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Lecture 3/9

Asymptotic distributions
and confidence intervals

Course objectives

» Take the asymptotic approach one step further,
introducing asymptotic distributions.

» Understand confidence intervals and learn how to construct
them (using asymptotic arguments if necessary)
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Lecture outline

1 — Convergence rate and asymptotic distribution
2 — Confidence regions and confidence intervals
3 — Standard exercises (with solutions)

4 — Appendices
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Recap: Mathematical framework

In this section:

» \We consider a statistical model
X
<&7%7 {]P)Q 9 9 € @}) 9

assumed (most of the time) to be parametric (© C RP).
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assumed (most of the time) to be parametric (© C RP).
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Recap: Mathematical framework

In this section:

» \We consider a statistical model
X
<i7%7 {]P)Q 9 ‘9 € @}) 9

assumed (most of the time) to be parametric (© C RP).

> X1, X, ... iid Py, defined on a common (2, .7, Py).

> We want to estimate a “quantity of interest™:
> either 6§ itself (we assume in this case that © C RP),
» or, more generally, n = g() € R9.

4/69



Lecture outline

1 — Convergence rate and asymptotic distribution
1.1 — Definitions and examples
1.2 — Theoretical tools
1.3 — Asymptotic efficiency



Lecture outline

1 — Convergence rate and asymptotic distribution
1.1 — Definitions and examples



Probability refresher: the Central Limit Theorem (CLT)

Theorem
Let

» a sequence (X,)nen+ of IID random vectors taking values
in R, with finite second order moments.

> u=E(X;) and ¥ = var(X;) € RI*9.

. v, d
Then : \/E (Xn — [L) m JV(O, Z),

= 1
with X, = - >y Xi the sample mean.
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Probability refresher: the Central Limit Theorem (CLT)

Theorem
Let

» a sequence (X,)nen+ of IID random vectors taking values
in R, with finite second order moments.

> u=E(X;) and ¥ = var(X;) € RI*9.

. 7 d
Then : \/E (Xn — [L) m JV(O, Z),

= 1
with X, = - >y Xi the sample mean.

= The sample mean X, is said to be
» an asymptotically Gaussian estimator of

- 1
> with convergence rate NG
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Example: component reliability

Recall that

> X X £(A), 6>0, and 7 =TFy(X)=1.

» #, = X, is obtained by ML and the method of moments.

w Direct application of the CLT: f( ) —> N (0 n )

n=20

Histograms of \/n (X, — 1) obtained from 10000 realizations of X,

6/69



Convergence rate
Let 7, = (X1, ..., Xp) be a consistent estimator of n = g(0).

Definition
If there exists a sequence (ap)nen+ of positive numbers such that:

» |im a, = oo,
n—o0

a d
> an (n —1n) > Z,
n—o0

» where Z is a non-degenerate* random variable (or vector),

A y 1
then ), converges to 7 at the rate -.
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Convergence rate
Let 7, = (X1, ..., Xp) be a consistent estimator of n = g(0).

Definition
If there exists a sequence (ap)nen+ of positive numbers such that:

» |im a, = oo,
n—o0

A d
> a, (nn - 77) > Z,
n—oo
» where Z is a non-degenerate* random variable (or vector),

N 1
then ), converges to 7 at the rate -.

*We say that Z is degenerate if:
» scalar case: 3c € R, Z=c as;
> vector case: Ja € RY\ {0}, Ic € R, }77, aZ"V =c as.

Remark. If Z has a second order moment, it can be shown that:

Z is non-degenerate iff its covariance matrix is invertible.
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Asymptotic normality

Let 7jn = 7n(X1, ..., X,) be a consistant estimator of n = g(6).

Definition
If there exists

» a sequence (a,)nen+ of positive numbers s.t. lim a, = oo,
n—o00

» a symmetric positive-definite matrix (),
such that .
an (o —n) —— A (0,2(0)), (1)

n—o0

then we say that 7, is asymptotically normal.
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Asymptotic normality

Let 7jn = 7n(X1, ..., X,) be a consistant estimator of n = g(6).

Definition
If there exists

» a sequence (a,)nen+ of positive numbers s.t. lim a, = oo,
n—o00

» a symmetric positive-definite matrix (),

such that
an (An—1) —— A (0,%(0)), (1)

n—o0

then we say that 7, is asymptotically normal.

Vocabulary. ¥(0) is called the asymptotic covariance matrix
(asymptotic variance, in the scalar case).
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Asymptotic normality

Let 7jn = 7n(X1, ..., X5) be a consistant estimator of n = g(6).

Definition
If there exists

» a sequence (a,)nen+ of positive numbers s.t. lim a, = oo,
n—o00

> a symmetric positive-definite matrix X(6),
such that .
an (in =) —— A (0,2(6)), (1)

n—o0

then we say that 7, is asymptotically normal.

Vocabulary. ¥(0) is called the asymptotic covariance matrix
(asymptotic variance, in the scalar case).

Note: it can be proved that (1) with a, — oo implies (weak)
consistency.

