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Lecture 5/9

Bayesian estimation

Course objectives

» Introduce the concept of prior information.
» Present the basics of the Bayesian approach.

» Demonstrate how to construct estimators using prior
information.
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L ecture outline

1 — Introduction: the Bayes risk

2 — Bayesian statistics: prior / posterior distribution
3 — Choosing a prior distribution

4 — Bayes estimators

5 — Standard exercices (with solutions)

6 — Appendices
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L ecture outline

1 — Introduction: the Bayes risk




Recap: comparing estimators

Quadratic risk: Rp(f)) = Eg (||} — g(8)|?).

Definition

We say that 7’ is (weakly) preferable to 7 if
> V0 €O, Ry(7) < Ro(),

We say that it is strictly preferable to # if, in addition,
> 30 € O, Ro(77') < Ra(),

Remarks
» The relation “is preferable to" is a partial order on risk functions.

» In general there is no optimal estimator, i.e., no estimator that
is preferable to all the others (unless we restrict the class of
estimators that is considered).
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Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions cannot be compared:

@ the minimax (or “worst case”) approach:

Rmax(ﬁ) - Zgg R@(ﬁ),

m» not discussed in this class;

@® the Bayesian (or “average case”) approach:
RBayes,w (ﬁ) - /@RG (ﬁ) 7T(d9),
where 7 is a probability measure on ©, to be chosen.

m this is the topic of this lecture.
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Example: white balls / red balls (see lecture #1)
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Observation: 910 < HAa,

m the second estimator provides smaller estimates
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Example: white balls / red balls (with n = 10)

0101—0 =X
N —0 =4,
Qc:b 0.05H 9A: 9Ab
e 4_——_“-=====:::::
0 | | | |
0 0.2 0.4 0.6 0.8 1
0
é\ = )_< é\ — é\a é\ = éb
" 0.025 ~ 0.0208 ~ 0.1246
Rmax (0) : : N
an 4(n + 2) (n+7)2
R (9) ~ 0.0167 ~ 0.0162 ~ 0.0456
' Bayes, ) o " 6o
Wlth T~ u[o,l] a 6(n+ 2)2 6(n + 7)2
Reayes,~ () ~ 0.0107 ~ 0.0129 ~ 0.0089
. ves.m 3 3n+22 3n+ 42
with 7 ~ Beta(1, 6) P~ S8(a £ 2F sl 77

Establish the expressions of Rmax and Rpayes, » for 6 = X.

& valid for n <77
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Unknown parameter — random variables

We will assume from now on a dominated model: pdf fy(x).

Consider the Bayesian risk (quadratic, in this case)

RBayes,W (ﬁ) — /@RH (7,7\) 7T(de)

_ /e Eq (|7 — (0)]2) ().

[t can be re-written as :

Reayess(1) = [ /X 1Ak — g @) e v(dx) w(d6)

Proba. measure on X x ©
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Unknown parameter — random variables (cont'd)
Let us introduce a new random variable ¥, such that
(X, 9) ~ fy(x)v(dx) m(dO). (%)
Then the Bayesian risk can be re-written more simply as:

RBayes,ﬂ' = ]E(||ﬁ_g(19)‘|2)7

where the expectation is, this time, over both X and 4.

Bayesian approach

In Bayesian statistics, the unknown parameter 6 is (also) modeled
as a random variable.

(Technical remark: the introduction of a new random variable 9 such that (x) holds is always possible, if

we are willing to replace the underlying set Q by Q = Q x ©, provided that © is endowed with a
o-algebra g such that 6 — Py(E) is Fg-measurable for all E € F.)
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L ecture outline

2 — Bayesian statistics: prior / posterior distribution

Bayesian statistical models

Technical assumptions: we assume from now on that
» O is endowed with a o-algebra Zg, e.g., if © C R?, %o = B(0O);
» O+ Py(E) is Fo-measurable for all E € .F (o-algebra on Q).

