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Lecture 3/9

Asymptotic distributions
and confidence intervals

Course objectives

◮ Take the asymptotic approach one step further,

introducing asymptotic distributions.

◮ Understand confidence intervals and learn how to construct

them (using asymptotic arguments if necessary)
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Lecture outline

1 – Convergence rate and asymptotic distribution

2 – Confidence regions and confidence intervals

3 – Standard exercises (with solutions)

4 – Appendices
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Recap: Mathematical framework

In this section:

◮ We consider a statistical model
(

X ,A ,
{

P
X
θ , θ ∈ Θ

})

,

assumed (most of the time) to be parametric (Θ ⊂ R
p).

◮ X1,X2, . . .
iid∼ Pθ, defined on a common (Ω,F ,Pθ).

◮ We want to estimate a “quantity of interest”:
◮ either θ itself (we assume in this case that Θ ⊂ R

p),

◮ or, more generally, η = g(θ) ∈ R
q.
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Probability refresher: the Central Limit Theorem (CLT)

Theorem

Let

◮ a sequence (Xn)n∈N∗ of IID random vectors taking values

in R
d , with finite second order moments.

◮ µ = E(X1) and Σ = var(X1) ∈ R
d×d .

Then :
√
n
(

X̄n − µ
) d−−−→

n→∞
N (0,Σ),

with X̄n =
1

n

∑n
i=1 Xi the sample mean.

⇒ The sample mean X̄n is said to be

◮ an asymptotically Gaussian estimator of µ ➠ def: asympt. normality

◮ with convergence rate 1√
n
. ➠ def: convergence rate
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Example: component reliability

Recall that

◮ Xi
iid∼ E(θ), θ > 0, and η = Eθ(X1) =

1
θ
.

◮ η̂n = X̄n is obtained by ML and the method of moments.

➠ Direct application of the CLT:
√
n
(

X̄n − η
) d−−−→

n→∞
N
(

0, η2
)

.
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Convergence rate
Let η̂n = η̂n(X1, . . . ,Xn) be a consistent estimator of η = g(θ).

Definition

If there exists a sequence (an)n∈N∗ of positive numbers such that:

◮ lim
n→∞

an = ∞,

◮ an (η̂n − η)
d−−−→

n→∞
Z ,

◮ where Z is a non-degenerate∗ random variable (or vector),

then η̂n converges to η at the rate 1
an

.

∗ We say that Z is degenerate if:

◮ scalar case: ∃c ∈ R, Z = c a.s.;

◮ vector case: ∃a ∈ R
q \ {0}, ∃c ∈ R,

∑q

j=1 ajZ
(j) = c a.s.

Remark. If Z has a second order moment, it can be shown that:

Z is non-degenerate iff its covariance matrix is invertible. ➠ Proof
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Asymptotic normality

Let η̂n = η̂n(X1, . . . , Xn) be a consistant estimator of η = g(θ).

Definition

If there exists

◮ a sequence (an)n∈N∗ of positive numbers s.t. lim
n→∞

an = ∞,

◮ a symmetric positive-definite matrix Σ(θ),

such that

an (η̂n − η)
d−−−→

n→∞
N (0,Σ(θ)) , (1)

then we say that η̂n is asymptotically normal.

Vocabulary. Σ(θ) is called the asymptotic covariance matrix

(asymptotic variance, in the scalar case).

Note: it can be proved that (1) with an → +∞ implies (weak)

consistency. ➠ Convergence in distribution to a constant
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The continuous mapping theorem

Theorem (Mann-Wald)

Let

◮ h : Rd → R
q a measurable function,

◮ Y a random vector, taking values in R
d ,

such that

h is continuous at the point Y , almost surely.

Then, for any sequence (Yn)n∈N∗ of RV with values in R
d ,

(i) Yn
as−→ Y ⇒ h(Yn)

as−→ h(Y ),

(ii) Yn
P−→ Y ⇒ h(Yn)

P−→ h(Y ),

(iii) Yn
d−→ Y ⇒ h(Yn)

d−→ h(Y ).

Proof: see CIP for the case where h is continuous. General case: admit.
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Example: component reliability (cont’d)

Recall that

◮ Xi
iid∼ E(θ), θ > 0, and η = Eθ(X1) =

1
θ
.

◮ η̂n = X̄n is obtained by ML and the method of moments.

Law of large numbers (strong and in L2):

η̂n = X̄n
as, L2

−−−→ η.

By the continuous mapping theorem:

θ̂n =
1

η̂n

as−→ 1

η
= θ,

therefore θ̂n is strongly consistent for the estimation of θ.

