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Lecture 5/9

Bayesian estimation

Course objectives

» Introduce the concept of prior information.
» Present the basics of the Bayesian approach.

» Demonstrate how to construct estimators using prior
information.
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Lecture outline

1 — Introduction: the Bayes risk

2 — Bayesian statistics: prior / posterior distribution
3 — Choosing a prior distribution

4 — Bayes estimators

5 — Standard exercices (with solutions)

6 — Appendices
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Lecture outline

1 — Introduction: the Bayes risk



Recap: comparing estimators

Quadratic risk: Ry(7)) = Eqg (||) — g(8)|]?).

Definition

We say that 7 is (weakly) preferable to 7 if
> VO e @, R,g(’ﬁ/) < Rg(ﬁ),

We say that it is strictly preferable to 7 if, in addition,
> J0 € O, Rg(ﬁ/) < Rg(ﬁ),

a/a2



Recap: comparing estimators

Quadratic risk: Ry(7)) = Eg (|| — g(0)?).

Definition

We say that 7} is (weakly) preferable to 7 if
> VO e @, R@(ﬁ/) < Rg(ﬁ),

We say that it is strictly preferable to 7 if, in addition,
> J0 € O, Rg(ﬁ/) < Ry(1),

Remarks
» The relation “is preferable to" is a partial order on risk functions.

» In general there is no optimal estimator, i.e., no estimator that
is preferable to all the others (unless we restrict the class of
estimators that is considered).

a/a2



Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions cannot be compared:

@ the minimax (or “worst case”) approach:

Rmax(ﬁ) = ;gg Re(ﬁ),
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Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions cannot be compared:

@ the minimax (or “worst case”) approach:

Rmax(ﬁ) = ;gg RG(ﬁ)y

@® the Bayesian (or “average case”) approach:

RBayes,ﬂ (ﬁ) = / Ry (ﬁ) 7T(d9),

©

where 7 is a probability measure on ©, to be chosen.
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Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions cannot be compared:

@ the minimax (or “worst case”) approach:

Rmax(ﬁ) = ;gg RG(ﬁ)y

w not discussed in this class;

@® the Bayesian (or “average case”) approach:
Rowyesr (1) = [ Roli) w(a0),
where 7 is a probability measure on ©, to be chosen.

w this is the topic of this lecture.
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Example: white balls / red balls (see lecture #1)

2 6 -
- pdf U[o,]_]
5
15
4
1 3
2
0.5 1
0
0 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1
0

Measure 7: uniform over [0, 1]

po_ i Xitl
0, ====>+——
n—+2
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Example: white balls / red balls  (see lecture #1)

2 of | - pdf Beta(i76)
- pde[oyl]

0.5

o 0 02 0.4 0.6 0.8 1
0 02 04 06 08 1 0

0
: Be ,
Measure 7: uniform over [0, 1] Mesure m: Beta (1,6)

b, — 2y Xi+1

a

~ Z,'Ll Xi+1

9) _ ==L

n+2 ! n+7
Observation: éb < 93,

m the second estimator provides smaller estimates
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Example: white balls / red balls (with n = 10)

‘ I
0.6 0.8 1
0

=X =4, 6 =0,

~ 0.025 =~ 0.0208 ~ 0.1246
Rinax (9) 1 1 36

4n 4(n+2) (n+7)2
R @) ~ 0.0167 ~ 0.0162 ~ 0.0456

. Bayes, ™ 1 n+4 n+ 69
with ™ ~ U,y 6n 6(n+ 2) 6(n+7)
Reayenr (0) ~0.0107 | ~00120 | ~0.0089

. ves 3 3n+22 3n 4+ 42
with 7 ~ Beta(1,6) 2on 28(n 1 22 2800 1 72

Establish the expressions of Rmax and RBayes, = for 6 = X.
€ valid for n 7 7/42



Unknown parameter — random variables

We will assume from now on a dominated model: pdf fy(x).