Definition
A Bayesian statistical model consists of

» a statistical model as previously defined:
(. 2, {PY.0c0}),
» a probability distrib. 7, called prior distribution, on (©, Zg).

Dominated model — makes it possible to define a likelihood.
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Joint, prior, and posterior distributions

Recall that we have introduced a new random variable 19, such that
(X, 9) ~ fo(x)v(dx) m(d6). (%)

Bayesian vocabulary

We call:
» joint distribution the distribution of X and ¥, that is, (%),
» prior distribution the marginal distribution PY of 9, that is, ,
> posterior distribution the distribution PYIX of ¥ given the data.

Interpretation (“subjective Bayes")

» prior distribution — knowledge about 6 before data acquisition

» posteriori distribution — ... after data acquisition
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By the way. .. what is a conditional distribution 7

General definition: beyond the scope of this lecture!
(= uses the notion of kernel)

Let (U, V) be a pair of random variables (or vectors) that admits a
density with respect to a product measure 11 ® v».

We will define PVIV=Y as the measure with density

FUV(u,v)

T = gy

with respect to vy, for all u such that fY(u) > 0.

Then we have, for any mesurable function ¢ s.t. (U, V) € L},

E(o(U, V)| U) 22 /@ o(U,v) V(v | U)ia(dv).

12/42




Joint and marginal densities

We will assume’ from now on that 7 admits a pdf
» wrt a measure p on (©, %g), e.g., Lebesgue measure,
» we will write (abusively): 7(d#) = 7(0) p(d0).

Proposition
The joint distribution admits the joint pdf
FX0)(x,0) = fy(x) 7(0),
and the corresponding marginal densities are
f(8) = =(9),
() = [ ) 7(6) o).

T: This is not actually an assumption, since we can always use p = 7 (with the pdf equal to 1). 13/a2

Proof

Joint pdf (informal proof)

PX)(dx,df) = f(x) v(dx) w(6) p(d6)
= fy(x)m(0) v(dx)p(db)
N——

joint pdf

Marginal densities — we just need to integrate:
F0) = [ il n(6) vidx) = =(0),
() = [ ) 7(60) o).
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Likelihood and Bayes' formula
Recall the conditional density:

FUV)(u,v)

() Vust. FYu)#0. (%)

FYY%v | u) =

Proposition

i) The conditional distribution of X given ¥ admits the pdf
FXI%(x 1 0) = f(x) (“likelihood”).

ii) The posterior distribution (9 given X) admits the pdf :

fo(x) m(0)

¥ X B ,

f ‘—((9 ‘ 5) = T@ (Bayes formu|a).
Proof. Simply apply (%) to the joint pdf. |
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Remark: proportionality

The term f%(x) plays the role of a normalizing constant:
fo(x) w(0)
FoIX = DT

Notation. The symbol “" indicates proportionality. Thus,
FIX(0 ] x) o< fy(x) w(6),

or, less formally,

posterior pdf o< likelihood x prior pdf.

The “constant” fi(g) is often difficult to compute, but in some situations the computation can be
avoided (MAP estimator, MCMC numerical methods. . .).
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Example: white balls / red balls (cont'd)

id
Reminder: we want to estimate 6 = W+R from Xq,..., X, i Ber(0).

Density of the observations:
fo(x) = N_,6% (1 — G)L=>% = gV (1 — g)n-Nx),
with N(x) =>"7_; x;.
We assume a prior distribution Beta(ag, by) for the parameter 6:
m(0) oc 71 (1 - )t
and we denote, as before, ¥ the corresponding RV,

(The choice of the prior distribution will be discussed later.)
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Example: white balls / red balls (cont'd)

Then we have:

FIX(0 ] x) o () m(6)
9 (1) N gl (1 — gyt
eao—l-/\/(i)— (1_9)bo+n /\/(5) 1‘

We recognize (up to a cst) the pdf of the Beta(a,, b,) distrib., with

an:30+N7
bn:b0+n—N.

