @@ -121,6 +121,7 @@ def get_dataloaders( target_transform=valid_target_transform, num_days=num_days, ) + # The sum of the two folds are not expected to be exactly of # max_num_samples logging.info(f" - The train fold has {len(train_dataset)} samples") diff --git a/main.py b/main.py index a759e7e..9b2efb8 100644 --- a/main.py +++ b/main.py @@ -55,9 +55,9 @@ if __name__ == "__main__": #network = network.build_network(cfg, 18) network = nn.Sequential( - nn.Linear(14,8,False), + nn.Linear(14,35,True), nn.ReLU(), - nn.Linear(8, 35, True), + nn.Linear(35, 35, True), nn.ReLU(), nn.Linear(35,35,True), nn.ReLU(), @@ -67,18 +67,23 @@ if __name__ == "__main__": nn.ReLU(), nn.Linear(35,35,True), nn.ReLU(), + nn.Linear(35,35, True), + nn.ReLU(), nn.Linear(35,1, True), nn.ReLU() ) + """ def init_xavier(module): if type(module)==nn.Linear: - nn.init.xavier_uniform_(module.weight) + nn.init.constant_(module.weight,1) + """ + network = network.to(device) """ - for param in list(network.parameters()): - param = 1 + for layer in network: + layer.apply(init_xavier) """ f_loss = losses.RMSLELoss() diff --git a/train.py b/train.py index ef930e9..cb594f8 100644 --- a/train.py +++ b/train.py @@ -1,6 +1,7 @@ from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np +import torch def train(model, loader, f_loss, optimizer, device): """ @@ -35,17 +36,19 @@ def train(model, loader, f_loss, optimizer, device): optimizer.zero_grad() loss.backward() + + #torch.nn.utils.clip_grad_norm(model.parameters(), 50) - #Y = list(model.parameters())[0].grad.cpu().tolist() + Y = list(model.parameters())[0].grad.cpu().tolist() - #gradients.append(np.mean(Y)) - #tar.append(np.mean(outputs.cpu().tolist())) - #out.append(np.mean(targets.cpu().tolist())) + gradients.append(np.mean(Y)) + tar.append(np.mean(outputs.cpu().tolist())) + out.append(np.mean(targets.cpu().tolist())) optimizer.step() - #visualize_gradients(gradients) - #visualize_gradients(tar) - #visualize_gradients(out) + visualize_gradients(gradients) + visualize_gradients(tar) + visualize_gradients(out) def visualize_gradients(gradients): print(gradients) -- GitLab