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Lecture 10/9

Unsupervised learning: two examples

In this lecture you will. ..

» Understand the main ideas of unsupervised learning through
two examples of unsupervised learning tasks.

» Learn how to reduce the dimension of a dataset using
principal component analysis.

» Learn how to partition the data into clusters of similar
examples (clustering) using the K-means algorithm.
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Lecture outline

1 — Introduction to unsupervised learning

2 — Principal components analysis

3 — Clustering

4 — A taste of some (more) advanced methods

5 — Appendices
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Lecture outline

1 — Introduction to unsupervised learning



Recap: supervised learning
» We observe pairs (X, Yi):

(X1, Y1), ooy (Xn, Ya) 2 PXY,

with X; € X: instance and Y; € ): label.
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Recap: supervised learning
» We observe pairs (X, Y;i):
(X0, Y1), ooy (X, Ya) 2 PXY,
with X; € X: instance and Y; € ): label.
> We want to approach the optimal predictor
h* = argmin, E(L(Y,h(X))),
which is a property of the conditional distribution PY!X:
h*(x) = argmingcy E(L(Y,y) | X =x)

= argmingcy /L(y,y)P”X—X(dy).
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Unsupervised learning

Learning without a “teacher’
> we observe instances only,
iid X
X1y oooy Xn ~ P

and we are interested in the distribution PX.
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Unsupervised learning

Learning without a “teacher’

> we observe instances only,

X1, ..., X, 8 pX

and we are interested in the distribution PX.

Assume that X C RP and that PX has a pdf £X.

Problem: curse of dimensionality

Estimating a “general” pdf X has a cost (sample size required to
achieve a certain accuracy) that scales exponentially with the
dimension p."

T Non-parametric statistics, a branch of statistics which studies among other thing density estimation

under weak assumptions, provides theoretical results (not covered) that support this claim. s/53



Goals in unsupervised learning

@ ldeally, estimate the pdf fX of the data distribution.

m unless p is small enough (say, p <5, rare in learning
problems), this problem is in general too difficult.

T In low dimension, one can use, e.g., kernel density estimators (not covered).
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® Reveal underlying “structures” in the distribution
(without explicitely constructing a density estimator)
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Goals in unsupervised learning

@ |deally, estimate the pdf fX of the data distribution.

m unless p is small enough (say, p <5, rare in learning
problems), this problem is in general too difficult.

@® Reveal underlying “structures” in the distribution
(without explicitely constructing a density estimator)
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T In low dimension, one can use, e.g., kernel density estimators (not covered).
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Lecture outline

2 — Principal components analysis
2.1 — Low rank approximation
2.2 — Finding the optimal subspace: SVD
2.3 — Sample variance and covariance of PCA components



Goal: dimension reduction

We are looking for a mapping

T: X - ZCRY
x = z=T(x)

with g < p

together with a reconstruction mapping

T: 2 X

z = x=T(2)

Remark: more generally, Z could be a g-dimensional manifold, which is an abstract generalization of the
concepts of curve (g = 1) and surface (g = 2); cf. differential geometry.
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Goal: dimension reduction

We are looking for a mapping

T: X —» ZCRY with g < p
x = z=T(x)

together with a reconstruction mapping
T: 2 - X
z = x=T(2)

such that

EY L6, %) = rlyz;;lL(Xi’i—(L(ﬁz))

Zj

is as small as possible (where L(x, X) denotes a loss function).

Remark: more generally, Z could be a g-dimensional manifold, which is an abstract generalization of the
concepts of curve (g = 1) and surface (g = 2); cf. differential geometry.
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Lecture outline

2 — Principal components analysis
2.1 — Low rank approximation



“Linear’ dimension reduction

Let x1, ..., X, € RP be an observed sample. Let g < p.

Definition: affine subspace

g C RP is an affine subspace of dimension g if there exists
> 1€ RP
» a matrix A of size p x g with rank g,
such that @/ = Aff, o = {y € RP such that y = u + Az, z € R9}.
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“Linear’ dimension reduction

Let x1, ..., X, € RP be an observed sample. Let g < p.

Definition: affine subspace

/g C RP is an affine subspace of dimension g if there exists
> 4 eRP,
» a matrix A of size p x g with rank g,
such that @/ = Aff, o = {y € RP such that y = u + Az, z € R9}.

