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Lecture 8/9

Regularization and model selection

Course objectives

» Introduction to regularization for regression and classification.
» Estimation of generalization error.

» Selection of hyperparameter values and model selection.
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L ecture outline

1 — Regularized regression (or classification): penalization
2 — Estimation of the risk (generalization error)

3 — Hyper-parameters, model selection

4 — Exercises and solutions

5 — Appendices
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1.1 — Limitations of “ordinary least squares”
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1.3 — LASSO regression




L ecture outline

1 — Regularized regression (or classification): penalization
1.1 — Limitations of “ordinary least squares”

Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).

Critical situations for (ordinary) linear regression:
» when X' X is singular

» or poorly conditioned

Typical cases
@ when the number of variables is large

@® when there are strong correlations between explanatory
variables
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Example: p > n

Subset of a microarray for transcriptome analysis,
p ~ 25000 for one patient

Typically, n =~ 10 or 100!
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Example: p > n

Functional Magnetic Resonance Imaging (fMRI), with
approximately, p ~ 300000 voxels

Typically, n ~ 10 or 100!
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Example: strong correlation between explanatory variables
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“Ozone” example — correlation between variables NO and NO2 o
Example: strong correlation. .. (cont'd)
Vector (3 obtained by OLS regression:
Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 14 26
Observations:

» The negative coefficient associated to NO2 is surprising
m hazardous interpretation of the coefficients

» The least influential variables (small coefficients) could
perhaps be removed from the model?
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

B=argmin|Y - XB|P+ A Q(p) - (%)
B e — ~— ——
data “fidelity” hyperparameter penalty
Expected benefits of penalization:
» make the solution of (x) unique,

» take prior information into account
(this is related to the Bayesian approach),

» avoid over-fitting when the family of predictor functions is
“large” (for linear models: p > n),

» make it easier to interpret the resulting model.
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1 — Regularized regression (or classification): penalization

1.2 — Ridge regression




Ridge regression

Penalty
Q(B) = [181°

BRIDGE — 3rg min LY — XB|* + M|B|I°

It can be proved that ("™ see PC) :

A -1
BRIDGE — (XTX + Apiz)  XTY

m \When A\ 7, the conditioning of (KTK—F )\Ip+1) improves.

Remark: SRPGE has a Bayesian interpretation (m see PC).
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BRIDGE

"Ozone” example: Evolution of as a function of A
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L ecture outline

1 — Regularized regression (or classification): penalization

1.3 — LASSO regression

LASSO regression

Penalty
Q(8) = 181l = >_;=1 155

GLASSO = argmin 1Y — XB)1 + Al5]1 (%)

Minimization of the criterion

> no explicit solution for BFASSO (except in some cases,

)

m dedicated algorithms
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LASSO regression: reformulation

BLASSO — arg min [ - XBI17 + M|l (%)

> Let BOLS denote the OLS estimator of 3:

BLASSO _ BOLS o\ — ¢

> Since || Y — XB|? = [|X(8 — B°%5)|1> + ¢, we have:
BRSSO = argmin | X (5 = 5717) " + A6

» Reformulation with a contraint: it can be proved that there
exists ¢y € R such that

BLASSO _ 410 mgin 1X(8 — BO5)||? such that||8]]1 < ¢\

(and similarly for BRIDGE)
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LASSO regression: intuitive interpretation
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |B1| + |B2| < t and B} + 535 < t2,
respectively, while the red ellipses are the contours of
the least squares error function.

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 3
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BLASSO

"Ozone” example: Versus A
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When \ 7, the number of coefficients equal to zero *
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“Ozone’ example: B*A550 for several A

With A =0 (OLS)

Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 1.4 2.6

m The coefficient for NO2 may seem surprising

With A =05
Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
1034 22 19

w One of the two correlated variables is discarded,
makes it easier to interpret the coefficients

With A\ =3

Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 0 2.2

w The remaining variables are progressively discarded

Choice of the hyper-parameter \ 7
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L ecture outline

2 — Estimation of the risk (generalization error)
2.1 — Problem
2.2 — Zoom in on an illuminating special case
2.3 — Training set and test set
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Problem

Back to the general setting (regression/classification).

Let h be a predictor X — ) learned from data:
h(x) = h(x; (X1, Y1), ..., (X, Yn)) = h(x; X, Y).

Recall that, given a loss function L, we define the risk, or
generalization error :

#(h) = B (L(v. hp) | X.Y)

_ //Xxy L(y, h(x)) PXY (dx, dy).

