import dataloader import model import test from train import train import yaml import losses import optimizers import torch import logging import torch.optim def optimizer(cfg, model): result = {"Adam" : torch.optim.Adam(model.parameters())} return result[cfg["Optimizer"]] if __name__ == "__main__": logging.basicConfig(filename='logs/main_unit_test.log', level=logging.INFO) config_file = open("config.yml") cfg = yaml.load(config_file) use_cuda = torch.cuda.is_available() trainpath = cfg["Dataset"]["_DEFAULT_TRAIN_FILEPATH"] num_days = int(cfg["Dataset"]["num_days"]) batch_size = int(cfg["Dataset"]["batch_size"]) num_workers = int(cfg["Dataset"]["num_workers"]) valid_ratio = float(cfg["Dataset"]["valid_ratio"]) max_num_samples = eval(cfg["Dataset"]["max_num_samples"]) train_loader, valid_loader = dataloader.get_dataloaders( trainpath, num_days, batch_size, num_workers, use_cuda, valid_ratio, overwrite_index=True, max_num_samples=max_num_samples, ) if use_cuda : device = torch.device('cuda') else : device = toch.device('cpu') model = model.build_model(cfg, 18) model = model.to(device) f_loss = losses.RMSLELoss() optimizer = optimizer(cfg, model) for t in range(cfg["Training"]["Epochs"]): print("Epoch {}".format(t)) train(model, train_loader, f_loss, optimizer, device) val_loss = test.test(model, valid_loader, f_loss, device) print(" Validation : Loss : {:.4f}".format(val_loss)) """ logdir = generate_unique_logpath(top_logdir, "linear") print("Logging to {}".format(logdir)) # -> Prints out Logging to ./logs/linear_1 if not os.path.exists(logdir): os.mkdir(logdir) """