import dataloader import model import test from train import train import yaml import losses import models if __name__ == "__main__": config_file = open("config.yml") cfg = yaml.load(config_file) use_cuda = torch.cuda.is_available() trainpath = cfg["Dataset"]["_DEFAULT_TRAIN_FILEPATH"] num_days = cfg["Dataset"]["num_days"] batch_size = cfg["Dataset"]["batch_size"] num_workers = cfg["Dataset"]["num_workers"] valid_ratio = cfg["Dataset"]["valid_ratio"] max_num_samples = cfg["Dataset"]["max_num_samples"] train_loader, valid_loader = dataloader.get_dataloaders( trainpath, num_days, batch_size, num_workers, use_cuda, valid_ratio, overwrite_index=True, max_num_samples=max_num_samples, ) if use_cuda : device = torch.device('cuda') else : device = toch.device('cpu') model = model.build_model(cfg, input_size) f_loss = losses.RMSLE.RMSLE() optimizer = models.choose_optimizer.optimizer(cfg) train(model = model, loader = train_loader, f_loss = f_loss, optimizer = optimizer, device = device) """ logdir = generate_unique_logpath(top_logdir, "linear") print("Logging to {}".format(logdir)) # -> Prints out Logging to ./logs/linear_1 if not os.path.exists(logdir): os.mkdir(logdir) """