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Lecture 6/9

Introduction to supervised learning
Linear models for regression

Course objectives

» Introduce the basic concepts of statistical learning

» Establish the mathematical framework for regression and
classification problems

» Learn how to build and use linear regression models
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L ecture outline

1 — Introduction to (supervised) statistical learning
2 — Linear regression
3 — Standard exercices (with solutions)

4 — Appendices
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L ecture outline

1 — Introduction to (supervised) statistical learning
1.1 — Statistical learning

Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.” — data |

(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54—64)
Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of Al and Design.

https://www.autodesk.com/redshift/machine-learning/
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Statistical learning: a “disciplinary” point of view

Computer science Mathematics
l (“mathematical sciences”)
Artificial intelligence (Al) J,

l Statistics

Machine learning

\

Statistical learning
(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”

(apprentissage statistique) are often used interchangeably.
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Example: handwritten character recognition
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?199999%9499%49944919 9

A subset of the MNIST database
containing 70 000 b&w images’ of size 28 x 28 pixels

Supervised learning problems: examples are provided with a label.

m | earn to classify a new image in one of the 10 classes.

T 60 000 training examples and 10 000 test examples
Source: https://www.openml.org/search?type=datakid=554
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Example: real estate pricing in Ames (lowa)

\ gt |

Data Description

[- SalePrice - the property's sale price in dollars]This is the target variable that you're trying to predict.
« MSSubClass: The building class k
« MSZoning: The general zoning classification

» LotFrontage: Linear feet of street connected to property
« LotArea: Lot size in square feet

« Street: Type of road access

« Alley: Type of alley access

« LotShape: General shape of property

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

w |earn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques) 7/53

Several forms of learning

» Supervised learning: examples with labels.
» analogy: learning with a teacher.

m | ectures 6 to 8

» Unsupervised learning: examples without labels

» analogy: learning without a teacher, pattern discovery
| ecture 9
and also... (not covered in this course)

» Active learning

» the labels are queried sequentially;
» example: detection of bank frauds
— in-depth analysis of “suspicious” cases only.

» Reinforcement learning
» Transfer learning
>

8/53




Numerous fields of application

Computer vision

Speech recognition

Natural Language Processing (NLP)
Fraud detection

Personalized medicine

Recommender systems & targeted marketing

vV vy vy VvV VvV YvYyy

0/53

| ecture outline

1 — Introduction to (supervised) statistical learning

1.2 — The mathematical framework of supervised learning




ML vocabulary: instance space and label space

Instance space: X Label space: Y

» instances x1,...,xp, € X » labels y1,....yp €Y
MNIST example:

000 0006Q0QopPpDOOCY QOO
7/ U T W AR B B U I B A |
222232222122 222%

AR S Class: zero, one, ...nine
555855 SS 559585548579
b6 6 blbGbbbaceébteoolb
T797771072012%777
¥3 728 %P S RPTITITS I B
999999%39494949979

28x28 7] " T T

X =10,1] Y = {"zero", ..., “nine"}

In this and the following lectures, we will always assume:

X =RP Y = R — regression, or

Y = {0,1} — classificationT.

T more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST). ..
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Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

iid
(X1, Y1), ..., (Xn, Y,) ~ PXY

PX,Y

where is an unknown probability measure on X' x ).

ii) Unless explicitely mentioned, we make no assumption on the
distribution: § = PX>Y and © = {probability measures on X x )'}.

Notation. We denote by (X, Y) another pair of RVs, which follows the
same distribution P”X:Y but is not observed.

A change of notation (wrt previous lectures)

w observations: X;e X — (X, Y)eXx)Y
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Goal
Goal of supervised learning (informally)

We want to “learn” from data’ a prediction function®

h: X — Yy
x = y=h(x)

such that the RVs Y and h(X) are as “close” as possible.

' We should write h(x) = h(x; (X1, Y1), ..., (Xa, Ya)). ..
YIf Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L: YxY — Rt
(v.y) = Ly, y).

w [(y, h(x)) quantifies the loss when y is predicted by h(x).
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Goal (cont'd)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).