8/69



Lecture outline

1 — Convergence rate and asymptotic distribution

1.2 — Theoretical tools



The continuous mapping theorem

Theorem (Mann-Wald)

Let

» h:R? — RY a measurable function,

» Y a random vector, taking values in RY,
such that

‘h is continuous at the point Y, almost surely. ‘

Then, for any sequence (Y,)nen+ of RV with values in R,
B Ya2Y =AY, S hY),
(i) YooY = h(Y)) S hY),
(i) YooY = h(Y))DhY).

Proof: see CIP for the case where h is continuous. General case: admit.
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Example: component reliability (cont'd)

Recall that

> X X £(A), 6>0, and 7 =TFy(X)=1.

> #, = X, is obtained by ML and the method of moments.
Law of large numbers (strong and in L2):

A = as, 2
n=Xp —— 1.
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Example: component reliability (cont'd)

Recall that

> X X £(A), 6>0, and 7 =TFy(X)=1.

> #, = X, is obtained by ML and the method of moments.

Law of large numbers (strong and in L2):

therefore @, is strongly consistent for the estimation of 6.

Remark: it can be shown that @, is also consistent the L2 sense.

10/69



Slutsky's theorem

Theorem
Let

» (Xn)nen+ a sequence of random vectors that converges in
distribution to a RV X:

Xp — X,
n—o0
» (Y,)nen+ a sequence of random vectors that converges in
distribution (therefore in probability) to a constant c:
d

v, 4
n—o0

Then
(X, Ya) —2 (X, ©).

n—00
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Slutsky's theorem

Theorem
Let

» (Xn)nen+ a sequence of random vectors that converges in
distribution to a RV X:

X, —4 X,

n—o0
» (Y,)nen+ a sequence of random vectors that converges in
distribution (therefore in probability) to a constant c:
d

v, 4
n—o0

Then
(X, Ya) —2 (X, ©).

n—o0

d . p o
Remark: Y, —— ¢ implies ¥, —— ¢ (constant limit).
n—o0o n— oo
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Example: component reliability (cont'd)

Recall that (CLT) +/n (X, —1n) — A (0,7?).
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Example: component reliability (cont'd)
o d 5
Recall that (CLT) +/n (X, — 1) — A (0,m?).
Since X, i—s> 7 (constant), we have by Slutsky's theorem:

(VA (Xo—n), Xa) —— (Z,m) with Z ~ .4 (0,7%) .

n—oo
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Example: component reliability (cont'd)

Recall that (CLT) v/n (X, — 1) —— .4 (0,77).
Since X, i—s> 7 (constant), we have by Slutsky's theorem:

(VA (Xo—n), Xa) —— (Z,m) with Z ~ .4 (0,7%) .

n—oo

Therefore, by the continuous mapping theorem,

(Xo—m) 4 Z
— _—~Y 1
ﬁ Xn nsoo 1 </V (Oa ) )

since (z,y) — 5 is continuous at any point where y # 0.

Remark. This result will be used to construct an asymptotic Cl.

12/69



Linearization method (“delta method"”)

“Delta theorem” (scalar case)
Let (Y,)nen+ be a sequence of RV with values in R, s.t.

Jn(Y,—m) —4 Z,

n—o0

with Y a random variable, taking values in R, and m € R.

13/69



Linearization method (“delta method"”)

“Delta theorem” (scalar case)
Let (Y,)nen+ be a sequence of RV with values in R, s.t.

Jn(Y,—m) —4 Z,

n—o0

with Y a random variable, taking values in R, and m € R.

Then, for any h: R — R that is differentiable at m,

Vi (h(Ya) — h(m)) —2— H(m)Z,

n—o0
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Linearization method (“delta method"”)

“Delta theorem” (scalar case)
Let (Y,)nen+ be a sequence of RV with values in R, s.t.

Jn(Y,—m) —4 Z,

n—oo
with Y a random variable, taking values in R, and m € R.
Then, for any h: R — R that is differentiable at m,

Vi (h(Ya) — h(m)) —2— H(m)Z,

n—o0

Intuition: h(y) — h(m) ~ H'(m)(y — m).
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Linearization method (“delta method"”)
“Delta theorem” (vectorial case)
Let (Yn)nen+ be a sequence of RV with values in RY, s.t.
Vn(Yn—m) —2 Z,
n—oo

with Y a RV taking values in RY and m € R¢.

14/69



Linearization method (“delta method"”)

“Delta theorem” (vectorial case)
Let (Yn)nen+ be a sequence of RV with values in RY, s.t.

Vn(Yn—m) —2 Z,

n—oo

with Y a RV taking values in RY and m € R¢.

Then, for any h : R9 — RY that is differentiable at m,

Vi (h(Ya) — h(m)) —2— (Dh)(m) Z,

n—o0

with (Dh)(m) the Jcobian matrix of h at m:

(Dh)(m) = ((@hs)(m))

<i<q,1<j<d

14/69



Delta theorem in the Gaussian case

Scalar case.
If /n(Ys—m) —4— 40, 52), then

n—oo

Vi (h(Ya) = h(m) —s ¥ (0, (H(m))*0? ).
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Delta theorem in the Gaussian case

Scalar case.
If /n(Ya—m) — (0, o2), then

n—oo

Vi (h(Ya) = h(m) —— A (0, (H(m)Ps? ).