Remark: it can be shown that θ̂n is also consistent the L2 sense.
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Slutsky’s theorem

Theorem

Let

◮ (Xn)n∈N∗ a sequence of random vectors that converges in

distribution to a RV X :

Xn
d−−−→

n→∞
X ,

◮ (Yn)n∈N∗ a sequence of random vectors that converges in

distribution (therefore in probability) to a constant c :

Yn
d−−−→

n→∞
c ,

Then

(Xn,Yn)
d−−−→

n→∞
(X , c).

Remark: Yn
d−−−→

n→∞
c implies Yn

P−−−→
n→∞

c (constant limit).
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Example: component reliability (cont’d)

Recall that (CLT)
√
n
(

X̄n − η
) d−−−→

n→∞
N
(

0, η2
)

.

Since X̄n
as−−−→

n→∞
η (constant), we have by Slutsky’s theorem:

(√
n
(

X̄n − η
)

, X̄n

) d−−−→
n→∞

(Z , η) with Z ∼ N
(

0, η2
)

.

Therefore, by the continuous mapping theorem,

√
n

(

X̄n − η
)

X̄n

d−−−→
n→∞

Z

η
∼ N (0, 1) ,

since (z , y) 7→ z
y

is continuous at any point where y 6= 0.

Remark. This result will be used to construct an asymptotic CI. ➠ exercise 4
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Linearization method (“delta method”)

“Delta theorem” (scalar case)

Let (Yn)n∈N∗ be a sequence of RV with values in R, s.t.

√
n (Yn −m)

d−−−→
n→∞

Z ,

with Y a random variable, taking values in R, and m ∈ R.

Then, for any h : R → R that is differentiable at m,

√
n (h(Yn)− h(m))

d−−−→
n→∞

h′(m)Z ,

Intuition: h(y)− h(m) ≈ h′(m) (y −m).

➠ Proof
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Linearization method (“delta method”)

“Delta theorem” (vectorial case)

Let (Yn)n∈N∗ be a sequence of RV with values in R
d , s.t.

√
n (Yn −m)

d−−−→
n→∞

Z ,

with Y a RV taking values in R
d and m ∈ R

d .

Then, for any h : Rd → R
q that is differentiable at m,

√
n (h(Yn)− h(m))

d−−−→
n→∞

(Dh)(m)Z ,

with (Dh)(m) the Jcobian matrix of h at m:

(Dh)(m) =
(

(∂jhi )(m)
)

1≤i≤q, 1≤j≤d
.
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Delta theorem in the Gaussian case

Scalar case.

If
√
n (Yn −m)

d−−−→
n→∞

N (0, σ2), then
√
n (h(Yn)− h(m))

d−−−→
n→∞

N
(

0, (h′(m))2σ2
)

.

Vector case

If
√
n (Yn −m)

d−−−→
n→∞

N (0, Σ), then

√
n (h(Yn)− h(m))

d−−−→
n→∞

N

(

0, (Dh)(m) Σ (Dh)(m)⊤
)

.
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Example: component reliability (cont’d)

We already saw that:

◮ θ̂n = 1/X̄n is a consistent estimator of θ,

◮
√
n
(

X̄n − η
) d−−−→

n→∞
N
(

0, η2
)

, where η = 1
θ
.

Using the delta method with h(η) = 1
η

√
n

(

1

X̄n

− θ

)

d−−−→
n→∞

N

(

0, η2
(

h′(η)
)2
)

,

h′(η) = − 1
η2 =⇒ √

n
(

θ̂n − θ
)

d−−−→
n→∞

N
(

0, θ2
)

.

Conclusion: θ̂n is asymptotically Gaussian,

and its convergence rate is 1√
n
.
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Asymptotic comparison of (scalar) estimators (1/2)

With asymptotic variances.
Exemple of use with “component reliability” for η = Eθ(X1).

1) For η̂(1) = X̄n, we have (CLT):
√
n
(

η̂(1) − η
) d−−−→

n→∞
N
(

0, η2
)

.

2) For η̂(2) =
√

1

2n

∑n
i=1

X 2

i (see lecture #1) ?

◮ Since E
(

X 2
1

)

= 2η2 and E
(

X 4
1

)

= 24η4, we have (CLT):

√
n
(1

n

n
∑

i=1

X 2

i − 2η2

)

d−−−→
n→∞

N
(

0, 20 η4
)

.

◮ Hence, using the delta method with h(z) =
√

1

2
z ,

√
n
(

η̂(2) − η
)

d−−−→
n→∞

N

(

0,
5

4
η2

)

.
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Asymptotic comparison of (scalar) estimators (2/2)

In summary:

√
n
(

η̂(1) − η
)

d−−−→
n→∞

N
(

0, η2
)

,

√
n
(

η̂(2) − η
)

d−−−→
n→∞

N

(

0,
5

4
η2

)

.

We observe that

◮ the two estimators are asymptotically normal,

◮ have the same convergence rate,

◮ but the asymptotic variance of η̂(1) is smaller.