(NB: the concept of “risk”” in this context differs from that in the previous lectures)

A This risk depends on the unknown distribution § = PX:Y"

JORNIA L h69) P (),

m From now on, we will simply write R(h).
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Goal (cont'd)

The optimal prediction function depends on the unknown
distribution PX-Y";

h* = A*(P*Y) = argmin, R(h).
(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X1, Y1), ..., (Xu, Y»), a prediction
function

h: x — Y
x = y=hXx)
such that the risk R(h) is as close as possible to the optimal risk

R* = inf R(h)

(also called “Bayes risk™).
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| ecture outline

2 — Linear regression
2.1 — Introduction to regression models
2.2 — Linear model / quadratic loss
2.3 — Back to statistical inference
2.4 — Other loss functions
2.5 — Limitations of “ordinary least squares”




L ecture outline

2 — Linear regression
2.1 — Introduction to regression models

Regression

We consider in the rest of this lecture the regression case: ) = R,

RATE oF REGRESSEONFIN HEREDITARY STATURE. ]
i@

HEIGHT

] The Deviates of the Children are to those of DEVIATE
g 0 their Mid-Parents as 2t0 3. n
inches o | inches
FER -*
oy
71 | When Mid-Parents are taller than mediocrity, & 1 2
their Children tend to be shorter thanthey.  ¢¥ f
0 H b
i
P H A
69 H |
e [T 0
67 H | 1.
66 | When Mid Parents are shorter than mediocrity, || #
ce their Children tend to be taller than they.
65 n-2
A
H -4

Francis Galton (1886). “‘Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246—263.

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is
Vx € X, K (x)=E(Y|X = x).
Vocabulary : x — E(Y|X = x) is sometimes called “regression function”.

We will consider this loss function until further notice.
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Quadratic loss (cont'd)

Proof. By the law of total expectation, we get:

R(h) = E|E <(Y — (X)) X>

. 7
-~

®

Le term ® can be decomposed as :

E((Y = h(X))* | X)
—E ((Y—E(Y | X)+E(Y | X) — h(X))?| x)
=var(Y | X) + (E(Y | X) — h(X))>.

The first term does not depend on h, and the second one is
minimal when h(X) =E(Y | X) as.. ]
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Empirical risk

Recall that the joint distribution PXY is unknown

w the risk R(h) cannot be computed.

Definition: empirical risk

We call empirical risk the risk

n

A A 1
Rulh) = [ L0 Ho0) Paldy) = 3240 hOG)

associated to the empirical measure P, = %27:1 0X,.Y;.

With the quadratic loss :
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Empirical risk minimization
A general learning method:
@ Choose a family 77 of prediction functions.

@® Select the function h which minimizes the empirical risk:

hERM — argming,c » R.(h).

Example: “linear” (affine) prediction functions

N {h:Rp—>R ‘aﬁeRPH, Vx € X,
h(x) = Bo + 51X(1) 4.+ 5px(p)}

A the ERM method is reasonable if 77 is “not too large”
w  otherwise, complex models must be penalized (more on this in
Lecture 8)
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Other examples of families of prediction functions

» linear models with general basis functions

h(x) = Bih(x)+ ...+ Brhk(x),
where the functions h, : X — R are known;

» additive models
h(x) = hy(xM) 4 ... + hy(xP)),
where the hy's belong to a given family of R — R functions;

neural networks,
decision trees,

generalized linear/additive models

vvyyvyy
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ecture outline

2 — Linear regression

2.2 — Linear model / quadratic loss




Residual sum of squares
We consider prediction functions h of the form :

h(x) = Bo + Bix(M 4+ Bpx(p) = B"x

Bo (1)
1

X

with 8 = 6_1 and x = _
By x(P)

Definition: RSS / least squares criterion
Empirical risk: R(h) =137 (Vi — BTX,-)z.
We define the Residual Sum of Squares (RSS):

n
2
RSS(8) = > (Vi — 7))
i=1
or least squares criterion. 2153

Matrix-vector notations

1 xM o xP) Y,
1 X xle) %
let X=| = 7?2 2 andy=1| °
i x4 X,ép) Yy

m X has size n x (p+ 1) and Y has length n.

Matrix form of the criterion

RSS(B) = |lY — X8|’
= (Y -XB8)" (Y- XB)
= BTX'XB-2Y'XB+ Y'Y
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Minimization of the least squares criterion

Assumption

We assume X ' X invertible

m implies p+ 1 < .

Let 5= (X"X) " XTY. Then:

RSS(B) = B'X'XB-2Y'XB+Y'Y
= (B=-B)"X"X(B-PB)+c

where ¢ is a constant (i.e., does not depend on f3).