Consider the Bayesian risk (quadratic, in this case)

RBayes,w(ﬁ) = /GRH(ﬁ) W(de)
— /@ Eq (17— g(9)|) (d8).
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Unknown parameter — random variables

We will assume from now on a dominated model: pdf fy(x).

Consider the Bayesian risk (quadratic, in this case)

RBayes,w (ﬁ) = /@RG (ﬁ) W(de)
- /@ Eo (|l — g(9)[2) (d6).
It can be re-written as :

2
RBayesw //Xx@ )H fg(é) V(dﬁ) W(d@)

Proba. measure on X x ©
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Unknown parameter — random variables (cont'd)
Let us introduce a new random variable ¥, such that

(X, 9) ~ fy(x)v(dx) m(d6). (%)

(Technical remark: the introduction of a new random variable ¥ such that () holds is always possible, if
we are willing to replace the underlying set Q by Q2 = Q x ©, provided that © is endowed with a
o-algebra Fg such that 0 — Py(E) is Fg-measurable for all E € F.)
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Unknown parameter — random variables (cont'd)
Let us introduce a new random variable ¥, such that
(X, 9) ~ fi(x) v(dx) 7(d6). (*)
Then the Bayesian risk can be re-written more simply as:
Reayesr = E (|11 —g(9)I),

where the expectation is, this time, over both X and .

(Technical remark: the introduction of a new random variable ¥ such that () holds is always possible, if
we are willing to replace the underlying set Q by Q2 = Q x ©, provided that © is endowed with a
o-algebra Fg such that 0 — Py(E) is Fg-measurable for all E € F.)
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Unknown parameter — random variables (cont'd)
Let us introduce a new random variable ¥, such that
(X, 9) ~ fy(x) v(dx) w(d6). (*)
Then the Bayesian risk can be re-written more simply as:
Reayesr = E (|11 —g(9)I*),

where the expectation is, this time, over both X and .

Bayesian approach

In Bayesian statistics, the unknown parameter 6 is (also) modeled
as a random variable.

(Technical remark: the introduction of a new random variable ¥ such that () holds is always possible, if
we are willing to replace the underlying set Q by Q2 = Q x ©, provided that © is endowed with a
o-algebra Fg such that 0 — Py(E) is Fg-measurable for all E € &)
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Lecture outline

2 — Bayesian statistics: prior / posterior distribution



Bayesian statistical models
Technical assumptions: we assume from now on that

» O is endowed with a o-algebra Zg, e.g., if © C R?, g = B(O);
» 0 Py(E) is Fe-measurable for all E € F (c-algebra on Q).
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Bayesian statistical models

Technical assumptions: we assume from now on that
> © is endowed with a o-algebra Zo, e.g., if © C R?, %o = B(0O);
» 0+ Py(E) is Fo-measurable for all E € . (o-algebra on Q).

Definition
A Bayesian statistical model consists of

> a statistical model as previously defined:
(2., {570 0}).
» a probability distrib. 7, called prior distribution, on (©, Zg).

Dominated model — makes it possible to define a likelihood.
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Joint, prior, and posterior distributions

Recall that we have introduced a new random variable 19, such that
(X, ¥) ~ fi(x) v(dx) n(do). (*)

Bayesian vocabulary

We call:
» joint distribution the distribution of X and ¢, that is, (%),
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Joint, prior, and posterior distributions

Recall that we have introduced a new random variable 19, such that
(X, ¥) ~ fi(x) v(dx) n(do). (*)

Bayesian vocabulary

We call:
» joint distribution the distribution of X and ¢, that is, (%),
» prior distribution the marginal distribution PV of 49, that is, =,

pPYIX

» posterior distribution the distribution of 9 given the data.
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Joint, prior, and posterior distributions

Recall that we have introduced a new random variable 19, such that
(X, 9) ~ fy(x)v(dx) m(d0). (*)

Bayesian vocabulary

We call:
» joint distribution the distribution of X and ¢, that is, (%),
» prior distribution the marginal distribution PY of 9, that is, T,

pPYIX

» posterior distribution the distribution of 9 given the data.