Vector case
If /n(Y,—m) ﬁ N (0, ), then
VA(h(Ya) = h(m) —— 4 (0, (Dh)(m) ¥ (Dh)(m)")

n—o00



Example: component reliability (cont'd)

We already saw that:

> 6’A,, = 1/)_< is a consistent estimator of 4,

> /n (X, )—></V(O77)where77—l.
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Example: component reliability (cont'd)

We already saw that:

> 6’A,, = 1/)_< is a consistent estimator of 4,

> /n (X, )—h/V(On)wheren—f

Using the delta method with h(n) = %

(%-9) 722 0200,

n

Hm=-% = va(h-9) =

n—00

1

A (0,62) .

16/69



Example: component reliability (cont'd)

We already saw that:

> én = 1/)_( is a consistent estimator of 4,

> /n (X, )—></V(077)where77—l

Using the delta method with h(n) = %

i(%-0) 32 o @R W),

n

d

W =-% = Va(d—0) == 4 (0,62

n n—00

Conclusion: @, is asymptotically Gaussian,

and its convergence rate is

1

;77;.
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Asymptotic comparison of (scalar) estimators (1/2)

With asymptotic variances.
Exemple of use with “component reliability” for n = Eg(X1).

1) For i) = X,,, we have (CLT): /n (/) — n) %) A (0,7?).

2) For 7 = /L 5" X2 (see lecture #1) ?
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Asymptotic comparison of (scalar) estimators (1/2)

With asymptotic variances.
Exemple of use with “component reliability” for n = Eg(X1).

1) For #ft) = X, we have (CLT): /n (#1) — n) %) A (0,73).

2) For f®) = /L 5"" X2 (see lecture #1) ?

> Since E (X?) = 27? and E (X}) = 24n*, we have (CLT):
1o d
V(- ’;‘x,? —22) = (0,207%)

> Hence, using the delta method with h(z) = /32,

(1) o (0.37).
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Asymptotic comparison of (scalar) estimators (2/2)

In summary:

Vi (i® =)~ (0,02),

n—oo

ﬁ(ﬁm*n) 4 (0, in2>-

n—o0
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Asymptotic comparison of (scalar) estimators

In summary:

Vi (i® =)~ (0,02),

n—oo

ﬁ(ﬁm*n) 4 (0, 3772)-

n—o0

We observe that

» the two estimators are asymptotically normal,

(2/2)
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Asymptotic comparison of (scalar) estimators

In summary:

Vi (i® =)~ (0,02),

n—oo

Vn (ﬁ(Z) — 77) LN <0, 2772> )

n—o0

We observe that
» the two estimators are asymptotically normal,

» have the same convergence rate,

(2/2)
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Asymptotic comparison of (scalar) estimators

In summary:

Vn <ﬁ(1) - 77) LN N (0,7}2) ,

n—oo

ﬁ(ﬁm*n) 4 <0, in2>-

n—o0

We observe that
» the two estimators are asymptotically normal,
» have the same convergence rate,

» but the asymptotic variance of A1) is smaller.

(2/2)
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Asymptotic comparison of (scalar) estimators (2/2)

In summary:

Vi (i® =)~ (0,02),

n—oo

ﬁ(ﬁm*n) 4 <0, 2772>-

n—oo

We observe that
» the two estimators are asymptotically normal,
» have the same convergence rate,

> but the asymptotic variance of A1) is smaller.

m We say that /(1) is asymptotically preferable to ().

18/69



Lecture outline

1 — Convergence rate and asymptotic distribution

1.3 — Asymptotic efficiency



Asymptotic efficiency
Recall the Cramér-Rao lower bound (scalar parameter)

vl regular UE of 6, VO € © ,
Ry (é) = vary (é) > % /fl(H),

with /1(0) = varg (Sp(X1)).

w \When equality holds for all 6, the estimator is called efficient.
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Asymptotic efficiency
Recall the Cramér-Rao lower bound (scalar parameter)

vl regular UE of 6, VO € © ,
A ~ 1 —1
= >
Rg (9) varg (0) - /1 (9),
with /1(0) = varg (Sp(X1)).
w \When equality holds for all 6, the estimator is called efficient.

Asymptotic efficiency

Definition. An estimator is called asymptotically efficient if

> it is asymptotically normal at the rate ﬁ

> with asymptotic variance I, *(6).

Remark: this definition is valid for the vector-valued case as well, replacing the

variance by the covariance matrix 10/69



Asymptotic efficiency of the MLE
Context: X1, Xo,... id Py and, V0 € ©, Py admits a pdf f,.

Definition: regular model

The statistical model is called regular if
» conditions Cy—Cj are verified (def. given in lecture 2)
» The conditions C3 & Cj, are verified
» V6 € O, the Fisher information matrix /1(6) is positive definite.
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Asymptotic efficiency of the MLE
Context: X1, Xo,... id Py and, V0 € ©, Py admits a pdf f,.

Definition: regular model

The statistical model is called regular if
» conditions Cy—Cj are verified (def. given in lecture 2)
» The conditions C3 & C4 are verified
» V6 € ©, the Fisher information matrix /1(€) is positive definite.