Indeed: 37X X3 =YTX(X X)X XB8=YTX8
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Minimization of the least squares criterion
Reminder : RSS(8) = (8 — )X X(8 - B) +c.
We have:
@ Vac R 2T X Xa=|Xal|* >0,
@ X' X is invertible, hence positive definite.
(i) implies that RSS(3) is minimal at f3;

(ii) implies that the minimizer is unique (a' X' Xa=0 = a=0).

Proposition: least squares estimator

When X X is invertible,

b= (x"X)" X7y

is the unique minimizer of the RSS function.

24/53




Goodness of fit

Without explanatory variables, we would have
. A A - 1Y
h(x) = ith =Y==> Y.
(x) = Bo, with o . ;
Let us set TSS =7 ; (Y — \7)2 — Total Sum of Squares.

Definition: coefficient of determination R2

Reminder : RSS(8) = Y7, (Vi — BTX,-)2. We set :

~n

RSS(B)
R?=1- —7
TSS
Properties.
> 0< R?<1,
> R2=1 <= Vi Y:=}X,.
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"Ozone” example: presentation of the data

variable description

O30bs concentration of ozone on day t + 1

MOCAGE | pollution prediction obtained by a deterministic
computation fluid dynamics (CFD) model

TEMPE MétéoFrance temperature forecast for day t + 1
RMH20 humidity ratio at day ¢t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t

VentMOD | wind strength on day t
VentANG | wind orientation of day t

Learning task

» predict the ozone concentation on day t + 1
from data available on day t

» predict if the concentration will exceed 150 yug/m>
(classification task, cf. lecture #7).

Application and data obtained from https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone 26/53




"Ozone” example: data visualization

e
8

0O30bs
- B

e
8

MOCAGE
- 8

%20 & 3
So & | W S | i, & L
g‘: Q é 72“’ 1* i
’ O;ODUbS ” OMOSZGEADO ’ TE:JUIPE “ DOSSRH;I;-‘ZOD‘S ) LNDOZ C LI:O ’ DVen:l\lIOD‘0 VQVentOANGz
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(¥} 11 . . .
Ozone" example: linear regression
Linear regression using n = 210 days of data.
Remark. All variables for the sake of interpretability.
Bo MOCAGE | TEMPE | RMH20 | NO2 NO VentMOD | VentANG
103.4 1.4 2.6
Coefficient of determination. R? = 65.7%
Observations:
250
2 900 PO » the negative coefficient associated
I~ . %;:"- ' to NO2 is surprising
|10 L (but NO2 is correlated with NO);
SN S .
100, g » RMH20, VentMOD and VentANG
50,0 "¢ appear to be of lesser importance;

50 100 150 200 250

Vi » the model explains partly the data.
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L ecture outline

2 — Linear regression

2.3 — Back to statistical inference

Properties of the least squares estimator

Recall that, until now: (X1, Y1),..., (Xn, Ya) S PXY.

m in the section, we assume instead deterministic X;'s

(equivalently, we work “conditionally on the X;'s").

Assume moreover that there exists 3 € RPT! such that

(i) Vi, Y; ZBTX,'—{—E,'

where the errors ¢; are

(i) centered: E(¢;) =0,
(iii) uncorrelated: i # j = cov(ej,€¢;) =0,

(iv) homoscedastic: var(¢;) = o for some 02 > 0.
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Properties of the least squares estimator

Proposition

Under these assumptions, /3 is an unbiased estimator:
E(B8) = 8,
and its covariance matrix is:

(i) = (%)
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Properties of the least squares estimator

Proof.
Recall that the X;'s are assumed deterministic.

Let € = (€1,...,€,) " . Then:

Y = XB+¢
- = XX XY =8+ (XTX) X

(i) = E(B)=8+X"X)"X"E(@)=0
B) = (XTX)7TXT var(0) X (XTX)
= 2 (X'X)"
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Distribution of (B, 6°) under a normality assumption

Assume furthermore that (v) ¢ is Gaussian:
n

2. _ _n 2 1 Ty \?
log L(5,0°,Y) = —Elog(27m ) — 552 > (Y,-—ﬁ X,-) :
Proposition: MLE of (3, 0?) (see PC 6)
A : 2
B=argming > 7 (Y; = B'X;)",
The MLEis{ | n,@Z I(AT , %)
0° = EZ;:l (Yi—ﬁ Xi)
- \\e recover the least square estimator of
Student's theorem: distribution of (B, 52) (see PC 6)

B~ N <670'2 (KTK)_l), » B et 42 are independent.