Conclusion. Posterior distribution: ¥ | X ~ Beta(ap, by).
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Example: white balls / red balls (cont'd)

Uo,1) prior, n =15 Beta(1,6) prior, n =5
* ° —prior pdf
2 —posterior pdf
4
15 o
1 | E
2 AN
05 ,
0

0

0 0 x 1

Beta(1,6) prior, n = 20
6

Remark: for n — oo, we have a E(¥ | X)) = X, + o(%) with var(d | X,) ~ 6(1-6)

n
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Example: component reliability

Reminder: X1, ..., X, ~ £(f) = £(}), hence the likelihood:
T 1
L(n,x,) = f(x,[n) = [[=exp (——x/)

1 n
= 1" exp ——ZX,'
=

(Here, we directly use n as our unknown parameter.)

We choose (see below) a truncated .4 (g, o) prior for n:

o (U5 1

2
200

Abuse of notation: we simply denote f the conditional probability density, instead of FXnln  \where 7 is

the random variable associated with the parameter 7.
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Example: component reliability (cont'd)

Posterior distribution of 1. From Bayes' formula we get:

IRY.
f(n]x,) o< 7" exp “ZX' -exp( —(77220) )
90

\ .

||ke||hood prior pdf

A This time we fail to recognize a “familiar” density

w numerical evaluation of the integrals

+o00 (n—no)2
f(Kn) — /0 77 -1 Z/ 1 Xi 20’8 d??
1 400 1 (77—770)2
]E(?? ‘ Kn :Kn) = f(X ) /O U 77 Te nZI L 20(2) d77
An

Abuse of notation (cont'd): we often use the same symbol (here, 1) to represent both a point in the
parameter space and the RV associated with the parameters. 21/42

Example: component reliability (cont'd)

Numerical application. 79 = 14.0, 0o = 1.0 and the true value is n = 11.4.

- -m(n)
351
f(77 | 510)
3 — f(n | 5100)
—f(m | X1000)
25+
f(n | X10000)
2 |
15
1k
0.5
01o n=11.4 1,=14.0 ) 17

Figure — Prior and posterior densities of ), for four values of n.
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L ecture outline

3 — Choosing a prior distribution

Several approaches

Two kinds of sources of prior information:
» “historical”’ data,

» experts: subjective knowledge, field expertise, etc.

Advanced topics (not covered in this course):
» merging several sources of prior information,
“weakly informative” or “objective” priors,

>
» least favorable priors (cf. minimax),
>
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Example: white balls / red balls (cont'd)

Assume that we have data from a past experiment:
» sample of ng = 20 draws,
» Ny = 15 white balls drawn.

Choice of a prior distribution

We can decide, e.g., to choose a Beta(ag, by) prior,
with ag = Mg = 15 and by = ng — Ny = 5.

Arguments in favour of this choice:
» the shape of the distrib. makes computations easier (see below);

> expectation : 2%~ = po, with po = %?

aobo ~ Po(l—Po)

~ 2 i X
(30T ho)? (aeTho D) o variance of X, .

» variance:
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Example: white balls / red balls (cont'd)

Prior density Beta(15,5)

45}
4l
35
sk

25
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Example: component reliability
We have the following pieces of information:

» The manufacturer claims that the lifetime of its components is
approximately 79 = 6 montbhs.

» A field expert estimates that the accuracy of the
manufacturer’s data is roughly o = 10%.

Choice of a prior distribution (elicitation)

We can decide, e.g., to choose a .4 (19, o) prior,
truncated to [0, +00), with o¢ = £g79/1.96.

Arguments in favour of this choice:
» The prior is (approx.) centered on the manufacturer’s value nq.

» =~ 95% of the prior probability is supported by the
interval [0.97, 1.1n].

» The choice of a Gaussian shape and the value 95% are arbitrary.
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Conjugate priors " easier computations |

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given
statistical model if, for any prior 7 in this family, the posterior f?1X
remains inside the family.