➠ We say that η̂(1) is asymptotically preferable to η̂(2).
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◮ the two estimators are asymptotically normal,

◮ have the same convergence rate,

◮ but the asymptotic variance of η̂(1) is smaller.

➠ We say that η̂(1) is asymptotically preferable to η̂(2).
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Asymptotic efficiency
Recall the Cramér-Rao lower bound (scalar parameter)

∀θ̂ regular UE of θ, ∀θ ∈ Θ ,

Rθ

(

θ̂
)

= varθ

(

θ̂
)

≥ 1

n
I−1
1 (θ),

with I1(θ) = varθ (Sθ(X1)).

➠ When equality holds for all θ, the estimator is called efficient.

Asymptotic efficiency

Definition. An estimator is called asymptotically efficient if

◮ it is asymptotically normal at the rate 1√
n
,

◮ with asymptotic variance I−1
1 (θ).

Remark: this definition is valid for the vector-valued case as well, replacing the

variance by the covariance matrix
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Asymptotic efficiency of the MLE
Context: X1,X2, . . .

iid∼ Pθ and, ∀θ ∈ Θ, Pθ admits a pdf fθ.

Definition: regular model

The statistical model is called regular if

◮ conditions C0–C2 are verified (def. given in lecture 2)

◮ The conditions C3 & C4 are verified ➠ Conditions C3 & C4

◮ ∀θ ∈ Θ, the Fisher information matrix I1(θ) is positive definite.

Theorem

If the statistical model is regular and if the MLE θ̂n is consistent,

then it is asymptotically efficient :

√
n
(

θ̂n − θ
)

d−−−→
n→∞

N
(

0, I−1
1 (θ)

)

.

➠ Counter-example with a non-regular model
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Fisher information in regular models

Reminder. The Fisher information brought by X is the matrix

I (θ) = varθ(Sθ) = Eθ

(

Sθ S
⊤
θ

)

.

Proposition: another expression for the FIM

In a regular model, we have

I (θ) = −Eθ

(

∇θ

(

S⊤
θ

))

, (⋆)

In other words : ∀θ ∈ Θ, ∀j ≤ p, ∀k ≤ p,

(I (θ))j,k = −Eθ

(

∂

∂θj
S
(k)
θ

)

= −Eθ

(

∂2

∂θj∂θk
ln fθ(X )

)

.

Remark: actually, if C0–C3 hold, then C4 and (⋆) are equivalent.
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Example: component reliability (cont’d)

Question: is θ̂n = 1/X̄n asymptotically efficient?

We have already computed the score: Sθ(X1) =
1

θ
− X1.

Computation of Fisher’s information (two approaches):

Comput. of Eθ

(

Sθ(X1)
2
)

I1(θ) = varθ(X1) = η2 = 1

θ2

Comput. of −Eθ

(

∂Sθ

∂θ
(X1)

)

I1(θ) = −Eθ

(

− 1

θ2

)

= 1

θ2

Conclusion: since
√
n
(

1

X̄n
− θ
)

d−−−→
n→∞

N
(

0, θ2
)

,

θ̂n = 1

X̄n
is asymptotically efficient.

➠ We recover the conclusions of the theorem (C0–C4 hold indeed).
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Motivation

Problem

A point estimator necessarily makes some estimation error.

How can we “report” this error?

Two approaches:

◮ provide, in addition to the estimated value,
◮ the distribution of the estimator η̂, exact or approximate,
◮ or at least some “measure of dispersion”

(e.g., its standard deviation);

◮ give, instead of a point estimation η̂,

a confidence interval for η.
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Coverage probability

Reminder. η = g(θ).

Let

◮ P(N) the power set (set of all subsets) of N = g(Θ).

◮ a statistic C (X ) with values in P(N).

Goal. Having η ∈ C (X ) with high probability.

Definition

For θ ∈ Θ, the coverage probability of C (X ) is defined as:

Pθ (η ∈ C (X ))

△! In general, the coverage probability depends on the underlyign

distribution, i.e., on θ.
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Confidence regions and confidence intervals

We aim to control the coverage probability.

Let α ∈ ]0, 1[.

Definition: confidence region with level 1 − α

A confidence region with level (at least) 1 − α for η is a statistics

C (X ) taking values in P(N), such that:

∀θ ∈ Θ, Pθ (η ∈ C (X )) ≥ 1 − α.

We say that C (X ) is a confidence region with level exactly 1 − α if

∀θ ∈ Θ, Pθ (η ∈ C (X )) = 1 − α.

(Some authors also write: of “size” 1 − α.)