Theorem

If the statistical model is regular and if the MLE é,, is consistent,
then it is asymptotically efficient :

Jn (é,, - 9) — s ¥ (0,171(9)).

n—o0o

20/69



Fisher information in regular models

Reminder. The Fisher information brought by X is the matrix

1(0) = varg(Ss) = Eq (59 59T> .
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Fisher information in regular models

Reminder. The Fisher information brought by X is the matrix

1(0) = varg(Ss) = Eq (59 59T) .

Proposition: another expression for the FIM

In a regular model, we have
1(0) = —Eg (Ve (59T)>7 (*)

In other words : VO € ©, Vj < p, Vk < p,
(1)), , = —Eq 75“) —Ey "\ (X)
Jik 06; 00,00,

Remark: actually, if Co—Cs3 hold, then C4 and (%) are equivalent.
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Example: component reliability (cont'd)

Question: is 0, = 1/X, asymptotically efficient?

We have already computed the score: Syp(X1) = % - Xi.
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Example: component reliability (cont'd)

Question: is 0, = 1/X, asymptotically efficient?

We have already computed the score: Syp(X1) = % - Xi.

Computation of Fisher's information (two approaches):

Comput. of Eg (59 (X1)?) Comput. of —Ey (B—(Xl))
h(0) = varg(X1) = n? = 7 h(0) = —Eg (—55)
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Example: component reliability (cont'd)

Question: is 0, = 1/X, asymptotically efficient?
We have already computed the score: Sy(X1) = § — Xi.
Computation of Fisher's information (two approaches):

Comput. of Eg (59 (X1)?) Comput. of —Ey (B—(Xl))
h(0) = varg(X1) = 1 = 3 h(0)=-Eo (—5) = 5

Conclusion: since /n (Xi — 9) LN (0,6%),
n n— oo
6, = & is asymptotically efficient.

m \We recover the conclusions of the theorem (Co—C,4 hold indeed).
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Lecture outline

2 — Confidence regions and confidence intervals
2.1 — Definition and example
2.2 — Exact confidence intervals
2.3 — Asymptotic confidence intervals



Lecture outline

2 — Confidence regions and confidence intervals
2.1 — Definition and example



Motivation

Problem

A point estimator necessarily makes some estimation error.
How can we “report” this error?
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Motivation

Problem

A point estimator necessarily makes some estimation error.
How can we “report” this error?

Two approaches:

» provide, in addition to the estimated value,

» the distribution of the estimator 1), exact or approximate,
» or at least some “measure of dispersion”
(e.g., its standard deviation);
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Motivation

Problem

A point estimator necessarily makes some estimation error.
How can we “report” this error?

Two approaches:

» provide, in addition to the estimated value,

» the distribution of the estimator 1), exact or approximate,
» or at least some “measure of dispersion”
(e.g., its standard deviation);

> give, instead of a point estimation #,

a confidence interval for 7.

23/69



Coverage probability
Reminder. n = g(0).

Let
» P(N) the power set (set of all subsets) of N = g(©).
> a statistic C(X) with values in P(N).
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Coverage probability
Reminder. n = g(0).

Let
» P(N) the power set (set of all subsets) of N = g(©).
> a statistic C(X) with values in P(N).

Goal. Having n € C (X) with high probability.

Definition
For 8 € ©, the coverage probability of C (X) is defined as:

Py (n € C(X))



Coverage probability
Reminder. n = g(0).

Let
» P(N) the power set (set of all subsets) of N = g(©).
> a statistic C(X) with values in P(N).

Goal. Having n € C(X) with high probability.
Definition
For 8 € ©, the coverage probability of C (X) is defined as:

Py (n € C(X))

A\ In general, the coverage probability depends on the underlyign
distribution, i.e., on 6.

24/69



Confidence regions and confidence intervals
We aim to control the coverage probability.

Let a €0, 1[.

Definition: confidence region with level 1 — «

A confidence region with level (at least) 1 — « for 7 is a statistics
C (X) taking values in P(N), such that:

VO, Py(neC(X)) > 1-a.

25/69



Confidence regions and confidence intervals

We aim to control the coverage probability.

Let a €0, 1[.

Definition: confidence region with level 1 — «

A confidence region with level (at least) 1 — a for 7 is a statistics
C (X) taking values in P(N), such that:

VO, Pyp(neC(X)) > 1-a.

We say that C (X) is a confidence region with level exactly 1 — « if
Voe®, Py(neC(X)) =1-a

(Some authors also write: of "size” 1 — a.)

Scalar case. If C(X) is an interval, it is called a confidence interval.
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Example: A (i, 08) n-sample, with known o2
Since)_(NJV<u,%g), T:ﬁ% ~ A (0,1), for a = 5%:
P, (ﬁ Xon ¢ [~1.96, 1.96]) ~1—a=95%,

where 1.96 is the quantile of order 97.5% of the distribution .47(0, 1).

26/69



Example: A (i, 08) n-sample, with known o2
Since)_(NJV<u,%g), T:ﬁxa—;" ~ A (0,1), for « = 5%:
P, (ﬁ Xn ¢ [~1.96, 1.96]) ~1-a=95%,

where 1.96 is the quantile of order 97.5% of the distribution .47(0, 1).