Examples.
» Ber(f) sample + béta prior,
N (p, 0%) sample with known o2 + .4 prior on p,
N (1, 0%) sample with known i + ZG' prior on o2,

>
>
» £(0) sample + gamma prior,
>

I inverse gamma. Z ~ ZG if 1/Z has a gamma distribution.
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L ecture outline

4 — Bayes estimators

Bayes estimators

Goal

We want to construct estimators of n = g(6) taking into account
» the data x,
» and the prior distribution .
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Bayes estimators

Let L: N x N — R be a loss function.

» Reminder: we “lose” L(n,17) if we estimate 7} when the true value is 7.

Definition: Bayesian estimator

A Bayesian estimator is an estimator that minimizes the posterior
expected loss:

f = argminzen J(7}, X)

with
J(i,x) = E(L(g(¥),7]) | X = x)
A L(g(0),77) £*(0 | x) p(d6).
(5= J is well-defined for PX-almost all x.)
Remark: equivalently, a Bayesian estimator minimizes the Bayes risk Ry. »

Quadratic loss

Consider the quadratic loss function L(7, 1) = ||n — 7||*:

J(ii,x) = /e 16(6) — 7|2 F7X(8 | x) p(d6).

Proposition

In this case, the Bayesian estimator is
1= B2 = [ &O)F"*©]X)p(d0).

w7 is the posterior mean of ¢

Remark: it can also be written as

) — Jo8OHCITO)p(d0) o £(6) o) w(6) p(d)
e X(x) Jo fa(x) 7(0) p(d0)
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Example: white balls / red balls (cont'd)

With a Beta(ag, by) prior on ¥, we have seen that:
V| X ~ Beta(N + ag,n— N + bg)

with N =37 X;.

The expectation of the Beta(a, b) distribution is 524, thus:

N+ao

P=BOIX) = 2 T

Remark: we recover the expressions of 6, and 0, ( ).
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Another example: Gaussian n-sample (with known o?)

It can be proved (see PC 5) that Xi,..., X, <oy (6,0%)
» with § € R (unknown), o9 > 0 (known),
» and ¥ ~ A (,u,Tz),

then

2 2 2 2
DX ~ N T 27_21Xi‘|;00,u’ 7;‘70 2)
nt —I—UO nt —I—JO

Hence, the Bayesian estimator (for the quadratic loss):

n7’2

0 = AX+(1-\ ith A= ——
( ) i Wi o 08
Interpretation

> when n — o0, § &~ X (the prior no longer has influence)

> with finite n, when 22 > 1, 6 ~ pg (the data is ignored).
T
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[ loss

Assume for simplicity that n = 6 € R.
Consider the loss function L(6, 9 ‘9 9}

Ji.x) = [ 0= 70 x) (o).

Proposition

In this case the Bayesian estimator 8 is such that

A

0 0’9
/ FIX(6 | X) p(df) — / FIX(6 | X) p(df) —
0

—0o0

PX_as..

w 0 is a median of the posterior density of 9

Remark: when 9 has a symmetric posterior density, the two Bayesian
estimators (L' and L? loss) coincide.

Example: mean of a Gaussian n-sample, with a Gaussian prior.
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Example: white balls / red balls (cont'd)

Observed sample (n =5): x=(W,R,R, W,R).

Prioron : 9 ~ Beta(1,6), with 8 =P(X; = W).

6
— prior pdf: Beta(1,6)

St — posterior pdf: Beta(3,9)
4+

! Numerical application
37 A(L1) ~ 0.2359
1t
0

L ‘
o o) §ita) :
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L ecture outline

5 — Standard exercices (with solutions)
5.1 — Questions
5.2 — Solutions

ecture outline

5 — Standard exercices (with solutions)
5.1 — Questions




Exercise 1 (exponential likelihood 4+ gamma prior)

Let X1, ..., X, S £(6) with 6 € © = (0, +o0).

We endow 6 with a Gamma («yg, Bg) prior.

Questions

@ Show that the gamma priori is conjugate, and find the
parameters o, and (3, of the posterior distribution.