Scalar case. If C (X ) is an interval, it is called a confidence interval.
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Example: N (µ, σ2
0) n-sample, with known σ

2
0

Since X̄ ∼ N

(

µ,
σ2

0

n

)

, T =
√
n X̄−µ

σ0
∼ N (0, 1), for α = 5%:

Pµ

(√
n X̄−µ

σ0
∈ [−1.96, 1.96]

)

≈ 1 − α = 95%,

where 1.96 is the quantile of order 97.5% of the distribution N (0, 1).

➠ def.: quantile

-1.96 0 1.96
0

0.1

0.2

0.3

0.4

95%

2.5% 2.5%

N (0, 1)

We “pivot” to obtain a CI with level exactly 95% :

√
n X̄−µ

σ0
∈ [−1.96, 1.96] ⇔ µ ∈ C (X ) =

[

X̄ − 1.96 σ0√
n
, X̄ + 1.96 σ0√

n

]

.
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Interpretation: simulations

We simulate 100 realizations with µ = 10 and σ0 = 1.

9 9.5 10.5 11

IC #1

IC #100

µ = 10

In red: realizations where the IC does not contain µ = 10.

➠ The proportion of cases where the CI does not contain µ is (approx.) α.
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Pivotal functions

The method can be formalized using pivotal functions.

Definitions

A function

T : X × N → R

is called pivotal if the distribution of the RV T = T (X , η) does not

depend on θ. We say that the distribution of T (X , η) is free from

the parameter.

Back to the example: X1, . . . ,Xn
iid∼ N (µ, σ2

0) with known σ0.

Then T =
√
n X̄n−µ

σ0
is pivotal since

√
n
X̄n − µ

σ0
∼ N (0, 1).

Remark: we can also choose T =
√
n
(

X̄n − µ
)

∼ N (0, σ2
0).
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Probability refresher: quantiles

Definition: quantile of order r

Let F (x) be the cdf of a probability distribution on R.

For 0 < r < 1, the quantile of order r of the distribution is defined

as:

qr = inf {x ∈ R, F (x) ≥ r} = min {x ∈ R, F (x) ≥ r} .

Properties:

◮ If F is continuous, then F (qr ) = r .

◮ If, in addition, F is strictly increasing, then qr = F−1(r).
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Quantile function of the N (0, 1) distribution

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
0

0.5

1

0 0.5 1

fX (x) F (x)

qr

x

r

-0.84

-0.84-0.84

0.2

0.2



31/69

How to use pivotal functions

Let T (X , η) be a pivotal function and α ∈ ]0, 1[.

Proposition

Assume that the cdf F of T (X , η) is continuous and strictly

increasing, and denote by qr = F−1(r) the quantile of order r .

Then, for all γ ∈ [0, α] :

Cγ (X ) = {η ∈ N such that qγ ≤ T (X , η) ≤ qγ+1−α}
= T−1 (X , [qγ , qγ+1−α])

is a confidence interval for η with level exactly 1 − α.

Proof. Pθ (g(θ) ∈ Cγ (X )) = Pθ (qγ ≤ T (X , η) ≤ qγ+1−α)

= F (qγ+1−α)− F (qγ) = 1 − α
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Example: N (µ, σ2
0) n-sample, with known σ

2
0

Consider once more the pivotal function

T (X , µ) =
√
n

(

X̄ − µ
)

σ0
∼ N (0, 1).

For all γ ≤ α, we obtain a CI with level (exactly) 1 − α:

Cγ =

[

X̄ − σ0√
n
q1−α+γ , X̄ − σ0√

n
qγ

]

,

with qr the quantile of order r of the N (0, 1) distribution.

For instance, with γ = α
2 and α = 0.05:

−q1−α+γ = −q0.975 ≈ −1.96

−qγ = −q0.025 ≈ +1.96
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How to choose γ ?

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

-4 -3 -2 -1 0 1 2 3 4

0

0.2

0.4

Density of the N (0, 1) distribution and corresponding quantiles

for α = 0.1 and several values of γ (in red: qγ+1−α − qγ).

Usual criterion: value s.t. the CI has minimal length (here γ =
α

2
).
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Example: component reliability (cont’d)

It can be proved that:

T (X , η) =
X̄

η
∼ Γ (n, n) .

Thus, a CI with level exactly 1 − α is :

Cγ =

[

X̄

qγ+1−α
,
X̄

qγ

]

,

with qr the quantile of order r of the Γ(n, n) distribution.

Choice of γ: we can take γ = α
2

for simplicity, or search numerically for the

value γ such that the length 1/qγ − 1/q1+γ−α is minimal.
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Example: component reliability (cont’d)

0 q
-
=0.47954 1 q

+
=1.7085 2 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2.5%

2.5%

Numerical application:

pdf of η̂(1)

η
d
en

si
ty

[qγ , qγ+1−α]

η̂(1)

η

Probability density function of the pivotal distribution Γ(n, n)

and corresponding quantiles for α = 0.05 and γ = α
2 .
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Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.