Definition: principal components analysis (PCA)

PCA consist in finding the best approximation of the data, for the
quadratic loss, by an affine subspace <7,.

The dimension q is either given or chosen automatically.
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“Linear” dimension reduction (cont'd)

Thus, we are looking for @7, = Aff,, o and (z;) such that

n
g, A (z) € argmin > |lxi — (n+ Az (%)
i=1
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“Linear” dimension reduction (cont'd)

Thus, we are looking for @7, = Aff,, o and (z;) such that

n
p, A (zi) € argmin > |lxi — (n+ Az (%)
i=1

A The solution is not unique.

= If A has the same range as A, then
there exists Z;'s such that Az; = AZ; for all i.
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“Linear” dimension reduction (cont'd)

Thus, we are looking for @7, = Aff,, o and (z;) such that

n
p, A (zi) € argmin > |Ixi — (u+ Az (%)
i=1

A The solution is not unique.

= If A has the same range as A, then
there exists Z;'s such that Az; = AZ; for all i.

m \We will assume wlog that the columns of A are orthonormal:
ATA = 1d,.

Remark: the orthonormality assumption still does not make A unique. ..

9/53



“Linear” dimension reduction (cont'd)

= Fix some u, A and (z;), and set Z; = z; — Z. Then
p+ Az = p+AG+2)

= ,u—i—AZ + AZ;.
;\Nf-—/
fi
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“Linear” dimension reduction (cont'd)

= Fix some u, A and (z;), and set Z; = z; — Z. Then

p+Az = p+ A% +2)

= ,u—i—AZ + AZ;.
——

i

m \We can constrain the z;'s, wlog, to be such that Z = 0.
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Partial result

Proposition

Minimizing the criterion for a given matrix A leads to:
=X,
zi = AT(X,' — X),

and we have the geometric interpretation:

w %; = p+ Az; is the orthogonal projection of x; on Aff,, 4.
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Partial result

Proposition

Minimizing the criterion for a given matrix A leads to:

po= X
zi = AT(X;—)_(),

and we have the geometric interpretation:

% = p+ Az; is the orthogonal projection of x; on Aff,, 4.

Consequence. Plugging this result into (x), we get

n

2

A = argmin 3 H(Idp—AAT) (x,-—>—<)H .
i=1
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2.2

0.8




Partial result: proof

Fix some A and (z;), with Z =0, and set v; = x; — Az;. Then

D lxi = (u+Az)IP = Y llvi — ol

1
M= - vt +c

1

where ¢ does not depend on . Therefore, the optimal y is

u:%Zv,-:i—AZ:X.
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Partial result: proof

Fix some A and (z;), with Z =0, and set v; = x; — Az;. Then

D lxi = (u+Az)IP = Y llvi — ol

1
M= - vt +c

1

where ¢ does not depend on . Therefore, the optimal y is
NS v=RAz=
== vi=Xx—AZ=X.
n=- :

Thus we set i = X, and proceed similarly to determine each of the z's.
For all i the minimum is attained (exercise) at
T —
zi=A"(x — X),

and we check that z=1%". 7z = AT(x — %) = 0. 0

Remark: the expressions can also be obtained quickly by setting the gradient of the criterion to zero. 13/53



Lecture outline

2 — Principal components analysis

2.2 — Finding the optimal subspace: SVD



Notations
Let X be the matrix of observations:
()T )
(xn) " xH

We will assume, wlog, that x = 0.
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Notations
Let X be the matrix of observations:

()T )
(xn) " xH
We will assume, wlog, that x = 0.

We are looking for a matrix A such that

A = argmin ZH:H(Idp—AAT) X; ’
i=1

(15— aa") X7

= argmin

where ||.||z denotes the Frobenius norm:

IMI[z =" Mg =tr(MTM) =tr(MMT).
i
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Singular value decomposition (SVD)

Theorem
Let M be an n x p real matrix. There exist matrices
» U, orthogonal with size nx n (UTU =1d,),
> V/, orthogonal with size px p (VT V =1d,),
» D = diag(di,...,d,,0,...,0) with size n x p,
withd; >db>...>d, >0
such that :

M= UDV'T,

and r is the rank of both D et M.

