#Internal imports import dataloader import model import test from train import train import losses import optimizers import create_submission import utils #External imports import yaml import torch import wandb import logging import torch.optim import torch.nn as nn import os def optimizer(cfg, network): result = {"Adam" : torch.optim.Adam(network.parameters())} return result[cfg["Optimizer"]] if __name__ == "__main__": logging.basicConfig(filename='logs/main_unit_test.log', level=logging.INFO) config_file = open("config.yml") cfg = yaml.load(config_file) use_cuda = torch.cuda.is_available() trainpath = cfg["Dataset"]["_DEFAULT_TRAIN_FILEPATH"] num_days = int(cfg["Dataset"]["num_days"]) batch_size = int(cfg["Dataset"]["batch_size"]) num_workers = int(cfg["Dataset"]["num_workers"]) valid_ratio = float(cfg["Dataset"]["valid_ratio"]) max_num_samples = eval(cfg["Dataset"]["max_num_samples"]) epochs = int(cfg["Training"]["Epochs"]) log_freq = int(cfg["Wandb"]["log_freq"]) log_interval = int(cfg["Wandb"]["log_interval"]) wandb.init(entity = "wherephytoplankton", project = "Kaggle phytoplancton", config = {"batch_size": batch_size, "epochs": epochs}) approx_stats = cfg["ApproximativeStats"] print(approx_stats) if approx_stats: MEAN = eval(cfg["ApproximativeMean"]) STD = eval(cfg["ApproximativeSTD"]) MAX = eval(cfg["ApproximativeMaxi"]) MIN = eval(cfg["ApproximativeMini"]) else : MEAN, STD, MAX, MIN = get_stats_train_dataset(trainpath, num_days, batch_size, num_workers, use_cuda, valid_ratio, overwrite_index=True, max_num_samples=max_num_samples, train_transform=None, valid_transform=None ) train_loader, valid_loader = dataloader.get_dataloaders( trainpath, num_days, batch_size, num_workers, use_cuda, valid_ratio, overwrite_index = True, max_num_samples=max_num_samples, #train_transform = dataloader.transform_remove_space_time(), #valid_transform = dataloader.transform_remove_space_time() train_transform=dataloader.composite_transform(dataloader.transform_remove_space_time(), dataloader.transform_min_max_scaling(MIN, MAX)), valid_transform=dataloader.composite_transform(dataloader.transform_remove_space_time(), dataloader.transform_min_max_scaling(MIN, MAX)) ) if use_cuda : device = torch.device('cuda') else : device = toch.device('cpu') network = model.build_model(cfg, 14) network = network.to(device) model.initialize_model(cfg, network) f_loss = losses.RMSLELoss() optimizer = optimizer(cfg, network) logdir, raw_run_name = utils.create_unique_logpath(cfg["LogDir"], cfg["Model"]["Name"]) wandb.run.name = raw_run_name network_checkpoint = model.ModelCheckpoint(logdir + "/best_model.pt", network) wandb.watch(network, log_freq = log_freq) for t in range(cfg["Training"]["Epochs"]): torch.autograd.set_detect_anomaly(True) print("Epoch {}".format(t)) train(network, train_loader, f_loss, optimizer, device, log_interval) #print(list(network.parameters())[0].grad) val_loss = test.test(network, valid_loader, f_loss, device) network_checkpoint.update(val_loss) print(" Validation : Loss : {:.4f}".format(val_loss)) wandb.log({"val_loss": val_loss}) create_submission.create_submission(network, dataloader.composite_transform(dataloader.transform_remove_space_time(), dataloader.transform_min_max_scaling(MIN, MAX)), device) """ logdir = generate_unique_logpath(top_logdir, "linear") print("Logging to {}".format(logdir)) # -> Prints out Logging to ./logs/linear_1 if not os.path.exists(logdir): os.mkdir(logdir) """