Interpretation (“subjective Bayes")

» prior distribution — knowledge about 6 before data acquisition

> posteriori distribution — ... after data acquisition

11/42



By the way. .. what is a conditional distribution ?

General definition: beyond the scope of this lecture!

(= uses the notion of kernel)
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By the way. .. what is a conditional distribution ?

General definition: beyond the scope of this lecture!
(= uses the notion of kernel)

Let (U, V) be a pair of random variables (or vectors) that admits a
density with respect to a product measure 11 ® vs.

We will define PVIU=Y as the measure with density

FUV(u,v)

fV\U(V ’ u) — fU(u)

with respect to v, for all u such that fY(u) > 0.
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By the way. .. what is a conditional distribution ?

General definition: beyond the scope of this lecture!

(= uses the notion of kernel)

Let (U, V) be a pair of random variables (or vectors) that admits a
density with respect to a product measure 11 ® vs.

We will define PVIU=Y as the measure with density

UV (u,v)
FU(u)

FVYIY(v | u) =
with respect to v, for all u such that fY(u) > 0.
Then we have, for any mesurable function ¢ s.t. o(U, V) € L1,

E(p(U, V) | U) 22 /@ o(Uv) FYV(v | U) a(dv).

12/42



Joint and marginal densities

We will assume! from now on that 7 admits a pdf
» wrt a measure p on (©, %g), e.g., Lebesgue measure,
> we will write (abusively): 7(d6#) = 7(8) p(df).

. This is not actually an assumption, since we can always use p = 7 (with the pdf equal to 1).
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Joint and marginal densities

We will assume! from now on that 7 admits a pdf
» wrt a measure p on (©, %g), e.g., Lebesgue measure,
» we will write (abusively): 7(d#) = 7(6) p(d).

Proposition
The joint distribution admits the joint pdf
FX)(x,8) = f(x)7(6),
and the corresponding marginal densities are
f(6) = (6),
() = [ 66 7(6) (o)

. This is not actually an assumption, since we can always use p = 7 (with the pdf equal to 1).

13/42



Proof

Joint pdf (informal proof)

P9 (dx,df) = fy(x)v(dx) w(0) p(dh)
= fy(x)m(0) v(dx)p(dh)
N——

joint pdf

14/42



Proof

Joint pdf (informal proof)

B (dx,df) = f(x)v(dx) w(0) p(dh)
— f)7(0) () p(d)
—

joint pdf

Marginal densities — we just need to integrate:
r0) = [ 660 7(6)v(dx) = 7(0)
() = [ 669 7(6) pla0).



Likelihood and Bayes' formula
Recall the conditional density:

(UV)(u, v
FYIY(y | u) = fo((u)’)’ Vu st fUu) £0. (%)
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Likelihood and Bayes' formula
Recall the conditional density:

WUV (u, v
VIV | u) = fo((u)) Vu st fUu) #0. (%)

Proposition
i) The conditional distribution of X given ¢ admits the pdf

X (x 1 0) = fo(x) (“likelihood").
ii) The posterior distribution (¢ given X) admits the pdf :

fo (x) 7(6)

FIX(0 | x) = FX(x)

(Bayes' formula).

Proof. Simply apply (x) to the joint pdf. O
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Remark: proportionality

The term fél(x) plays the role of a normalizing constant:
fy(x) 7()
X (p _ 0 )
( | 5) fé(g)

The “constant” fi(g) is often difficult to compute, but in some situations the computation can be
avoided (MAP estimator, MCMC numerical methods. . .).
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Remark: proportionality

The term f%(x) plays the role of a normalizing constant:

() m(6)

fﬂlé(g | 5) = fé(l)

Notation. The symbol “o" indicates proportionality. Thus,
X0 | x) o fy(x) w(0),

or, less formally,

posterior pdf o likelihood x prior pdf. \

The “constant” fi(x) is often difficult to compute, but in some situations the computation can be

avoided (MAP estimator, MCMC numerical methods. . .).

16/42



Example: white balls / red balls (cont'd)

W from Xi,..., X, s Ber(6).