Proof. See PC 8, bonus exercise. ]
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Singular value decomposition (SVD)
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» U, orthogonal with size n x n (UTU =1d,),
> V, orthogonal with size px p (VT V =1d,),

» D =diag(di,...,d,,0,...,0) with size n x p,
withdi; >do>...>d, >0
such that :
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Singular value decomposition (SVD)

Theorem

Let M be an n x p real matrix. There exist matrices
» U, orthogonal with size n x n (UTU =1d,),
> V, orthogonal with size p x p (VTV =1d,),

» D =diag(di,...,d,,0,...,0) with size n x p,
withdi; >do>...>d, >0
such that :

M= UDV'T,
and r is the rank of both D et M.

The scalars dy,...,d,,0,...0 are the singular values of M.
» d2...., d? are the non-zero eigenvalues of MM and MT M.

Proof. See PC 8, bonus exercise. ]
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Solution of the optimization problem
Let U, D and V be the matrices obtained from the SVD of X :

X =UDV'.

Fundamental Theorem of PCA

Let

> vi,v,...,V, the columns of V,

» Vg=(v1 | ... | vq) the submatrix with the first g columns.
Then

2
V, € argmin, H(IdP—AAT) XTHF,

where A ranges over the set of all p x g matrices with rank q.

16/53



Recap: PCA

Algorithm: Principal components analysis (PCA)

Computing the PCA of a sample (xi, ..., x,) consists in :
@ Computing the mean X and centering the data: x; < x; — X.
® Constructing the matrix X of centered data.

©® Computing the matrix V from the SVD of X
(the singular values are useful too, cf. next section)

O Reducing the dimension: z; = V(;rx,-.

Reconstruction. % = X + V,z;.
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Recap: PCA

Algorithm: Principal components analysis (PCA)

Computing the PCA of a sample (xi, ..., x,) consists in :
@ Computing the mean X and centering the data: x; < x; — X.
® Constructing the matrix X of centered data.

©® Computing the matrix V from the SVD of X
(the singular values are useful too, cf. next section)

O Reducing the dimension: z; = V(;rx,-.

Reconstruction. % = X + V,z;.

Vocabulary.
» vi,...,Vq (columns of Vg): principal axes.
(1) (@. inei
> z:/, ..., z;"': principal component.
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Example: handwritten digits  (not MNIST, another onel)

Data

: n = 658 images 16x16 of the digit “3" — p = 256

E Kl Kl K El E 5 E
Kl El K] &l k] E] E] E
KMEEEEFEE
k1 E] Kl &1 El B B K]
E]FJE]E!E' HB]

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

33333



Example: handwritten digits (cont'd)

Visualization of the first two principal axes

E] 5 B

mean X principal axis vq principal axis v»

Vi, X = X + ) Vi + zi(z)

1 V2
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Principal plane (2(1)’2(2))

component 2 (z(?)

component 1 (z(1)

Dashed lines: 5%, 25%, 50%, 75%, 95% quantiles.
Red dots: examples shown on the next slide.
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Interpretation of the components (z(1), z(2)) based on the 25
examples selected on the previous slide.

BB H KB
B K K E
B BB B ¥
B EE 8
‘HEHEEE

q5% q25% q50% q75% q95%



Lecture outline

2 — Principal components analysis

2.3 — Sample variance and covariance of PCA components



Sample covariance matrix of the components

Let 3~ denote the sample covariance matrix of the g components

$7 = L0 i(z-2)@-2)]
= %27:1 ziz) (car z = % Sz =0)
— T
= 1777

with Z=| : |. Recall that z; = V(;I—X,', and thus Z = XV,.
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Sample covariance matrix of the components

Let 3~ denote the sample covariance matrix of the g components

Yz = %27:1(21' —Z)(zi—2)T
%27:1 ZiZ,'T (car z = % 27:1 z;=0)

= %ZTZ
z/
with Z=| : |. Recall that z; = V(;I—X,', and thus Z = XV,
T
Zn

Using X = UDV'", we get

. 1
Yz ==V, VWD'DV'Y,
n
1 : 2 2
= ;dlag(dl,...,dq).
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Sample covariance matrix of the components (cont'd)

Conclusions.
: N2
» The (sample) variance of component zU) is =

m Components sorted by decreasing variance.
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Sample covariance matrix of the components (cont'd)

Conclusions.
, N2
» The (sample) variance of component zU) is =+

m Components sorted by decreasing variance.

» The (sample) covariances are equal to zero.

m The components are uncorrelated.