◮ Intervals with “approximate guarantees” will be obtained.

◮ Computation becomes easier using the previously introduced

tools

(CLT, Slutsky, delta method. . . ).

△! Any analysis carried out in an asymptotic setting is

approximate when n is finite.

➠ The results can be poor for small n. . .
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Asymptotic confidence regions (intervals)

We set X n = (X1, . . . ,Xn). Recall that η = g(θ) and N = g(Θ).

Definition: asymptotic confidence region

An asymptotic confidence region with level (at least) 1 − α is a

statistic Cn(X n), with values in P(N), such that

∀θ ∈ Θ, lim
n→∞

Pθ (g(θ) ∈ Cn (X n)) ≥ 1 − α.

(variant: “exactly” if equality holds for all θ.)

Recall that for an “exact” CR with level (at least) 1 − α ,

∀θ ∈ Θ, Pθ (g(θ) ∈ Cn (X n)) ≥ 1 − α

(here, “exact” means “non asymptotic”).
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Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

Their use is illustrated in:

◮ the parameter of a Rayleigh distribution ➠ exercise 3

This is an exercise mixing definitions and questions.

◮ the component reliability example ➠ exercise 4

It can be proved that

Cn =

[(

1 − 1√
n
q1−α

2

)

X̄n,

(

1 +
1√
n
q1−α

2

)

X̄n

]

is an asymptotic CI with level 1 − α for η where qr the

quantile of order r of the N (0, 1) distribution.

△! The design of asymptotic CI is part of the course (and exam).
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△! The design of asymptotic CI is part of the course (and exam).
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Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

Their use is illustrated in:

◮ the parameter of a Rayleigh distribution ➠ exercise 3

This is an exercise mixing definitions and questions.

◮ the component reliability example ➠ exercise 4

It can be proved that

Cn =

[(

1 − 1√
n
q1−α

2

)

X̄n,

(

1 +
1√
n
q1−α

2

)

X̄n

]

is an asymptotic CI with level 1 − α for η where qr the

quantile of order r of the N (0, 1) distribution.

△! The design of asymptotic CI is part of the course (and exam).
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Summary and preview

We have seen and will practice in PC 3:

◮ the tools to establish the convergence in distribution and the

convergence rate of a sequence of estimators,

◮ The use of the (asymptotic) distribution of a sequence of

estimators to construct confidence intervals or regions.

We will cover in Lecture 4:

◮ decision-making through statistical hypothesis testing,

◮ the construction of such a test,

◮ the risks associated with this decision.
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Exercise 1 (Estimation of the probability of an event) ➠ solution

Let (Xn)n≥1 be a sequence of IID RV with values in (X ,A ).

For a given A ∈ A , we estimate η = P (X1 ∈ A) by:

η̂n =
1

n

n
∑

i=1

1Xi∈A.

Question

Study the asymptotic behaviour of η̂
(1)
n .
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Exercise 2 (Asymptotic distribution) ➠ solution

Let X1, . . . ,Xn
iid∼ E (θ), with θ > 0.

Let η denote the probability of exceeding a given threshold x0 > 0:

η = Pθ(X ≥ x0) = exp (−θx0) .

Questions

1 Study the asymptotic behaviour of the sample mean X̄n.

2 Propose an estimator η̂
(1)
n as a function of X̄n, using the

substitution method.

3 Study the asymptotic behaviour of η̂
(1)
n .

4 Let η̂
(2)
n = 1

n

∑n
i=1 1Xi≥x0 . Is one of the estimators

asymptotically preferable to the other?
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Exercise 3 (Rayleigh distribution: asymptotic CI) ➠ solution

This is a long exercise about the concept of asymptotic

confidence interval.

Let X1, . . . ,Xn
iid∼ R

(

σ2
)

, with σ2 > 0. ➠ Rayleigh distribution

Questions ➊-➌ detail how to obtain asymptotic IC using

asymptotic pivotales functions.

Questions ➍-➎ show how to compute coverage probability in the

context of asymptotic confidence intervals.
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Exercise 3 (Rayleigh distribution: asymptotic CI) ➠ solution

Definition

A (sequence of) function(s)

Tn : X n × N → R

is an asymptotic pivotal function if the limit distribution of

Tn (X n, η) does not depend on θ :

Tn (X n, η)
d−−−→

n→∞
T∞.

where T∞ is a RV whose distribution is free of θ.

Definition given with the lesson notations

➠ For the exercise, η = θ = σ2.
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Exercise 3 (Rayleigh distribution: asymptotic CI) ➠ solution

How to use asymptotic pivotal functions:

➠ exactly as we used the non-asymptotic ones !

➠ The obtained intervals are asymptotic confidence intervals.