-1.96 0 1.96

We “pivot” to obtain a Cl with level exactly 95% :

X=p _ —|X = o0 X g0
VnXh € [-1.96,1.96] & pe C(X)= [X 1.96 22, X +1.96 % | .

26/69



Interpretation: simulations

We simulate 100 realizations with ¢ = 10 and o¢ = 1.

IC #100

IC #1

L L
10.5 1"

p =10

In red: realizations where the IC does not contain p = 10.

m The proportion of cases where the Cl does not contain p is (approx.) a.
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Lecture outline

2 — Confidence regions and confidence intervals

2.2 — Exact confidence intervals



Pivotal functions

The method can be formalized using pivotal functions.

Definitions

A function
T:XxN — R

is called pivotal if the distribution of the RV T = T(X,n) does not
depend on 6. We say that the distribution of T(X,n) is free from
the parameter.
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Pivotal functions

The method can be formalized using pivotal functions.

Definitions

A function
T:XxN — R

is called pivotal if the distribution of the RV T = T(X,n) does not
depend on 6. We say that the distribution of T(X,n) is free from
the parameter.

Back to the example: Xi,..., X, i N (p, 08) with known .

Then T =/n )_(’(’7;“ is pivotal since
Xn— 1

00

Vn

~ A(0,1).

Remark: we can also choose T = \/n (X, — ) ~ A4(0,03).
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Probability refresher: quantiles

Definition: quantile of order r
Let F(x) be the cdf of a probability distribution on R.

For 0 < r < 1, the quantile of order r of the distribution is defined

as:

gr=inf{x eR, F(x)>r} =min{x eR, F(x)>r}.
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Probability refresher: quantiles

Definition: quantile of order r
Let F(x) be the cdf of a probability distribution on R.
For 0 < r < 1, the quantile of order r of the distribution is defined

as:

g =inf{xeR, F(x)>r}=min{x eR, F(x)>r}.

Properties:
» If F is continuous, then F(q,) = r.
» If, in addition, F is strictly increasing, then g, = F~(r).
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Quantile function of the .47(0, 1) distribution

04
03 —fx(%)
0.2
0.1
% 20.84 o 2 4 -4 20.84 o 2 4
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How to use pivotal functions
Let T (X,n) be a pivotal function and « € ]0, 1].

Proposition

Assume that the cdf F of T (X, 7) is continuous and strictly
increasing, and denote by g, = F~1(r) the quantile of order r.

Then, for all v € [0, ] :

C7(X) = {n € N such that g, < T(X,n) < gy+1-a}
= T_l (Ka [q’Yv q’erlfa])

is a confidence interval for n with level exactly 1 — av.
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How to use pivotal functions
Let T (X,n) be a pivotal function and « € ]0, 1].

Proposition

Assume that the cdf F of T (X, 7) is continuous and strictly
increasing, and denote by g, = F~1(r) the quantile of order r.

Then, for all v € [0, ] :

C7(X) = {n € N such that g, < T (X,n) < ¢y+1-a}
= T_l (Ka [q’Yv q’y+1fa])

is a confidence interval for n with level exactly 1 — av.

Proof. Py (g(0) € C7 (X)) = Py (g, < T(X.n) < Gy1-0)
— Flgyna) - Fla)=1-a [

31/69



Example: A (i, 08) n-sample, with known o2

Consider once more the pivotal function

X~ p)

T(X, 1) =+/n ( ~ H(0,1).

a0
For all v < «, we obtain a Cl with level (exactly) 1 — a

00 v, 00

C"=|X — —= qi—ai -
ﬁql a+ys

\/E q"/ )
with g, the quantile of order r of the .4#7(0, 1) distribution.

For instance, with v = g and o = 0.05:

—q1—a+y = —QGo.o75 ~ —1.96
—@y = —qo.o25 ~ +1.96
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How to choose ~ 7

041
=0
02
o0
0
-4 3 2 -1 0 1 2 3 4
041
y=ax02
02
3.4588
0
-4 3 2 Bl 0 1 2 3 4
0.4
y=ax0.5
02
3.2897
0
-4 3 2 Rl 0 1 2 3 4
0.4
T=a
02
oo
0
-4 3 2 -1 0 1 2 3 4

Density of the .#7(0, 1) distribution and corresponding quantiles
for & = 0.1 and several values of 7y (in red: gy41-a — g5).

Usual criterion: value s.t. the Cl has minimal length (here v = %)
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Example: component reliability (cont'd)

It can be proved that:

T(X,n) =

3| X

~ [ (n,n).
Thus, a Cl with level exactly 1 — « is :

. X X
C h = |: 9 :| 9
Gy+l1-a Gy

with g, the quantile of order r of the I'(n, n) distribution.