23/53



Total variance of a sample
Definition / Proposition
The total variance of the p-variate sample (xi, ..., x,) is

VT(x1,...,Xn) = ivar (x{j),...,x,(,j)) .

Jj=1

24/53



Total variance of a sample

Definition / Proposition

The total variance of the p-variate sample (xi, ..., x,) is

VT(x1,...,Xn) = ivar (xl(j),...,x,(,j)) .

j=1
With centered x;'s, we have

r

1

1
VT(x1,..0xm) = = tr(X'X) = - > d?.

J
j=1
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Total variance of a sample

Definition / Proposition

The total variance of the p-variate sample (xi, ..., x,) is
P
VT(x1,...,Xn) = Zvar (Xl(‘,), e ,x,(f)> .
j=1

With centered x;'s, we have
.

1 1
VT(x1,..0xm) = = tr(X'X) = - > d.
j=1

Proof. Using that the x;'s are centered, we have

P n
VT(x1,...,xn) = Z (}7 Z (X,_(J)>2) _ % X2 = %tr(XTX).

= i=1

Then, using X = UDV' ", with UT U =1d, and VTV =1d,, we obtain

VT (1. x0) = %tr(DTD) = %Z d?.
j=1

24/53



Proportion of explained variance

Total variance of the reconstructed sample (X1, ..., %,):

1 ore
VT (R1,..., %) = ;tr(XTX) =7
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Proportion of explained variance

Total variance of the reconstructed sample (X1, ..., X,):

1 AT oA
VT (%1,..., %) tr(XTX)=7.

n

Using X =2V, we get:
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Proportion of explained variance

Total variance of the reconstructed sample (X1, ..., X,):

1 ~ A
VT (%1,..., %) tr(XTX)=7.

n

Using X =2zV], we get:

Proportion of explained variance
The proportion of explained variance is defined as

VT (R, %) 2ojer OF

VT (x1,...,X:) >im1 dJ?'

25/53



Example: handwritten digits

100

2]
o
T

N
(=]
v

D

o

T
* . .-,...'
e

N
o
T

(MNIST, p = 28> = 784)

% explained variance
o

100 150 200 250

50
number of components (q)

Remark: similarity with the coefficient of determination (R?) in regression.
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Lecture outline

3 — Clustering
3.1 — Dissimilarity
3.2 — K-means algorithm
3.3 = Choice of the number of clusters



Definition : clustering, clusters

Let E = {x1, ..., xn} be a sample of n observations x; € X.
» We assume that X C RP, thus £ C R”.

T also called data partitioning.
27/53



Definition : clustering, clusters

Let E = {x1, ..., xn} be a sample of n observations x; € X.

» We assume that X C RP, thus E C RP.

Definitions

Clustering’ consists in partitioning the set E in K non-empty parts
Ex C E, 1 < k < K, that contain “similar’ observations.

The number K is either given or chosen automatically.

The sets Ej are called groups or clusters.

T also called data partitioning.
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Definition : clustering, clusters

Let E = {x1, ..., xn} be a sample of n observations x; € X.
» We assume that X C R”, thus E C R”.

Definitions

Clustering’ consists in partitioning the set E in K non-empty parts
E, C E, 1 < k < K, that contain “similar” observations.

The number K is either given or chosen automatically.

The sets Ej are called groups or clusters.

Notations.
» Denote by 7(k) = {i<n|x e E(k)} the indices in E.
» M= {m,..., T} is a partition of {1,...n}.

T also called data partitioning.
27/53



Example of clustering result

Example with p =2 and K =2

. .. « cluster E;
15 . 15 . = cluster E;
B x S
. .
1 e x 1 b
~ e Xé; ~ %
N— x ~— x % *
X 05 K % X 05 X Ex X
XX x x X i 3 XX x x
<k <k
0 :x 5 * 0 :X 555 *
P R X
T R
05f . .« 05f . * .«
- -
- 0 1 2 3 - 0 1 2 3
X1 x(1)

28/53



Lecture outline

3 — Clustering
3.1 — Dissimilarity



Dissimilarity: definition

We are looking for a partition such that, for all k,
» the instances’ in cluster Ex are “similar’ to each other,

» and as dissimilar as possible to those in other clusters.

T ak.a. “examples”, “observations’, “data”, “individuals”. ..
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Dissimilarity: definition

We are looking for a partition such that, for all k,
» the instances’ in cluster Ex are “similar’ to each other,

» and as dissimilar as possible to those in other clusters.