~ ~

Examples. L(y,7) = (v —9)°, L(y.9) =1ly =3I, L(y,9)=Tyzy. ...

Problem

How can we estimate this risk (which depends on PX:Y) ?
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Refresher: empirical risk

We call empirical risk the risk
~ R R 1 R
R, = // L(y, h(x)) Pa(dx,dy) = = "L(Yi. h(X)))
XY i

computed with PX>Y equal to P, = 1 377 dx. v..

" n

Question

Is this empirical risk %, in general, a “good” estimator of the true

risk Z(h) ?

A the data is used twice !

Intuition: It is “risky” to estimate the risk from the error observed
on the same data already used to construct h. ..
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L ecture outline

2 — Estimation of the risk (generalization error)

2.2 — Zoom in on an illuminating special case

Zoom in on an illuminating special case

Consider the case of “ordinary” linear regression:
> h(x) = Bo+ BixD) + ...+ Bx(P),
» quadratic loss: L(y,y) = (y — )7)2,

» p+1<nand X' X ana.s. invertible (p+1) x (p+ 1) matrix.

Empirical risk minimization : 3 = (KTK)_l X'y.

Remark: link between %, and the coefficient R2 of determination:

2
3 ’ - _ ATy,
R2:1—M:1_Zi:1(% /BXI)
155 Shy (Y- )

= 1- K With@”(Y)ZEZ(Yi—\_’)Z.

Garn(Y)

n <
i=1
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Zoom on an illuminating special case (cont'd)

Consider the generalization error wrt responses only:
~ 1/~ 2
P = E(z > (Vi-8Tx) z,x>,

i=1
with, for all /, \N/, and Y; iid conditionally to X.

Proposition

Assume that the unknown distribution PX:Y is such that
Y; = B X; + ¢, with £; ~ 47(0,02), independent of X;. Then

E(@n) = o2 (1+pj;1>,
E(@n) = 02<1—pj;1>.
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Zoom on an illuminating special case (cont'd)

Interpretation. On average, the empirical risk under-estimates
the generalization error:

1
P a® > 0.
n

E(@n—@n) — 2

Another way of looking at this result. Set

p+1  number of coefficients

n sample size
Then N

= (‘@”) 1+1
E (£n> a 1— n 77%1/
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Zoom on an illuminating special case (cont'd)

Proof. Let us compute first E (%7,, | K) with (reminder)

X, X) -

We have E (\N/, | K) =K (BTX,- ] K) = BT X;, therefore

n

a2 (33 (%)

i=1

S|

E (%] X) = = > var (Y= 87X | X)
=1

3

S|

= var (\N/, |K)+var (BATX,- |K)

i:]. A 7 A\ 7

—g2 =®
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Zoom on an illuminating special case (cont'd)

. 1
We already know that var (6 | K) = 02 (KTK> . Therefore:

® = var (BTX,- \

By noting that X' X = 7. X;X.T, we get:

Zvar (BTXi | K) =0’ tr((ﬁTﬁ)_l ZXiXiT>

1

= Ptr(ly) = o*(p+1).
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Zoom on an illuminating special case (cont'd)

Thus, we have:

~ 1 <& ~ A
E(%n\ﬁ) = —Z var(Y,-\K)—i—var(BTX,-\K)
1 1
:a2+02& :az<1—|—p+ )
n n

~

Hence the result: E <%n) = g2 (1 + P+1).

n

Exercise: prove the second inequality, i.e.,

B () = o (1-221).

Il 2 see PC El
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2 — Estimation of the risk (generalization error)

2.3 — Training set and test set




Training set and test set

Conclusion/extrapolation. The empirical risk is in general
» a negatively biased estimator of the risk,

» with a bias that is increasing when p .

Solution: split the data in two sets

> training data: used to construct h,

> test data: used to estimate the generalization error.

Example:

training test
(e.g., 80%) (20%)
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Exemple “Ozone” (cont'd from lecture #6)
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Goal: predict the ozone concentation on day t + 1
from data available on day ¢t
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“Ozone” example: 70/30

All 7 explanatory variables and their 21 interactions are used.

Results from 10 random splits, 70% / 30%:

~

R2 R e@Z;gest
0.77185 | 345.1 | 573.32
0.76831 | 371.41 | 496.03
0.77292 | 343.96 | 608.62
0.76093 | 350.53 | 606.14
0.78584 | 345.45 | 669.66
0.75459 | 399.9 | 476.61
0.71367 | 343.72 | 643.72
0.77689 | 377.32 | 524.74
0.8176 | 317.83 | 695.86
0.79784 | 373.18 | 554.25
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| ecture outline

3 — Hyper-parameters, model selection
3.1 — Problem
3.2 — Cross validation
3.3 — AIC criterion




L ecture outline

3 — Hyper-parameters, model selection

3.1 — Problem

Problem #1: choosing a “good” family ¢

Example. Selection of k variables among p. Let J C {1, ..

h(x) =Bo+ > _BixY.

m Defines a family 77 with k; = card(J) + 1 parameters.