(72
~ Zx(n—p-1)

32/53

Tests / Cl on the value of a component of 3

We know that BAJ- ~ N (Bj,0%v}) with v; = {(KTK)_I} .
Jo

Pivotal function

T:M ~ T(n—p—l)

22\,
noev;
n—p—1

with 7(n— p —1): Student’s t distrib. with n — p — 1 degrees of freedom

Remark: .

n &2 1 R 2
- Vi - A7)
n—p—1 —1;( b

n—p

is an unbiased estimator of o2 (see PC 6).

33/53




Proof

It follows from Student’s theorem that

Bi—B;
> B} ~
U= \/_ (0,1)

> V= ~x2(n—p—1),
» and U and V are independent.

Thus
ro o bV ra-p-),
n&2v; |4
n—p—1 n—p—1

by definition of the Student's t distribution with k =n—p —1
degrees of freedom. ]
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TestforHO : BJ:O/H]. : 6_,7&0
Let 0 < @ < 1. 0.4

Take B; = 0 in the def. of T (i.e.
assume Hp) and

0.3

0.21

0=1i7>q,
0.17

-2.57 0 2.57

Exact confidence interval for ;

gr: quantile of order r of T(n—p — 1)

35/53




"Ozone” example: Cls and p-values

Clgso, t pval
Bo [100.1, 106.7] | 62.9
MOCAGE [21.1, 36.8] 7.4
TEMPE [16.5, 28.5] 7.6
RMH20 [—7.0, 0.6] -1.7
NO2 [-53.0, —15.7] | -3.7
NO [19.8, 55.4] | 4.2
VentMOD [-2.7, 5.4] 0.7 | 0.49
VentANG [—0.8, 6.0] 1.6 | 0.12

with t: realization of T for the corresponding coefficient

Remark: regression without RMH20, VentMOD et VentANG

m the coefficient of determination drops from 65.7% to 64.5%.
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L ecture outline

2 — Linear regression

2.4 — Other loss functions




"Ozone’ example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:

Bo MOCAGE | TEMPE | RMH20 | NO2 NO VentMOD | VentANG
w/o | 103.4 | 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with | 125.2 | 79.2 -15.6 24.2 -155.1 | 141.4 | 4.7 24.9

m Strong sensitivity of the coefficients to “outliers”.

Solution

Use a loss function that leads to a prediction function with better
robustness properties than the quadratic loss.
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Usual loss functions

= 'L (quadratic) loss

L1 loss

— Huber's loss

—¢-insensitive loss
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L1 loss

~

Loss function : L(y,y) = |y — y|.

Proposition (see PC 6)
For the L; loss, the optimal prediction function is
Vx e X, h*(x) = med(Y|X = x)
“Ozone”’ example
/Bo MOCAGE TEMPE RMH20 NO2 NO VentMOD VentANG
w/o | 100.8 | 27.5 19.2 33 322 | 339 | -1.0 3.9
with | 101.4 | 283 18.6 -1.6 -35.1 | 375 | 0.5 3.2

- better stability with respect to outliers.
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2 — Linear regression

2.5 — Limitations of “ordinary least squares”




Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).

Critical cases for “ordinary least squares”
» when X' X not invertible,

» or poorly conditioned.

Typical cases:

» when the number of variables is large
(p+ 1> n, sometimes p > n)

Example: genomics.

» when there are strong correlations between explanatory
variables

Example: “ozone” data (cf. variables NO and NO2)
m |ack of interpretability of the coefficients
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

~

p =argmin RSS(5) + A
B N — ~—
data “fidelity”  hyperparameter penalty

=
=

m see Lecture 8
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L ecture outline

3 — Standard exercices (with solutions)
3.1 — Questions
3.2 — Solutions

ecture outline

3 — Standard exercices (with solutions)
3.1 — Questions




Exercise 1 (Regression seen as a projection)

Let (Xi, Y;) € RP xR, 1 < i < n, denote an n-sample of observations.

Consider the linear regression model from
p .
h(x) = Bo+ Z@J.X(J) — 8Tx, xcRPH,
j=1

and the corresponding least squares estimator:
N n 2
B = argming Z <Y,- — BTX,-) :
i=1

As in , we denote by
> X € R™(PFD) the matrix of regressors,

» Y € R” the vector of responses.
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Exercise 1 (Regression seen as a projection)

Questions

® Set Y Prove that Y is the projection of Y onto the

= XA.
image of X.