Questions

1 Give the asymptotic distribution of X̄n =
1

n

n
∑

i=1

Xi

2 Using the asymptotic distribution of X̄n, propose an

asymptotic pivotal functions,

3 Give a confidence interval for η with level exactly 1 − α.
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Exercise 3 (Rayleigh distribution: asymptotic CI) ➠ solution

Reminder : the coverage probability of a CI is its true level.

Computing the coverage probability of Cn (X n) requires the use of

Cumulative distribution function (CDF) of Tn.

Here, Tn depends on X̄n whose distribution is not a standard one.

➠ The CDF can however be numerically computed..

Questions

4 Show that
1

σ

n
∑

i=1

Xi ∼ SR(n, 1)

where F (n) is the CDF of the SR(n, 1) distribution.

➠ Sum of Rayleigh distributions.

5 Give the coverage probability of Cn (X n) as a function of F (n).
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Exercise 4 (Asymptotic CI for the Component reliability

application) ➠ solution

Reminder about “Component reliability”

➠ (X1, . . . ,Xn)
iid∼ E(θ) et η =

1

θ

Questions

1 Show that

Tn =
√
n

(

X̄n − η
)

X̄n

d−−−→
n→∞

N (0, 1).

is an asymtotically pivotal function (voir exercise 3 for a

definition of this term).

2 Use this pivotal function to design an asymptotic CI with level

1 − α.

3 Determine the cov. prob. of the obtained asymptotic CI.

➠ back to slide 38



Lecture outline

1 – Convergence rate and asymptotic distribution

2 – Confidence regions and confidence intervals

3 – Standard exercises (with solutions)

3.1 – Questions

3.2 – Solutions

4 – Appendices



47/69

Solution of exercise 1 ➠ back to questions

Using the CLT with Yi = 1Xi∈A
iid∼ Ber(η):

√
n (η̂n − η)

d−−−→
n→∞

N (0, η(1 − η)) .

Concl.: if 0 < η < 1, then η̂n is asymptotically Gaussian, with

◮ convergence rate: 1√
n
,

◮ asymptotic variance: η(1 − η).
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Solution of exercise 2 ➠ back to questions

➊ Using CLT:

√
n

(

X̄n −
1

θ

)

d−−−→
n→∞

N

(

0,
1

θ2

)

➋ η = exp

(

−x0
1
θ

)

= h
(

1
θ

)

with h : u 7→ exp
(

−x0

u

)

continuous on R
∗
+.

Applying method of moments with X̄n estimator of 1
θ

:

η̂
(1)
n = h

(

X̄n

)

= exp

(

− x0

X̄n

)
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Solution of exercise 2 ➠ back to questions

➌ h is differentiable on R
∗
+ with h′(u) =

x0

u2
exp

(

−x0

u

)

.

Using the Delta-theorem in the Gaussian cae, we get:

√
n

(

h
(

X̄n

)

− h

(

1

θ

))

d−−−→
n→∞

N

(

0, h′
(

1

θ

)2 1

θ2

)

Let: √
n
(

η̂
(1)
n − η

)

d−−−→
n→∞

N

(

0, (x0θ exp (−θx0))
2
)

The asymptotic variance of η̂
(1)
n is σ2

1(θ) = (x0θ exp (−θx0))
2.
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Solution of exercise 2 ➠ back to questions

➍ η̂
(2)
n =

1

n

n
∑

i=1

Zi with Zi = 1Xi≥x0 =⇒
{

Z1, . . . ,Zn IID

Z1 ∼ Ber(η)

Using the result of exercise 1: ➠ Exercise 1

√
n
(

η̂
(2)
n − η

)

d−−−→
n→∞

N (0, η(1 − η))

with η = exp (−θx0), we obtain the asymptotic variance:

σ2
2(θ) = exp (−θx0) (1 − exp (−θx0)) .
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Solution of exercise 2 ➠ back to questions

Let ∆(θ) = σ2
2(θ)− σ2

1(θ).

∆(θ) = exp (−θx0)
(

1 − exp (−θx0)− x2
0θ

2 exp (−θx0)
)

= exp (−θx0)ϕ(θx0)

with ϕ(u) = 1 − exp(−u)(1 + u2).

Analyzing the sign of the derivative of ϕ leads to ϕ > 0 on R+.

η̂
(1)
n is asymptotically preferable to η̂

(2)
n .
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Solution of exercise 2 ➠ back to questions

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Plots of bothasymptotic variances for x0 = 2.0.
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Solution of exercise 3 ➠ back to questions

➊ Direct application of the CLT:

√
n

(

1

n

n
∑

i=1

Xi − σ

√

π

2

)

d−−−→
n→∞

N

(

0, σ2
(

2 − π

2

))

.

√
n









X̄n

σ
−
√

π

2
√

2 − π

2









d−−−→
n→∞

N (0, 1) .