Choice of v: we can take v = § for simplicity, or search numerically for the
value v such that the length 1/g, — 1/q14+~—a is minimal.
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Example: component reliability (cont'd)

141

12

0.4

0.2

0

A1)
—pdf of ’77

Numerical application:
n =10, a = 5%, x =10.15!
C = [5.9418,21.1693|

[q'y‘a qﬂ/+1fa/r|

;
q*=1.7085 2 3,7(1)

n

Probability density function of the pivotal distribution '(n, n)
and corresponding quantiles for & = 0.05 and v = §.
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Lecture outline

2 — Confidence regions and confidence intervals

2.3 — Asymptotic confidence intervals



Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

36/69



Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.
» Intervals with “approximate guarantees” will be obtained.

» Computation becomes easier using the previously introduced
tools
(CLT, Slutsky, delta method. .. ).
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Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.
» Intervals with “approximate guarantees” will be obtained.

» Computation becomes easier using the previously introduced
tools
(CLT, Slutsky, delta method. .. ).

A Any analysis carried out in an asymptotic setting is
approximate when n is finite.

w The results can be poor for small n. ..
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Asymptotic confidence regions (intervals)
We set X, = (X1,...,X,). Recall that n = g(#) and N = g(©).

Definition: asymptotic confidence region

An asymptotic confidence region with level (at least) 1 — « is a
statistic Cp(X,,), with values in P(N), such that

Weo, lim Py(g(d) € Gr(X,) > 1-a.

(variant: “exactly” if equality holds for all 6.)

Recall that for an “exact” CR with level (at least) 1 — «
V0e®, Py(g(d)cCn(X,) 2 1-a

(here, “exact” means “non asymptotic”).
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Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

38/69



Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

Their use is illustrated in:

» the parameter of a Rayleigh distribution

This is an exercise mixing definitions and questions.

38/69



Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

Their use is illustrated in:

> the parameter of a Rayleigh distribution

This is an exercise mixing definitions and questions.

» the component reliability example

It can be proved that

1 - 1 —
o[- Fros) R (0 ros) #]
is an asymptotic Cl with level 1 — « for 1 where g, the
quantile of order r of the .4°(0, 1) distribution.

A The design of asymptotic Cl is part of the course (and exam).
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Summary and preview

We have seen and will practice in PC 3:

> the tools to establish the convergence in distribution and the
convergence rate of a sequence of estimators,

» The use of the (asymptotic) distribution of a sequence of
estimators to construct confidence intervals or regions.
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Summary and preview

We have seen and will practice in PC 3:

> the tools to establish the convergence in distribution and the
convergence rate of a sequence of estimators,

» The use of the (asymptotic) distribution of a sequence of
estimators to construct confidence intervals or regions.

We will cover in Lecture 4:

» decision-making through statistical hypothesis testing,
» the construction of such a test,

» the risks associated with this decision.
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Lecture outline

3 — Standard exercises (with solutions)
3.1 — Questions
3.2 — Solutions



Lecture outline

3 — Standard exercises (with solutions)
3.1 — Questions



Exercise 1 (Estimation of the probability of an event)

Let (Xn)n>1 be a sequence of 1ID RV with values in (X, .27).

For a given A € &7, we estimate ) = P (X; € A) by:

n
. 1
ln = — E ]IX,‘EA'
n-
i=1

Question

Study the asymptotic behaviour of 7’/9).
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Exercise 2 (Asymptotic distribution)

Let X1,..., Xy S £(6), with § > 0.

Let 7 denote the probability of exceeding a given threshold xy > 0:

n =Pp(X > xp) = exp (—bxp) .

Questions

©® Study the asymptotic behaviour of the sample mean X,,.

® Propose an estimator ﬁ,(,l) as a function of X, using the

substitution method.

© Study the asymptotic behaviour of ﬁ,(11).

O Let A£,2) =1lsnm Ix.>,, . Is one of the estimators
77 n i=1 i ZX0

asymptotically preferable to the other?
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

This is a long exercise about the concept of asymptotic
confidence interval.

Let Xq,..., X, i %(02), with o2 > 0.

Questions @-© detail how to obtain asymptotic IC using
asymptotic pivotales functions.

Questions @-© show how to compute coverage probability in the
context of asymptotic confidence intervals.
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

Definition

A (sequence of) function(s)
Th: X"xN — R

is an asymptotic pivotal function if the limit distribution of
Tn(X,,n) does not depend on 6 :

Th(Xnm) L) Too.

n—o0

where T, is a RV whose distribution is free of 6.

Definition given with the lesson notations

w For the exercise, n = 6 = o2
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

How to use asymptotic pivotal functions:
m exactly as we used the non-asymptotic ones !
w The obtained intervals are asymptotic confidence intervals.

Questions

_ 1
@ Give the asymptotic distribution of X, = — ZX,-
n
i=1
@® Using the asymptotic distribution of X, propose an
asymptotic pivotal functions,

© Give a confidence interval for n with level exactly 1 — a.
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

Reminder : the coverage probability of a Cl is its true level.

Computing the coverage probability of C, (X,,) requires the use of
Cumulative distribution function (CDF) of T,.

Here, T, depends on X, whose distribution is not a standard one.
m The CDF can however be numerically computed..

Questions
1 n
@ Show that p ZX,- ~ SR(n,1)

i=1
where F(") is the CDF of the SR(n,1) distribution.