® Give the expression of the projection matrix, assuming that
X' X is invertible.

© Prove that the coefficient of determination, defined in
, satisfies the property 0 < R? < 1, with R? =1 iff
Vi, Y, =BT X;.

43/53




L ecture outline

3 — Standard exercices (with solutions)

3.2 — Solutions

Solution of exercise 1

@ Reminders:

» The projection of y € R” onto a closed convex set C C R" is
the unique y* € C such that ||y — y*|| = min,ec ||y — v|[.

» The image of X, which we will denote by Im(X), is the linear
subspace of R" generated by the columns of X:

Im(X) = {v cR"|IBeRPH) v = m}.

To begin with, note that

» Im(X) is indeed a closed convex set (since all linear subspaces
are closed in finite dimension),

> ¥ =XA belongs to Im(X).
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Solution of exercise 1
Furthermore, for all v = X3 € Im(X), using the fact that
b= argmin 1Y XB1*,
we find that

lY - Y| = [l¥. - XA
< Y -X8] = llX—vl,

therefore Y is indeed the projection of Y onto Im(X).

® Using the expression of /3 established in class, we can write the
projection of Y onto Im(X) as
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Solution of exercise 1

This being true for all Y € R”, we conclude that the matrix of the
projection operator is:

1
P=X (KTK) xT.

® Recall the characterization of the projection onto a linear
subspace:

Theorem

Let y € R" and let F be a linear subspace of R”. Then, y* is the
projection of y onto F if, and only if,

> y* e F,
Py—y*GFL.
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Solution of exercise 1

We apply the theorem with F = Im(X) and y =Y.

im(X)
Solution of exercise 1
Consider now the coefficient of determination:
A - 2
P2 _q_ RSS(B)’ where TSS = HX— Y1n>2<1H
T35 RSS(B) = Y — X3

Let us decompose the TSS:

A ~ _ 2
TSS =HX—X+X—Yhu’

2

+ z - Vlnxl

~ 2
= [x-x \

A ~ _ 2
= RSS(B) + || ¥~ Vi

The transition from (1) to (2) follows from Pythgora's theorem.
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Solution of exercise 1

Indeed,

> Ve Im(X) and Y — Y € Im(X)+ since Y is the projection
of Y onto the linear subspace Im(X).

> ¥V — Y1, € Im(X) since 1,x1 € Im(X).

Thus:
@® 0 < RSS(B) < SCT, therefore 0 < R2 < 1,

® R2=1 iff SCR(B)=0 iff Y =X§5.
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4 — Appendices




Matrix calculus

The result can also be found using matrix calculus.

Let v € R9, z € RY and M € R9*9.

. . - . —|— . q
1) differentiation of h(z) =v'z=} 7 vz
oh
0z, 1
V.h(z) = ; = : =v therefore V,(v'z)=v.
oh
9z Yq

2) differentiation of h(z) = z'Mz =>F._. zM, ;z

=1

oh

o doii Mz + 370 Miazi
V:h(z) = : = :

aa—z'f, Do Mz + 37 Miaz;

therefore V. (z"Mz) =(M+ MT")z.
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Matrix calculus (cont'd)

Application to the minimization of the least squares criterion.

Recall that

RSS(B) = B'X'XB —2Y'XB+ Y'Y

Thus we have
VsRSS(8) = 2XTXp—~2XTY = 2 (X" X5 - XTY),

and finally:

VsRSS(B) =0 = B:(zk)_lfv.
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Data standardization
Let X = (X1,...,X,) be an n-sample taking values in RP.
Data standardization consists in transforming X to X as follows:

o _ X — Xy

Y — — Y — —

where 7,@ and SY) are the sample average and standard deviation
of the j-th variable, respectively:

X0 _ 1i X0
i=1

()" - 15 (- x0)"

i=1
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Student’s t distribution 7T (k)

Definition of T (k), k integer > 1
Let U and V be two RVs such that

> U~ #(0,1)

>V~ (k)

» U and V are independent
then T = LV follows a Student's t distribution with k degrees of freedom.

*
Properties Probability density function
d
T o e oy = L5 (HXz)—kzi
X)) = —— -

Exercise : prove it. Vkr T(%) k
Mean Variance

» for k> 2, E,(T)=0 > for k >3, vark(T) = %5
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