Example. Expansion in a basis, truncated at order J :

Jjed

J
h(x) = Biy(x).
k=0

w Defines a family ) with k; = J 4+ 1 parameters.

Problem: model select

ion

.p}:

How to choose the family 7 (and, in particular, its “size” kj) 7

Remark: replace h(x) with In 3

h(x)

T=h) for logistic regression.
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Problem #2: choosing a regularization hyper-parameter
Most methods require some “tuning’. ..

> Ridge/LASSO regression: 3 = argmin @se; with

FN(B) = Ba(B)+AD_1BI7, g e{L,2),
J

» Choosing the number k of neighbors in a k-NN model:

=7 S

I'EV,,,/((X)

with V, «(x) the indices of the k nearest neighboors of x.

Problem: calibration

How to “tune” the values of such hyperparameters ?

20/59

Over-fitting: beware!

ldea

Choose the family 7, or the hyperparameter ), in order to
minimize (an estimation of) the generalization error.

A again, the empirical risk @n, estimated on the training data, is

not appropriate |
Example. Polynomial regression with x € R, degree < J:

h(x) = Bo + Bix + ... + Byx?,
with J = 2,5.8, 11.

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of
parameters in the model.

30/59




Example: polynomial regression

,2@?,, = 0.22, Ztt = 0.24 92?” = 0.069, Ztt = 0.18

¢ —degré: 2 * —degré: 5

0.5 1

Xr e
ﬁg’,, = 0.022, Z'st = 0.24 %,, = 4.310719, gtest — 4.83
—degré: 8 —degré: 11
> O
- <E/
| 1‘ 1‘
xr X
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R
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Model Complexity (df)

Blue: empirical risk %, / Red: error on the test set

Figure from Hastie, Tibshirani & Friedman (2017).
The Elements of Statistical Learning (12th edition), Springer.
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Let's recapitulate. . .

Problem. We want to estimate the error to choose Z or \ but. ..

» it should be done neither on the training data
(m over-fitting problem),

» nor on the test data
(m bias in the final estimation of the generalization error).

Az

®
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3 — Hyper-parameters, model selection

3.2 — Cross validation




Solution: validation set

|dea: split the data in three sets

> training data: construct h with given I,
» validation set: choose JZ, )\, etc.

> test data: estimate the generalization error.

Simple validation (hold-out)

training validation test
(e.g., 60%) (e.g., 20%) (e.g., 20%)
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Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

N\ N\ 4

[ train. 1 [ train. 1 1 ( train. 1 valid. 1 |
20%) || (%) || (20%) | (20%)

train. 2 train. 2 | [ valid. 2 ) [ train. 2 )
20%) || (20%) || (20%) )| (20%) | test

( N N N < o
train. 3 valid. 3 train. 3 train. 3 (e.g., 20%)
(20%) ) (L (20%) ] | (20%) J [ (20%)

f valid. 4 1 ( train. 4 1 ( train. 4 1 ( train. 4 )
(20%) (20%) (20%) (20%)

- the error is averaged over the k validation sets.

Special case: leave-one-out cross validation
» k = n blocks (of size n/k = 1).
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“Ozone” example: LASSO / choice of A

» Predictor: LASSO regression using all variables and their
interactions

> X obtained by CV (LOO)
30

—training

—validation

20 ¢

G =P

1 ES ~ |
A=1.02 5 10
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"Ozone’ example: interactions

> We add variables of the form XU XU") and XU xU")x0"),
» LASSO regression (L! penalty).
» Hyper-parameter A estimated through 10-fold CV.

model xU) xU) xG") x0) xU) xG")
total number
) 7 35 119
of variables
number of selected
) 4 9 8
variables (5; # 0)
vV MSE CV (10-fold) | 49.1 415 33.0
selected variables MOCAGE MOCAGE MOCAGE
TEMPE TEMPE TEMPE
NO NO2 NO2
VentANG MOCAGE - TEMPE MOCAGE - TEMPE
TEMPE? TEMPE?
TEMPE - MH20 TEMPE - RMH20
TEMPE - NO2 TEMPE? - MOCAGE
NO2 - VentANG VentANG2 - TEMPE
VentANG - VentANG
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L ecture outline

3 — Hyper-parameters, model selection

3.3 — AIC criterion

Another approach to model selection: the AIC criterion

Assumption: parametric statistical models .#; for pYIX,
Denote by GAJMLE the MLE of 6 in model .#;.