Reminder: we want to estimate 0 = WHR

Density of the observations:
f@(&) = H?ZIHX,' (]_ — 9)1_><,- — 9N(5) (1 o 9)”—/\/(5)‘

with N(x) =37 1 x;.
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Example: white balls / red balls (cont'd)

Reminder: we want to estimate 6 = W+R from Xqi,..., X, s Ber(6).

Density of the observations:
fo(x) = N7_10% (1 — )1 = gNX) (1 — g)n~Nx),
with N(x) =37 1 x;.
We assume a prior distribution Beta(ag, by) for the parameter 6:
(0) o 6% (1)1,
and we denote, as before, 9 the corresponding RV.

(The choice of the prior distribution will be discussed later.)
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Example: white balls / red balls (cont'd)

Then we have:

FIX(0 | x) o fy(x)7(0)
(1= )" NI gt (1 — gyt
— 980+N(§)—1 (1 _ 9)b0+"*N(§)71 .

x HN&)

18/42



Example: white balls / red balls (cont'd)

Then we have:

X0 | x) o fy(x) (6)
X HN(X) (1 0) n—N(x) . 93071 (1 _ e)bo—l
— eao—&-N(g) (1 - 9)b0+n7N(§)—1 ]

We recognize (up to a cst) the pdf of the Beta(ay, b,) distrib., with
ap=ap+ N,
by =bo+n—N.

Conclusion. Posterior distribution: ¥ | X ~ Beta(ap, by).
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Example: white balls / red balls (cont'd)

Ujo,1) prior, n =5 Beta(1,6) prior, n =5
6

—prior pdf
—Boste‘r)ior pdf

1

Remark: for n — co, we have a E(9 | X)) = X» + O(%) with var(d9 | X)) ~ oa-=9)

n
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Example: component reliability

iid

Reminder: Xi,..., X, ~ &(0) = 5(%) hence the likelihood:
Tl 1
Exs) = Flxa ) = T ew (~3x)
i=1 1 U
=M " eXpl| —— Xi
K

(Here, we directly use i as our unknown parameter.)

Abuse of notation: we simply denote f the conditional probability density, instead of fén‘", where n is
the random variable associated with the parameter 7.
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Example: component reliability

iid

Reminder: Xi,..., X, ~ &(0) = 5(%) hence the likelihood:
Tl 1
Elnxa) = fxa ) = T S ew (~2x)
i=1 1 U
n 1¢
=n"exp|—= Zx,-
=

(Here, we directly use 1 as our unknown parameter.)

We choose (see below) a truncated .4 (1o, o2) prior for #:

m(n) o exp <W> Lo

2
205

Abuse of notation: we simply denote f the conditional probability density, instead of fén‘", where n is
the random variable associated with the parameter 7.
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Example: component reliability (cont'd)

Posterior distribution of 7. From Bayes' formula we get:

- 1 ¢ (7 — o)
f(n|x,) xn "exp|—=) xi| - exp (— :
(1] x5) ( 77’_2; ) 202

likelihood prior pdf
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Example: component reliability (cont'd)

Posterior distribution of 7. From Bayes' formula we get:

2
205

1 — NRY!
f(n ] x,) o< " exp 0 ZX/ - exp (—(77770)> .
i—1

likelihood prior pdf

A This time we fail to recognize a “familiar’ density

m numerical evaluation of the integrals

+o0o —12" ' _(n*ng)
f(xn) :/O nMeTn= e 0 dp

1 +oo i -l
E (77 | Kn = Kn) = m /0 n-n Na™n Zui=1% g 20§ d?’]
2n

Abuse of notation (cont'd): we often use the same symbol (here, 1) to represent both a point in the
parameter space and the RV associated with the parameters. 21/42



Example: component reliability (cont'd)

Numerical application. 7o = 14.0, oo = 1.0 and the true value is n = 11.4.