@ Give the coverage probability of C,(X,,) as a function of F(n).
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Exercise 4 (Asymptotic Cl for the Component reliability
application)

Reminder about “Component reliability”
i 1
w (X1, Xn) S E(0) et = 5

Questions

® Show that

To=/n (X")_(_ n) (0, 1),

n—o0
n
is an asymtotically pivotal function (voir exercise 3 for a

definition of this term).

@® Use this pivotal function to design an asymptotic Cl with level
1—a.

® Determine the cov. prob. of the obtained asymptotic CI.
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Lecture outline

3 — Standard exercises (with solutions)

3.2 — Solutions



Solution of exercise 1

Using the CLT with Y; = 1x.ca iy Ber(n):

Valin =) —— 4 (0,n(1—n)).
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Solution of exercise 1

Using the CLT with Y; = 1 x,ca iy Ber(n):

Valin =) —— 4 (0,n(1—n)).
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Solution of exercise 1

Using the CLT with Y; = 1x.ca iy Ber(n):

V(i —=m) == A (0,n(1—n)).

Concl.: if 0 < n < 1, then #, is asymptotically Gaussian, with

> convergence rate: -

\/Er
» asymptotic variance: 7(1 — 7).
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Solution of exercise 2

O Using CLT:
S 1 d 1
vi(%a-5) 2o (o)

0 1=o0(-%) =n()
0

. X .
with h: u+— exp (——O) continuous on R .
u

Applying method of moments with X,, estimator of % ;

A5 = h (Xa) = exp (—;—fn)
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Solution of exercise 2

X

® h is differentiable on R with h'(u) = % exp (—?0)

Using the Delta-theorem in the Gaussian cae, we get:

ﬁ(h (X,) — h <;>) —— (0, H <;>2 012>

1) s o i)

The asymptotic variance of ﬁf,l) is 02(0) = (xof exp (—0x0))>.
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Solution of exercise 2

Zy,...,Z, 11D

A~ 1 . |
o/ = - D Ziwith Zj = 1x5, = { Z; ~ Ber(n)
i=1

Using the result of exercise 1:
A d
v (i = 1) == . (@0 —n))
n—oo
with 7 = exp (—6xp), we obtain the asymptotic variance:

a3(0) = exp (—0x0) (1 — exp (—0x0))
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Solution of exercise 2

Let A(0) = 03(0) — a2(0).

A(F) = exp(—bx0) (1 — exp (—0x0) — x50% exp (—0xo))
= exp (—0x0) ¢(0x0)

with o(u) = 1 — exp(—u)(1 + v?).

Analyzing the sign of the derivative of ¢ leads to ¢ > 0 on R...

ﬁgl) is asymptotically preferable to ﬁgz).
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Solution of exercise 2

0.25

0.2

0.15

0.1

0.05

Plots of bothasymptotic variances for xg = 2.0.
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Solution of exercise 3

O Direct application of the CLT:

(35 x-aff) 7o o @t -5)).

>_<n_\/?
o 2 d
A47(0,1).

vn
T n—o00
2

® Thus:

Xn ™
o 2 1. . .
———— | is an asymptotic pivotal function.

To=+/n
v
[0 _
2
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Solution of exercise 3

® Since T, LN (0,1), we have with asymptotic probability
n—o0

1 — « that:

g
~qig SV | ———| <@g
[0 _ _
2

with g, the quantile of order r of the .4#7(0, 1) distribution.

It comes the asymptotic confidence intervals with level 1 — o :

-1

2 - 1 _
\/7Xn q n SUS\/7Xn q
T _a T
1+ 12\/——1 1—
n\Vm

1
NG 7

4
T
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Solution of exercise 3

The asymptotic Cl can be simplified with a Taylor approximation:

Asymptotic Cl with level (exactly) 1 — « for o

2 - Gi_o [4 G (4
Co=1/ X |1- 20 /2 11 R
\/; " NIRE + vn Vm ]
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Solution of exercise 3
5 : Xi
O As X; ~ R(0*). o is a scale parameter : — ~ R(1).
o
1 n
As X; lID, it = Xi ~ SR(n,1).
s Xj are it comes — E (n,1)

i=1
© Coverage probability of I, (X,,)

Py(o € Ca(X,) = Pylan< =) Xi<b,

a, = n E—ﬁ 2-Tg e

™

Remark. Here the coverage probability does not depend on 6.
This is a special case because o is a scale parameter. D

with



Solution of exercise 3

0.96
— <i verage probability
0.955- 1
0.95 : :
10° 10’ 10

sample size n

Coverage probability of the asymptotic Cl C,(X,,) with o = 5%.

Remark. Observe that we have indeed a confidence interval with asymptotic
level (exactly) 1 — a:

Vl, lim Po(oc € G (X,))=1-a
n—o0o
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Solution of exercise 4

O It has already been shown (CLT, Slutski, Mann-Wald) that

T o) = v L 4y 0,1y,

Xn n—o00

w Thus, T, is an asymptotic pivotal function.