@ Give the Bayesian estimator of 6, for the quadratic loss.

@ prove that this estimator tends to the MLE when the
parameters ag and [y tend to a certain limit to be specified.
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Exercise 2 (maximal and Bayesian risks)

Let Xi,..., X, S Ber(d) with 6 € © = (0,1).

We want to estimate 6. The objective of this exercise is to
establish the expressions of the maximal and Bayesian quadratic
risks of § = X, announced on

Questions

@ Calculate the quadratic risk Ry ()_<) and deduce the maximal
risk Rmax ()_()

@ Calculate the Bayesian risk Rgayes ~(X) when 7 is a
with parameters a > 0 and b > 0.
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L ecture outline

5 — Standard exercices (with solutions)

5.2 — Solutions

Solution of exercise 1

Preliminary remark: in this solution we use the same notation, as often done in
practice, for the “deterministic” parameter 6 and the corresponding random

variable, denoted by ¥} in the lecture.

i) First write the likelihood:
L(O:x) = f(x|0) = [[oe7 = e 02,
i=1

and the prior density:

7(6) = 0 goo-t ol o goot gof
(o)

The posterior density then follow from the Bayes formula:

F(0]x) x L(0;x) 7(0) oc §otne0(PotEiyx)
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Solution of exercise 1

The distribution of 8 given X, aka posterior distribution, is
therefore a gamma distribution with parameters

> ap, =ap+n,
> B =00+ 1 X

ii) The Bayesian estimator for the quadratic loss is given by the
posterior expectation of # given the data:

Qp oo+ n

Be  Bot> X

E(0]X) =

iii) This estimator tends to the MLE 1/)_<,7 when both ag and 5y
tend to zero.
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Solution of exercise 2

i) X is an unbiased estimator of § = Eg (X1 ), therefore

Rg()_() = Vvary (X) = %varg(Xl) = (9(1—”_9)

The function 6 +— Ry(8) is a polynomial of degree two in 6, which
attains its maximum at 6 = % hence:

S 1
RmaX(X) = E

ii) Let B(a,b) =T(a)l(b)/I(a+ b).
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Solution of exercise 2

The Bayesian risk for 7 = Beta(a, b) is:

RBayes,ﬂ()_() — /R9<é\) 7T(d9)

— 10(1_9) 1 a—1 b1
_/0 — oy a0

1 ! b
= —— 67 (1 —6)° do
nB(a,b)/O ( )
_ B(a+1,p+1) 1 ab
B nB(a, b)  n(a+b+1)(a+b)

In particular,
> For m =Ujp 1 = Beta(l,1), Raayes(X) = 5.

> For m = Beta(1,6), Reayes,w (X) = 5=
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| ecture outline

6 — Appendices




The beta family of distributions

Let X ~ Beta(a, b) with (a, b) = 0 € (R})°. lIts pdfis :

Ma+b) .4 b—1
fo(x) = 2T 0) a-10q 1 .
G(X) F(a)r(b) X ( X) ]0,1[(X)
Moments Special case
> expectation : Ey(X) = ;75 > Ujp1 = Beta(1,1)
» variance : varg(X) = Wirbﬂ)

Properties
> If X ~ Beta(a, 1), then —log(X) ~ & ().

> If X ~T(a,)), Y ~T(b,)A), and X L Y, then 355 ~ Beta(a, b).
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The gamma family of distributions

A random variable X follows the '(p, \) distribution, with parameters
p > 0and A > 0, if it has the pdf

f(x) = r)(\;) xP~1 exp(—Ax) 1g+(x).
Moments Special cases
> expectation : Eg(X) = £ > EN)=T(p=1,))
> variance : varg(X) = 1% > T(p=2,A=1)=x*n)

Properties

> Let a> 0. If X ~T(p,A), then aX ~ T (p, 2).

» If X and Y are independent, with X ~ T (p,\) and Y ~ (g, ),
then X+ Y ~T(p+ g, )\).

a2/a2