Then the AIC criterion can also be used for model selection:

~

= argmin AIC(),  AIC() = —2In£ (B)F X, V) + 2k,

with k; the number of parameters in model .#;.

wm see PC for a partial justification (OLS linear regression)
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"Ozone’ example: AIC

» Predictor obtained by the ordinary least squares method, on an
increasing number of variables

(linear terms first, then interactions)

1400

—AIC

1380 -

1360 -

1340

1320 -

1300 i ‘
0 20

# variables

x>
I
(@)
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L ecture outline

4 — Exercises and solutions
4.1 — Questions

Exercise 1 (Penalized regression)

Let Xi,...,X, represent the examples, taking values in RP, and
Y1,...,Y, be the labels, taking values in R The relationship
between Y; and X; is given by:

Yi = 51X,-(1) +...+ [3pX,-(p) + &i,

where 3 is the parameter vector to be estimated, and ¢; is a
random variable following N(0, o2), independent of X;.
We aim to estimate (3 by minimizing a criterion of the form

=S (Y- 87%) "+ xP(8) (1)
i=1

where P is a penalty term, and A > 0 is a hyper-parameter.
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Exercise 1 (Penalized regression)

We denote X = [X1...X,]", the n x p matrix containing the
observations. We are considering the case where X' X = .

Question

@ Give the expression of the estimator when A = 0. Denote this
estimator (.

® We consider a penalty of the form P(3) = ||8||3. Give the
expression of this estimator, denoted BR, and deduce that
there exists a constant ¢; ) (to be specified) such that

BJ'R = C17)\[§j,j: ].,...,p.
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Exercise 1 (Penalized regression)

Question

® We consider a penalty of the form P(8) = ||5||1.
To begin with, demonstrate that the minimum on R of the
function

1
f:oa— E(X—a)2+)\|a\
is achieved ata™® = sign(x) max (0, [x| — A).
@ Deduce the solution of the optimization problem (1) for

P(B) = ||8||1, which will be expressed in terms of B Denote
this estimator AL.
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L ecture outline

4 — Exercises and solutions

4.2 — Solutions

Solution of exercise 1

@ We recognize the least squares criterion, and we have:

B=XTX)"XTYy=XTYy
@® This corresponds to ridge regression..

AR = (XTX+2AN)"1XTY
— (1420715

Therefore BAJR — (1+2)\)713.
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Solution of exercise 1

© The function f is not differentiable, but it is differentiable at
every point a # 0 and continuous at « = 0. Thus, we can
determine its minimum by analyzing its variations using the
sign of the derivative, as if it were differentiable everywhere.
The derivative at every a 7 0 is given by

Fla) = a— X+ A sia>0,
a—x—X sia<0,

hence

flla) >0 & (a>x—Aeta>0)ou (a>x+Aeta<D0).

()
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Solution of exercise 1

© Let's consider, for example, x > 0. Then, the second case in
the right-hand side of (2) is impossible, and we're left with:

flla) >0 & a>x-Aeta>0 < a>max(0,x—\).

(3)

Similarly, still assuming x > 0,

flla) <0 & (a<x—Aeta>0)ou (a<x+\eta<D0)
& (0<a<max(0,x—A)) ou (a<0)
& (a<max(0,x —A)) et (a«#0).

Thus, f strictly decreases to the left of max(0,x — \), and
strictly increases to the right, which concludes the case x > 0.
The case x < 0 follows similarly.
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Solution of exercise 1

@ Here, we'll manipulate the initial optimization problem to
reduce it to the optimization problem from the previous
question.:

/N . 1
Bt = argﬁmmEHY — XBII> + Al Bl1
.1 5 A
= argémnﬁuy —XB+ X3 — XﬁHZ + Al B2

.1 A -
= argming {[|Y = XBIP + IX3 — X5|P § + N5l

The cross product vanishes because the residual (Y — XJ3) is,
by construction, orthogonal to any linear combination of

columns of X, thus (Y — X5)T (X5 — XB) = 0.
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Solution of exercise 1

@ Since the first term is independent of 3, we have:
AL e 2
B = arg/;nmgllXﬂ — XB|” + AllBll1
B N "
— argﬁmlni(ﬂ — B)TXTX(B —B) + A8l

_ arggnmé(ﬁ —B)T(B~ 8)+ AlBl
1< s
= argmin, > (B — 8>+ AlBj
j=1

The problem is separable and, from the previous question, we
have:

BJ-L = sign(Bj)max(O, |5’J| —A)
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5 — Appendices
5.1 — Model building: feature engineering
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Non-linearities in linear models. . .