® Asymptotic Cl with level (exactly) 1 — « for 7 :

1 1
n=1(1-——=qie ) Xn, (14 —=q1_2 ) X,
. K wﬁ2> (*ﬁ“ﬁ ]

with g, the quantile of order r of the .#7(0,1) distribution.
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Solution of exercise 4

A Do not confuse intervals on pivotal functions [qa , q; _ o | and confidence interval for 7.
2 2

Numerical application:

n =10, =0.05, T =10.1515

) F(ma N 1O =[5.942, 21.17],

e

S el

0.5 1 15 2, .5
valeurs de T =

ICASYMP: = [3.86, 16.44]

N(0,1) . (0,1)
qda 41 _ o
2 F)

valeurs de T,'= \/n (1 —

)

i3
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Solution of exercise 4

251
Cl
----asympt. Cl
20
151

5l |
0 100 200 300 400 500 600 700 800 900 1000

sample size n

Comparison of exact and asymptotic Cls, as a function of n
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Solution of exercise 4

©® Coverage probability of I, (X,,)
Po(ne Co(X,) = Po(ne|(1-Lag), (14

gl K L
I+ qe 1 1=

2

Since (reminder)

s |

~ [ (n,n), it comes:

nn 1 on 1
Py (n € Co(X,)) = FTm" <1_1>Fr( " (11>
\/Eq:[*% +ﬁq1,g

with FT("" the cdf of the I'(n, n) distribution.
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Solution of exercise 4

0.96
0.94r — coverage probability|
0.92 - — 1—-a il
09t e = 0.90351(n = 10) .
0.88 - .
0.86 ‘ ‘ ‘ .

10" 102 10° 10*

sample size n

Coverage probability of the asympt. Cl with level 95%

Remarks.
» The property VO, lim 7;,(Cy(X,)) > 1 — « is verified.
n— oo

» Usually the coverage probability depends on 6. It is not the case here
because 7 is a scale parameter.
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Lecture outline

4 — Appendices



Proof

As Z has a moment of order 2, we can define:
» its mean u = E(2),
> its covariance matrix X7z = E((Z — u)(Z — p) ).

We start by noting that if it exists a € R9\ {0} and c € R s.t.
a'Z=c; as., thenc=a'p.

An intermediate result

Let V be a positive scalar random variable. We have :

E(V)=0 < V=0 as. (%)
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Proof (cont'd)
Let ac R\ {0} et c € R.

a'lZ=cas. <= a(Z-p)=0 as.
— a' (Z-u)(Z-w)Ta=0 as.
— E(a'(Z - p)(Z —p)"a) =0 (utilisant (¥))
— a'¥za=0

As the matrix ¥ is positive-definite, a' £za = 0 (with a # 0) is
equivalent to a € Ker(Xz).
Thus,

Z dégénérée <= Ja#0tq a'Z=c as.
<= Ja#0eKer(Xy)
<= Y 7 non inversible
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Relation between convergence in distribution and in proba.

We already know that convergence in probability implies convergence in
distribution. Let (Ya)nen+ be a sequence of RV with values in RY.

Proposition

d . P
If Y, S ¢, with ¢ € RY a constant, then Y, — c.

Corollary

If there exists ¢ € RY,
» a RV Z with values in RY,

» a sequence (a,)nen+ of real numbers such that lim a, = oo,
n—o00

such that
d
an(Yn—c)— Z
n—oo
then
Ya LN
n—oo

Proof (exercise): use above proposition and Slutsky's theorem (see below). O
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Proof “Delta-theorem” (scalar case)

Consider the function ¢ defined by :

ho)—hm)
w(y)—{ V7

y—m
h'(m) siy =m;

. . . . . d
1) is continuous at m because h est differentiable at m. Since Y, —— m,
n— oo

¥(Ya) —— %(m) = H'(m),

and thus (Slutsky)

(VYo = m), 9 (Ya)) —— (Z,H(m)).

n— oo

Finally, we have

vV (h(Ya) = h(m)) = VA (Yo — m)9(Ys) —— K(m)Z. O
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Regular models: regularity conditions C3 and Cy

Reminder: Cg, C; and Cs were defined in Lecture #2.
Regularity condition Cg

0 — fy(x) is twice continuously differentiable for v-almost all x.

Regularity condition Cy

At any point 0 € ©, we have

/V@Vefb v(dx) V@/Veﬂg x) v(dx).

In other words: VO € ©, Vk < p, Vj < p,

D?fy(x) 0 8f9(x)
5008, V) =5, /. v(dx)-
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Example: an MLE that is not asymptotically Gaussian

Let Xq,..., X, K Ujo,g), with & > 0 unknown.

A This model is not regular (why?).

It can be proved that (cf. PC 1, exercise 1.2)
> ), = max;<p X; is the MLE of 6, and

(9 —e)m _Z with Z ~ 5( ;)

In this particular case

m the MLE is not asymptotically Gaussian;

m the convergence rate is %: faster than %
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The Rayleigh #Z (02) distribution
X ~ % (02) if X admits the pdf

X x2
f(X) = ; exp (_M) ]lR+(X).
Moments
» mean: E,(X) =0 g

> variance : var,(X) = o2 (2 = %)

Property
if X ~ 2%(0?) then Y = X2 ~ € (5).

Sum of Rayleigh distributions

We define (for the exercise) the following distribution:

If (X1,...,Xn) % R(02), then Z =" X; ~ SR(n, 0?). U
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