P
- -m(n)
35F
f(n | x10)
3 —f(n| 5100)
—f(n | X1000)
25F
f(n| 510000)
ok
15+
e
0.5F /
010 n :17 V]O=14,0 V 17

Figure — Prior and posterior densities of 7, for four values of n.
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Lecture outline

3 — Choosing a prior distribution



Several approaches

Two kinds of sources of prior information:
» “historical” data,

> experts: subjective knowledge, field expertise, etc.

Advanced topics (not covered in this course):
» merging several sources of prior information,
“weakly informative” or “objective” priors,

| 4
» least favorable priors (cf. minimax),
| 4
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Example: white balls / red balls (cont'd)

Assume that we have data from a past experiment:
» sample of nyp = 20 draws,
» Ny = 15 white balls drawn.

24/42



Example: white balls / red balls (cont'd)

Assume that we have data from a past experiment:
» sample of nyp = 20 draws,
> Ny = 15 white balls drawn.

Choice of a prior distribution

We can decide, e.g., to choose a Beta(ag, by) prior,
with ag = Ng = 15 and by = ng — Ny = 5.

Arguments in favour of this choice:

» the shape of the distrib. makes computations easier (see below);

do
ao+
a

bo
> H . 0 bo ~ Po(1—po) s 1 X
variance: g3y o variance of Xj,.

. N
= Po, with Po = Tg’

» expectation :
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Example: white balls / red balls (cont'd)

Prior density Beta(15,5)

451

4l

351

3t

251
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Example: component reliability
We have the following pieces of information:

» The manufacturer claims that the lifetime of its components is
approximately 79 = 6 months.

> A field expert estimates that the accuracy of the
manufacturer's data is roughly g = 10%.

26/42



Example: component reliability
We have the following pieces of information:

» The manufacturer claims that the lifetime of its components is
approximately 79 = 6 months.

> A field expert estimates that the accuracy of the
manufacturer's data is roughly g = 10%.

Choice of a prior distribution (elicitation)

We can decide, e.g., to choose a .4 (19, 09) prior,
truncated to [0, +00), with og = £¢770/1.96.

Arguments in favour of this choice:
» The prior is (approx.) centered on the manufacturer’s value 7.

» =~ 95% of the prior probability is supported by the
interval [0.97, 1.170].

» The choice of a Gaussian shape and the value 95% are arbitrary.
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Conjugate priors " easier computations !

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given
statistical model if, for any prior 7 in this family, the posterior f7IX

remains inside the family.

27/42



Conjugate priors " easier computations !

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given
statistical model if, for any prior 7 in this family, the posterior f7IX
remains inside the family.

Examples.
» Ber(¢) sample + béta prior,
» 4 (u,0?) sample with known o2 + .4 prior on u,
> A (p, %) sample with known ;. + ZGT prior on o2,
» £(0) sample + gamma prior,
> ...

T: inverse gamma. Z ~ ZG if 1/Z has a gamma distribution.

27/42



Lecture outline

4 — Bayes estimators



Bayes estimators

Goal

We want to construct estimators of 7 = g(6) taking into account
> the data x,
» and the prior distribution 7.
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Bayes estimators

Let L: N x N — R be a loss function.

P Reminder: we “lose” L(n,7}) if we estimate 7} when the true value is 7.
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Bayes estimators

Let L: N x N — R be a loss function.

P Reminder: we “lose” L(n,7}) if we estimate 7} when the true value is 7.

Definition: Bayesian estimator

A Bayesian estimator is an estimator that minimizes the posterior

expected loss:

i = argmingen J(7, X)
with

J(ii,x) = E(L(g(¥ ,ﬁ) | X =x)
- /L g(6),7) £7X(6 | x) p(do).
(C]
(%= J is well-defined for PX-almost all x.)

Remark: equivalently, a Bayesian estimator minimizes the Bayes risk R;. 2oy



Quadratic loss

Consider the quadratic loss function L(1,7) = || — 7||*:

)= [ 1£0) = l? £1X(01] x) (o).

Proposition

In this case, the Bayesian estimator is

7 = E(g(9) | X) = /e 2(8) FX(8 | X) p(d6).

m ) is the posterior mean of ¢

30/42



Quadratic loss

Consider the quadratic loss function L(1,7) = || — 7||*:

)= [ 1£0) = l? £1X(01] x) (o).