Definition

In clustering algorithms, we call dissimilarity the
function D : X x X — R that is used to measure the “distance”
between examples.

T ak.a. “examples”, “observations’, “data”, “individuals”. ..
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Dissimilarity: definition

We are looking for a partition such that, for all k,
» the instances’ in cluster Ex are “similar’ to each other,

» and as dissimilar as possible to those in other clusters.

Definition

In clustering algorithms, we call dissimilarity the
function D : X x X — R that is used to measure the “distance”
between examples.

Remark: not always a distance but satisfies in general
» the symmetry property: D(x,y) = D(y, x),
» the positivity property: D(x,y) > 0.

T ak.a. “examples”, “observations’, “data”, “individuals”. ..
20/53



Dissimilarity: examples

» General form:  D(x;, xi7) = J'-le d (X,-(j),X,-(/j))

> Quantitative variable: dj ( 0 m) =f (|XU) m]).

/71

Example: d; (x.(j) x.(j)) = (x-(j) — X-(,j)>2.

1

Remark: |t is often beneficial to normalize the variables:

)
(J) % (usual choice for s; : sample standard deviation)

» Qualitative variable: d; ( ) x( )> = cste |fx #* x (

I’I

otherwise)
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Within-cluster and between-cluster inertia
Let us write d;y = D(X,',X,'/).

Within-cluster inertia

Within-cluster inertia is defined as:

-1 >

k=1i,i"Emy

N —

(W=Within)
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Within-cluster and between-cluster inertia

Let us write d;y = D(X,',X,'/).

Within-cluster inertia

Within-cluster inertia is defined as:
1 K
W(n) = EZ Z d,','/.
k=1i,i'€mx
(W=Within)

Between-cluster inertia

Between-cluster inertia is defined as:
1
B =LY Y Y de
koK' £k i€y il €mps

(B=Between)
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Within-cluster and between-cluster inertia (cont'd)

Property
w(n)+B(N) = 3 >_iir dii

Definition

T =13,/ dis is the total inertia.

» Does not depend on the partition.

32/53



Within-cluster and between-cluster inertia (cont'd)

Property
W(n) + B(n) = % Z,‘y,’/ dijr

Definition
T= % Z,-’,-, d;i is the total inertia.

» Does not depend on the partition.

Proof of the property:

1 1
T= Y d =Y

i’ k,k’ i€

1 1
:§szﬁ/+§

k i,i"emy

T g I.,€7Tk/

D, DD dr

k,k'Zk i€, i’ €mys

w(mn)

B(M)

32/53



Optimal partition

We would like to find the optimal partition:

My, = argming W(M)

Remark: since W(M) + B(M) = T, N, = arg maxp B(MN).
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Optimal partition

We would like to find the optimal partition:

My, = argming W(M)

Remark: since W(M) + B(M) = T, N, = arg maxp B(MN).

Problem : this is a combinatorial optimization problem
» 34105 partitions for n = 10 and K = 4,
» ~ 7.510%! partitions for n = 20 and K = 5.

Solution : look for a sub-optimal solution
w K-means algorithm

33/53



Lecture outline

3 — Clustering

3.2 — K-means algorithm



Dissimilarity considered here : dj = ||x; — xj/||2.

With this choice of dissimilarity ( ):

K _
W) = > k1 n« Zieﬂk 1% — X |?

- _ 1 . _
where X, = Tl Ziem x; is the barycenter of the cluster, ny = |7k

%, is called the centroid of cluster k.

02 0 02 04 06 08 1
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Dissimilarity considered here : dj = ||x; — xj/||2.

With this choice of dissimilarity ( ):
w(n) =S¢ : ;— X2
(M) = 2 k=1 e 2iem, I1Xi — Xl
where X, = Ilel Ziem x; is the barycenter of the cluster, ny = |7k

%, is called the centroid of cluster k.