➋ Thus:

Tn =
√
n









X̄n

σ
−
√

π

2
√

2 − π

2









is an asymptotic pivotal function.
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Solution of exercise 3 ➠ back to questions

➌ Since Tn
d−−−→

n→∞
N (0, 1), we have with asymptotic probability

1 − α that:

−q1−α
2
≤

√
n









X̄n

σ
−
√

π

2
√

2 − π

2









≤ q1−α
2

with qr the quantile of order r of the N (0, 1) distribution.

It comes the asymptotic confidence intervals with level 1 − α :

√

2

π
X̄n

1

1 +
q1−α

2√
n

√

4

π
− 1

≤ σ ≤
√

2

π
X̄n

1

1 −
q1−α

2√
n

√

4

π
− 1
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Solution of exercise 3 ➠ back to questions

The asymptotic CI can be simplified with a Taylor approximation:

Asymptotic CI with level (exactly) 1 − α for σ

Cn =

√

2

π
X̄n

[

1 −
q1−α

2√
n

√

4

π
− 1, 1 +

q1−α
2√
n

√

4

π
− 1

]
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Solution of exercise 3 ➠ back to questions

➍ As Xi ∼ R(σ2). σ is a scale parameter :
Xi

σ
∼ R(1).

As Xi are IID, it comes
1

σ

n
∑

i=1

Xi ∼ SR(n, 1).

➎ Coverage probability of In (X n)

Pθ (σ ∈ Cn (X n)) = Pθ

(

an ≤ 1

σ

n
∑

i=1

Xi ≤ bn

)

= F (n)(bn)− F (n)(an)

with















an = n

√

π

2
−√

n

√

2 − π

2
q1−α

2

bn = n

√

π

2
+
√
n

√

2 − π

2
q1−α

2

Remark. Here the coverage probability does not depend on θ.

This is a special case because σ is a scale parameter.
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Solution of exercise 3 ➠ back to questions

10
0

10
1

10
2

0.95

0.955

0.96
coverage probability
1 − α

sample size n

Coverage probability of the asymptotic CI Cn(X n) with α = 5%.

Remark. Observe that we have indeed a confidence interval with asymptotic

level (exactly) 1 − α:

∀θ, lim
n→∞

Pθ (σ ∈ Cn (X n)) = 1 − α.
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Solution of exercise 4 ➠ back to questions

➊ It has already been shown (CLT, Slutski, Mann-Wald) that

Tn (X n, η) =
√
n

(

X̄n − η
)

X̄n

d−−−→
n→∞

∼ N (0, 1) ,

➠ Thus, Tn is an asymptotic pivotal function.

➋ Asymptotic CI with level (exactly) 1 − α for η :

Cn =

[(

1 − 1√
n
q1−α

2

)

X̄n,

(

1 +
1√
n
q1−α

2

)

X̄n

]

with qr the quantile of order r of the N (0, 1) distribution.
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Solution of exercise 4 ➠ back to questions

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

Numerical application:

valeurs de T = X̄
η

valeurs de Tn =
√
n
(

1 − η

X̄

)

d
en

si
ty

d
en

si
ty

[

q
Γ(n,n)
α

2
, q

Γ(n,n)
1−α

2

]

[

q
N (0,1)
α

2
, q

N (0,1)
1−α

2

]

△! Do not confuse intervals on pivotal functions
[

qα

2
, q1−α

2

]

and confidence interval for η.



60/69

Solution of exercise 4 ➠ back to questions

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

η̂
CI
asympt. CI

sample size n

Comparison of exact and asymptotic CIs, as a function of n
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Solution of exercise 4 ➠ back to questions

➌ Coverage probability of In (X n)

Pθ (η ∈ Cn (X n)) = Pθ

(

η ∈
[(

1 − 1√
n
q1−α

2

)

,
(

1 + 1√
n
q1−α

2

)]

X̄n

)

= Pθ

(

1

1 + 1√
n
q1−α

2

≤ X̄n

η
≤ 1

1 − 1√
n
q1−α

2

)

Since (reminder)
X̄n

η
∼ Γ (n, n), it comes:

Pθ (η ∈ Cn (X n)) = F Γ(n,n)

(

1

1 − 1√
n
q1−α

2

)

−F Γ(n,n)

(

1

1 + 1√
n
q1−α

2

)

with F Γ(n,n) the cdf of the Γ(n, n) distribution.
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Solution of exercise 4 ➠ back to questions

10
1

10
2

10
3

10
4

0.86

0.88

0.9

0.92

0.94

0.96

coverage probability
1 − α

sample size n

Coverage probability of the asympt. CI with level 95%

Remarks.

◮ The property ∀θ, lim
n→∞

τ cn,θ (Cn(X n)) ≥ 1 − α is verified.