Proposition

In this case, the Bayesian estimator is

1= BEO)X) = [ &0)F'X(0] X)(e0)
m ) is the posterior mean of ¢

Remark: it can also be written as

Jo8(0) fo(x) w(0) p(d0) _ Jo &(0) folx) () p(dO)
FX(x) Jo fo(x) ©(6) p(d0)

i(x) =

30/42



Example: white balls / red balls (cont'd)

With a Beta(ag, bg) prior on ¥, we have seen that:
Y| X ~ Beta(N + ap,n— N+ bp)

with N = 27:1 X;.
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Example: white balls / red balls (cont'd)

With a Beta(ag, bg) prior on ¥, we have seen that:
J|X ~ Beta(N + ag,n— N+ bp)

with N = 27:1 X;.

The expectation of the Beta(a, b) distribution is ;2;, thus:

N + ag

0=E@|X) =

Remark: we recover the expressions of 8, and 8, ( ).

31/42



Another example: Gaussian n-sample (with known o2)

It can be proved (see PC 5) that Xi,..., X, 4y (9, 08)
» with 6 € R (unknown), o9 > 0 (known),
> and ¥ ~ A (p,72),

then

2 2
T
nT +00 nT +00
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Another example: Gaussian n-sample (with known o2)

It can be proved (see PC 5) that Xi,..., X, 4y (9, 08)
» with 6 € R (unknown), o9 > 0 (known),
> and ¥ ~ A (p,72),

then

2 2
T
nT +00 nT +00

Hence, the Bayesian estimator (for the quadratic loss):

n7'2

0 = AX+(1-)\ ithl= —
+( ),u Wl n7‘2+0'(2)
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Another example: Gaussian n-sample (with known o2)
It can be proved (see PC 5) that Xi,..., X, 4y (9, 08)
» with 6 € R (unknown), o9 > 0 (known),
> and ¥ ~ A (p,72),
then

2 2
T
nT +00 nT +00

Hence, the Bayesian estimator (for the quadratic loss):

n7'2

0 = AX+(1-A with A = ———
( ) 1 nr2 + o3
Interpretation
» when n — 00, § ~ X (the prior no longer has influence)

> with finite n, when %0 1,0 ~ pg (the data is ignored).
T

32/42



L1 loss

Assume for simplicity that n = 0 € R.
Consider the loss function L(6, f) }0 0}

5. = [ |08 £1%(0 1 ) p(00).

Proposition

In this case the Bayesian estimator 6 is such that

/ FI1X(0 | X) p(d6) = / O X)p(df) = 5 PXas.

m 0 is a median of the posterior density of ¥

33/42



L1 loss

Assume for simplicity that n = 0 € R.
Consider the loss function L(6, f) }0 6}

5. = [ |08 £1%(0 1 ) p(00).

Proposition

In this case the Bayesian estimator 6 is such that

/ FUX(0 | X) p(d6) / X0 | X)p(df) = = PX-as.
m 0 is a median of the posterior density of ¥

Remark: when ¢ has a symmetric posterior density, the two Bayesian
estimators (L* and L? loss) coincide.

Example: mean of a Gaussian n-sample, with a Gaussian prior.
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Example: white balls / red balls (cont'd)

Observed sample (n=5): x=(W,R,R, W,R).
Prioron : ¥ ~ Beta(1,6), with § = P(X; = W).

6
— prior pdf: Beta(1,6)

St — posterior pdf: Beta(3,9)
4+

; Numerical application
3 (1) ~ 0.2359
2+ 3 é\(L2) - 025
1

| ‘
% (L) g(L2) 1

34/42



Lecture outline

5 — Standard exercices (with solutions)
5.1 — Questions
5.2 — Solutions



Lecture outline

5 — Standard exercices (with solutions)
5.1 — Questions



Exercise 1 (exponential likelihood + gamma prior)

Let X1,..., Xy S £(6) with 6 € © = (0, +00).