If the empirical risk Z(h) is high, several possible causes:

» noise: intrinsic difficulty in predicting Y
m irreducible statistical error.

> non-linearity of the optimal predictor wrt the XU)'s
w reducible approximation error.

Possible workaround: x(), ... x(P) — @) x(a)
» with XU) function of x(1), ... x(P),

» The model is still linear with respect to S.
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Examples

A few examples:
> scalar transformations: In(xt)), vVxU), (xW))k_ .

> interactions (here, of order two): xUWx(K) j £ k,
» higher-order interactions,

» (truncated) expansion in a basis. ..
A if g > p, risk of over-fitting.

Remarks: feature engineering
» Proposing new relevant variables
w domain expertise (or model selection. .. ?7)
» The same principle can be used to reduce dimension

m features extraction.
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Expansion in a basis

Principle

Let {t/m} -0 be a function basis of L2(X)T.
Consider X(m) — Ym(X), m=1,....M

w» truncated expansion in the basis {1}

Examples of bases (preferably orthogonal):
» polynomial bases,
> wavelet bases,

» Fourier bases. ..

T or any other function space assumed to contain the optimal predictor h*.
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Example: LIDAR data

0.2r
0r o8 50 .5, % oo °
o o@é’ff & o %32";%@930‘; c:%%’%o
|- °° °o°
002 2
-+ 8°o
© 0o
60-04 i %:c;om ooooog o0 ° o
_O ° ® °<:> ° 009 ) i
000 o "o °
0.6 ¢ °°°° o° o %o °°
° 000000 ° O:
® ?® 00
_08 [ ° oo -3
_1 | | | ° | |
300 400 500 600 700 800
distance

x-axis: distance travelled before the light is reflected back to its source
y-axis: logarithm of the ratio of received light from two laser sources

Data obtained from http://matt-wand.utsacademics.info/webspr/lidar.html
LIDAR: Light Detection And Ranging
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Basis of orthogonal cosines (basis of L2(]0, 1])

1.5

O%T\\

|—degree=1

—degree=3 -
degree=8

-0.5- \ 1
qr \ i
/ -
_1 5 | | | |
0 0.2 0.4 0.6 0.8 1
%
sa/m0
Example: LIDAR data (cont'd)
Quadratic loss + basis of cosines
0.2r
—degree=1
0r degree=3
—degree=8
0.2+
.0
)
[g0]
= 0.4-
o)1)
e
06" h
'08 [ © o :°°° °
_1 | | | ° | |
300 400 500 600 700 800
distance

i back to slide 28

53/59




Legendre polynomials (orthonormal basis of L2([—1,1]))

3
—degree=1
ol —degree=3 |
degree=8 |
/| I

_:2 | | |
-1 -0.5 0 0.5 1
o
Example: LIDAR data (cont'd)
Quadratic loss + Legendre polynomials
0.2
—degree=1
0r degree=3
—degree=8
-0.21
.9
-
é i
60-0 4
)
-0.6
Oo% S
'().E; [ 00°
_1 | | | ° | |
300 400 500 600 700 800

distance

i back to slide 28
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Haar wavelet basis

0.1r level j =1 — 1 element
i |
_0.1 1 1 1 1 1
0 .50 100 150 200 250
01, level j =2 — 2 elements
0
-0.1 T I T I I
0 50 _ 100 150 200 250
0.2 level j =3 — 2U~1) = 4 elements
. —§ [ [ ]
_0.2 1 1 1 1 1
0 50 100 150 200 250
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Example: LIDAR data (cont'd)
Quadratic loss + Haar wavelets
0.2
— level 4
level 2
—level 1

log-ratio

450 500

distance

i back to slide 28

57/59




Example: LIDAR data (cont'd)

Quadratic loss + Legendre polynomials

0.2

—degree=1
degree=3
—degree=8

log-ratio
o
N

300 400 500 600 700 800
distance
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Example: LIDAR data (cont'd)

Madel selectian

0.2r I
—cosine

— Legendre

0.15

MSE (LOO-CV)

0.1r

0.05—— .
0 deos =6 dpoy =10 20 40

degré
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