◮ Usually the coverage probability depends on θ. It is not the case here

because η is a scale parameter.
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Proof

As Z has a moment of order 2, we can define:

◮ its mean µ = E(Z ),

◮ its covariance matrix ΣZ = E((Z − µ)(Z − µ)⊤).

We start by noting that if it exists a ∈ R
q \ {0} and c ∈ R s.t.

a⊤Z = c ; a.s., then c = a⊤µ.

An intermediate result

Let V be a positive scalar random variable. We have :

E(V ) = 0 ⇐⇒ V = 0 a.s. (∗)
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Proof (cont’d)

Let a ∈ R
q \ {0} et c ∈ R.

a⊤Z = c a.s. ⇐⇒ a⊤(Z − µ) = 0 a.s.

⇐⇒ a⊤(Z − µ)(Z − µ)⊤a = 0 a.s.

⇐⇒ E(a⊤(Z − µ)(Z − µ)⊤a) = 0 (utilisant (∗))
⇐⇒ a⊤ΣZa = 0

As the matrix ΣZ is positive-definite, a⊤ΣZa = 0 (with a 6= 0) is

equivalent to a ∈ Ker(ΣZ ).

Thus,

Z dégénérée ⇐⇒ ∃a 6= 0 t.q. a⊤Z = c a.s.

⇐⇒ ∃a 6= 0 ∈ Ker(ΣZ )

⇐⇒ ΣZ non inversible

➠ back to slide 7
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Relation between convergence in distribution and in proba.
We already know that convergence in probability implies convergence in

distribution. Let (Yn)n∈N∗ be a sequence of RV with values in R
d .

Proposition

If Yn
d−→ c, with c ∈ R

d a constant, then Yn
P−→ c.

Corollary

If there exists c ∈ R
d ,

◮ a RV Z with values in R
d ,

◮ a sequence (an)n∈N∗ of real numbers such that lim
n→∞

an = ∞,

such that

an (Yn − c)
d−−−→

n→∞
Z

then

Yn
P−−−→

n→∞
c.

Proof (exercise): use above proposition and Slutsky’s theorem (see below).

➠ back to slide 8
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Proof “Delta-theorem” (scalar case)

Consider the function ψ defined by :

ψ(y) =







h(y)− h(m)

y −m
si y 6= m,

h′(m) si y = m;

ψ is continuous at m because h est differentiable at m. Since Yn
d−−−→

n→∞
m,

ψ(Yn)
d−−−→

n→∞
ψ(m) = h

′(m),

and thus (Slutsky)

(√
n(Yn −m), ψ(Yn)

) d−−−→
n→∞

(

Z , h′(m)
)

.

Finally, we have

√
n (h(Yn)− h(m)) =

√
n (Yn −m)ψ(Yn)

d−−−→
n→∞

h
′(m)Z .

➠ back to slide 13
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Regular models: regularity conditions C3 and C4

Reminder: C0, C1 and C2 were defined in Lecture #2.

Regularity condition C3

θ 7→ fθ(x) is twice continuously differentiable for ν-almost all x .

Regularity condition C4

At any point θ ∈ Θ, we have

∫

S
∇θ∇⊤

θ fθ(x) ν(dx) = ∇θ

∫

S
∇⊤

θ fθ(x) ν(dx).

In other words: ∀θ ∈ Θ, ∀k ≤ p, ∀j ≤ p,

∫

S

∂2fθ(x)

∂θk∂θj
ν(dx) =

∂

∂θk

∫

S

∂fθ(x)

∂θj
ν(dx).

➠ back to slide 20



68/69

Example: an MLE that is not asymptotically Gaussian

Let X1, . . . ,Xn
iid∼ U[0,θ], with θ > 0 unknown.

△! This model is not regular (why?).

It can be proved that (cf. PC 1, exercise 1.2)

◮ θ̂n = maxi≤n Xi is the MLE of θ, and

◮ n
(

θ̂n − θ
)

d−−−→
n→∞

−Z with Z ∼ E
(

λ =
1

θ

)

.

In this particular case

➠ the MLE is not asymptotically Gaussian;

➠ the convergence rate is 1
n
: faster than 1√

n
.

➠ back to slide 20
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The Rayleigh R
(

σ
2
)

distribution
X ∼ R

(

σ2
)

if X admits the pdf

f (x) =
x

σ2
exp

(

− x2

2σ2

)

1R+(x).

Moments

◮ mean : Eσ(X ) = σ

√

π

2

◮ variance : varσ(X ) = σ2

(

2 − π

2

)

Property

if X ∼ R(σ2) then Y = X 2 ∼ E
(

1

2σ2

)

.

Sum of Rayleigh distributions

We define (for the exercise) the following distribution:

If (X1, . . . ,Xn)
iid∼ R(σ2), then Z =

n
∑

Xi ∼ SR(n, σ2).
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