We endow 6 with a Gamma («ayg, Bo) prior.

Questions

@ Show that the gamma priori is conjugate, and find the
parameters o, and 3, of the posterior distribution.

@ Give the Bayesian estimator of 6, for the quadratic loss.

@ prove that this estimator tends to the MLE when the
parameters o and Sy tend to a certain limit to be specified.
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Exercise 2 (maximal and Bayesian risks)

Let X1,..., X, *© Ber(6) with 6 € © = (0,1).

We want to estimate 6. The objective of this exercise is to
establish the expressions of the maximal and Bayesian quadratic
risks of & = X, announced on

Questions

@ Calculate the quadratic risk Ry(X), and deduce the maximal
risk Rmax ()_()
@ Calculate the Bayesian risk Rgayes « (X) when 7 is a
with parameters a > 0 and b > 0.
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Lecture outline

5 — Standard exercices (with solutions)

5.2 — Solutions



Solution of exercise 1

Preliminary remark: in this solution we use the same notation, as often done in
practice, for the “deterministic” parameter 6 and the corresponding random

variable, denoted by ¥ in the lecture.

i) First write the likelihood:
L(6;x) = f(x]6) H@e = gre i,

and the prior density:

(0) = B0’ pao—1 g=Bub o gao-1 g—fod
(o)

The posterior density then follow from the Bayes formula:

F(0]x) o L£(6;x) m(0) o goo+n e=0(Fot>Tx)
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Solution of exercise 1

The distribution of 8 given X, aka posterior distribution, is
therefore a gamma distribution with parameters

> ap,=a+n,
> Bn=00+ 21X

ii) The Bayesian estimator for the quadratic loss is given by the
posterior expectation of # given the data:

Op Qg+ n

EOIX) = 5 = harr X

iii) This estimator tends to the MLE 1/X,, when both ag and 3o
tend to zero.
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Solution of exercise 2

i) X is an unbiased estimator of § = gy (X), therefore

0 (1—0)

Ro(X) = varg (X) = %varg(Xl) — -

The function 6 — Ry (é) is a polynomial of degree two in 6, which
attains its maximum at @ = 3, hence:

N

Rmax(X) = —.

ii) Let B(a,b) =T(a)l(b) /I (a+ b).
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Solution of exercise 2

The Bayesian risk for m = Beta(a, b) is:

RBayes,ﬂ(X) = /Rg(é) 7T(d9)

— 19(1_9) 1 a—1 _ p\b-1
_/O - sep A0

1 ! b
= —— 0° (1 —0)° do
nB(a,b)/o ( )
B(a+1,b+1) 1 ab
n B(a, b)  n(a+b+1)(a+b)

In particular,
> For m = Uy 1) = Beta(1,1), Reayesr ()_() =1

6n
» For m = Beta(1,6), RBayes,r ()_() - 28%'
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Lecture outline

6 — Appendices



The beta family of distributions

Let X ~ Beta(a, b) with (a,b) = 6 € (RF)°. Its pdf is :

Ma+b) .. b—1
_ —_————- 1 - ]l .
fo(x) F(2)7 (b) x* (1 —-x) j0,11(x)
Moments Special case
> expectation : Eo(X) = ;25 > U 1) = Beta(1,1)
> variance : varg(X) = m

Properties

> If X ~ Beta(a, 1), then —log(X) ~ € (1).

a

> If X ~T(a,)), Y ~T(b,A), and X LY, then 355 ~ Beta(a, b).
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The gamma family of distributions

A random variable X follows the '(p, A) distribution, with parameters
p>0and A\ > 0, if it has the pdf

f(x) = @ xP~1 exp(—Ax) Ig+ (x).
Moments Special cases
> expectation : Eg(X) = £ > EN)=T(p=1,})
> variance : varg(X) = & > r(ng,/\:g):xz(n)

Properties

A
» Leta>0. If X ~T(p,\), then aX ~T (p, 3).

» If X and Y are independent, with X ~ I'(p,A) and Y ~ I'(q, \),
then X + Y ~T(p+ g, ).
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