From ec5f4bfad2cab493527c524c5c66278765b06bba Mon Sep 17 00:00:00 2001 From: Yandi <yandirzm@gmail.com> Date: Sun, 22 Jan 2023 12:51:27 +0100 Subject: [PATCH] [Dev] Printing, removing prints --- train.py | 44 +++++++++++++++++++++++++++++++------------- 1 file changed, 31 insertions(+), 13 deletions(-) diff --git a/train.py b/train.py index 489959f..ef930e9 100644 --- a/train.py +++ b/train.py @@ -1,4 +1,6 @@ from tqdm import tqdm +import matplotlib.pyplot as plt +import numpy as np def train(model, loader, f_loss, optimizer, device): """ @@ -19,7 +21,9 @@ def train(model, loader, f_loss, optimizer, device): """ model.train() - + gradients = [] + out = [] + tar = [] for _, (inputs, targets) in tqdm(enumerate(loader), total = len(loader)): inputs, targets = inputs.to(device), targets.to(device) @@ -27,20 +31,34 @@ def train(model, loader, f_loss, optimizer, device): outputs = model(inputs) loss = f_loss(outputs, targets) - print("Loss") - print(loss) - - print("outputs") - print(outputs) - - print("targets") - print(targets) - # Backward and optimize optimizer.zero_grad() loss.backward() - print("GRads") - print(list(model.parameters())[0].grad) + + #Y = list(model.parameters())[0].grad.cpu().tolist() + + #gradients.append(np.mean(Y)) + #tar.append(np.mean(outputs.cpu().tolist())) + #out.append(np.mean(targets.cpu().tolist())) + + optimizer.step() + #visualize_gradients(gradients) + #visualize_gradients(tar) + #visualize_gradients(out) + +def visualize_gradients(gradients): + print(gradients) + import numpy as np + X = np.linspace(0,len(gradients),len(gradients)) + plt.scatter(X,gradients) + plt.show() - optimizer.step() \ No newline at end of file +if __name__=="__main__": + import numpy as np + Y = [[1,2,3],[2,4,8],[2,5,6], [8,9,10]] + X = np.linspace(0,len(Y),len(Y)) + for i,curve in enumerate(Y): + for point in curve : + plt.scatter(X[i],point) + plt.show() \ No newline at end of file -- GitLab