Principle of the K—means algorithm

Iteratively,
1 .
» Given a partition 1, compute the 08 lakts &st{é’r"{?oundary
centroids Xi. S 0
oo S
» Modify M in such a way that each 04
X; is associated to the cluster 7y 02
whose (current) centroid X is the S T
closest. x(1)

m \oronoi diagram
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K-means algorithm

Require: K >0 {number of clusters}
Require: (X10,...,Xx0) {centroids initialization}

t+ 0
repeat

{construction of I, from the centroids}

for all k do
Tke = {i s.t. k = argming || x; — Xk ¢||}
end for

{centroids update}

for all k do
—_ o 1 !
Rt = [ro] 2oieme, Xi
end for

t—t+1
until W(I_It,l) = W(I_It,z)
return 1,4

35/53



iteration 1 iteration 2 iteration 3
o . .o

iteration 5
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Properties of the K—means algorithm

Proposition
Let (¢),q denote the sequence of partitions constructed by the
algorithm.
Then, there exists T such that :
@ vVt< T, W(N,) < W(M_y),
® WMri) = W(Ny).

37/53



Properties of the K—means algorithm

Proposition

Let (M¢),~o denote the sequence of partitions constructed by the
algorithm.

Then, there exists T such that :
OVt T, W(I'It) < W(I_It_l),
® W(Nry) = W(My).

A The algorithm terminates in a finite number of iterations, but

» the partition 11 is not, in general, the optimal partition;

» it depends on the starting point (X0, ..., Xk0)-

m Recommended: several trials with random starting points.
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Example: handwritten digits

Consider the digits “6" and “9" (644 images each).

MMAMMANAENA
URTRTNTRCHCRONT
MMAMAFMNAEINEFE
CRCR/RYRORONCNC
N AENAR

33333



Example: handwritten digits

Represent each image by its first two principal components.

10

7(1)

10
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Example: handwritten digits

missclassification rate: 0.92%

7

* cluster E;

cluster E>

X centroids

— boundary
O mal classés

7

Note: here we use the labels, which are assumed unavailable in the non-supervised setting, to the sole

purpose of evaluating the quality of the partition that we have obtained.
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Lecture outline

3 — Clustering

3.3 — Choice of the number of clusters



Homogeneity / dispersion
Reminder. We are looking for a partition such that, for all k,
» the instances’ in cluster Ej are “similar’ to each other,

» and as dissimilar as possible to those in other clusters.

41/53



Homogeneity / dispersion
Reminder. We are looking for a partition such that, for all k,
» the instances’ in cluster Ej are “similar’ to each other,

» and as dissimilar as possible to those in other clusters.

Definition: dispersion measure

The dispersion of cluster Ej is (often) measured by

q

1
S« = | — E Xi — X ||9
’7Tk| H U H

i€y

with g a positive real number, to be chosenf.

Interpretation. The smaller Sy, the more homogeneous the
cluster.

T P.-H. Cournéde’s lecture notes and scikit-learn use g = 1. 41/53



Davies-Bouldin index
Definition: similarity of clusters E, and Ej

Sk + Sk

1% — X’

R = 1<k k<K, k#K.

Interpretation. The clusters are more dissimilar when their
dispersions are small with respect to the distance between their
centroids.
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Davies-Bouldin index

Definition: similarity of clusters E, and Ej

Sk + Sk

1%k — X ||

R = 1<k k<K, k+#K.

Interpretation. The clusters are more dissimilar when their
dispersions are small with respect to the distance between their
centroids.

Definition: Davies-Bouldin index of a partition

K
1
DB = R kz_:l Wi);iRk’k/

w» Use: choose K in order to minimize DB.
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Example: handwritten digits with digits 1, 6 and 9

DB(K)

0.76

0.77

0.79
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Example: handwritten digits with digits 1, 6 and 9

misclassification rate: 2.1%

* cluster £y
* cluster E,
* cluster E3
X centroids
‘' | boundary
=~ .t O mal classés

o %
o %o

e a
o 83, o030




Example: handwritten digits with all digits

7

digit 0
digit 1
digit 2
digit 3
digit 4
digit 5
digit 6
digit 7
digit 8
digit 9
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Example: handwritten digits with all digits

misclassification rate: 56%

* cluster £;
* cluster E;
cluster E3
* cluster E4
* cluster Eg
cluster Eg
* cluster E7
* cluster Eg
* cluster Eqg
* cluster Eqg
X centroids
— boundary
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Example: handwritten digits with all digits

Ep E> Es E4 Es Ee E7 Eg Eo Eio total
0" 498 | 0 22 6 260 | 82 64 0 262 | O 1194
“1" 0 1000 | 4 0 0 0 0 0 0 1 1005
2" 3 1 234 | 122 | 12 202 | 54 3 60 40 731
“3" 1 0 29 230 | 4 211 | 5 5 131 | 42 658
4" 0 21 70 112 2 42 3 144 19 239 652
5" 2 0 61 37 66 171 | 88 1 119 | 11 556
6" 3 6 135 | 0 128 | 43 335 | O 10 4 664
e 0 2 2 49 0 6 0 458 | 1 127 | 645
8" 2 7 82 138 | 1 93 1 17 41 160 | 542
‘9" 0 10 0 64 0 3 0 303 | 7 257 | 644
total | 509 | 1047 | 639 | 758 | 473 | 853 | 550 | 931 | 650 | 881 | 7291
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Example: handwritten digits with all digits

Ep E> Es E4 Es Ee E7 Eg Eo Eio total
0" 498 | 0 22 6 260 | 82 64 0 262 | O 1194
“1" 0 1000 | 4 0 0 0 0 0 0 1 1005
2" 3 1 234 | 122 | 12 202 | 54 3 60 40 731
“3" 1 0 29 230 | 4 211 | 5 5 131 | 42 658
4" 0 21 70 112 2 42 3 144 19 239 652
5" 2 0 61 37 66 171 | 88 1 119 | 11 556
6" 3 6 135 | 0 128 | 43 335 | O 10 4 664
e 0 2 2 49 0 6 0 458 | 1 127 | 645
8" 2 7 82 138 | 1 93 1 17 41 160 | 542
‘9" 0 10 0 64 0 3 0 303 | 7 257 | 644
total | 509 | 1047 | 639 | 758 | 473 | 853 | 550 | 931 | 650 | 881 | 7291

Poor result ™ need for a better dissimilarity measure !

(and, in particular, for a better representation)
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Lecture outline

4 — A taste of some (more) advanced methods



Non-linear dimension reduction

Nonlinear Dimensionality Reduction

* Many data sets contain essential nonlinear structures that
invisible to PCA.

48/53

source: Yan Xu, Houston Machine Learning Meetup, 2017



Example: auto-encoder

Input
—
i \\ R -~
— I / \
\ / \
] \
— //
— /
/ \ /
— p -~
/ A
L
A
Y
Encoder

Output

Decoder

source: https://towardsdatascience.com, Applied Data Deep Learning Part 3
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https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Clustering based on mixture models

source: bioinfo-fr.net
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Lecture outline

5 — Appendices
5.1 — Proof of the fundamental theorem of PCA

5.2 — Expressions of T and W(MM) for di = ||x; — xi/||?
5.3 — Silhouette of a partition



Lecture outline

5 — Appendices
5.1 — Proof of the fundamental theorem of PCA



Proof of the fundamental theorem of PCA
|(1d, — AAT) XT|[2 = |[VDTUT — AATVDTUT |2
Properties of the Frobenius norm: if U and V are orthogonal,
IvmuT|[7 = [|m][7.
Hence : ||(Id, — AAT) X||2 = |[DT — VTAATVDT 2.
Let .4, p,q denote the set of all rank g matrices of size n x p. Then

. . 2
Dy = diag(dh,...,dg,0,...,0) € argminyc 4, ||DT —MT|Z
(diagonal matrix with the g largest singular values).

We obtain the result by checking that V"V V] VDT =D, O
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Lecture outline

5 — Appendices

5.2 — Expressions of T and W(MM) for di = ||x; — xi/||?



Expressions of T and W/(N) for di» = ||x; — xi||?

T = 3% lx—xP
= %2/7;' [(xi — %) = (xir — X)|?
T S T
= n 3y, llx - x|

w(n) = %Zk Zi,i’ewk X — Xi’||2

= 32k 2iivem (i = %) = (xir — %12
= D ) Mk Zieﬂk [Ixi — %][?
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Lecture outline

5 — Appendices

5.3 — Silhouette of a partition



Silhouette of a partition

Another indicator of the quality of a partition I.
Let / € m. For each x;, define
> a(x;): average distance to other points in the same cluster

» b(x;): minimum average distance to points in another cluster
a(xi) = g Lien, X7 — xill

b(xi) = min (7 Sren,, I = xill)

k' #k

Interpretation : a(x;) < b(x;) if the clusters are homogeneous and well
separated.

Silhouette of partition I1

n

_1 b(xi) — a(x)
s(Mm) = - Z max(a(x), b(x))

Choice of the number K of clusters:
VI, s(M) < 1 and we choose the partition such that s(I1) is maximal.
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