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Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Gilles Faÿ, Ziad Kobeissi, Laurent Le Brusquet,

Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator
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Lecture 8/9

Regularization and model selection

Course objectives

◮ Introduction to regularization for regression and classification.

◮ Estimation of generalization error.

◮ Selection of hyperparameter values and model selection.
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Lecture outline

1 – Regularized regression (or classification): penalization

2 – Estimation of the risk (generalization error)

3 – Hyper-parameters, model selection

4 – Exercises and solutions

5 – Appendices
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Limitations of “ordinary least squares”

Recall that X has size #individuals ×#variables (n × (p + 1)).

Critical situations for (ordinary) linear regression:

◮ when X⊤X is singular

◮ or poorly conditioned

Typical cases

1 when the number of variables is large (p + 1 > n),

2 when there are strong correlations between explanatory

variables.
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Example: p > n

Excerpt from a data table describing with p = 451 variables the

handwriting of n = 174 people, some of them suffering from

Alzheimer’s disease.

In the medical field in particular, it’s common to have more

descriptors than individuals.

From the study Diagnosing Alzheimer’s disease from on-line handwriting: A novel dataset and

performance benchmarking, N. D. Cilia et al., 2022, ant the associated dataset: UCI Machine Learning

Repository. https://doi.org/10.24432/C55D0K.

https://doi.org/10.24432/C55D0K
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Example: strong correlation between explanatory variables

“Ozone” example −→ correlation between variables NO and NO2
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Example: strong correlation. . . (cont’d)

Vector β̂ obtained by OLS regression:

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

Observations:

◮ The negative coefficient associated to NO2 is surprising

➠ hazardous interpretation of the coefficients

◮ The least influential variables (small coefficients) could

perhaps be removed from the model?
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Example: p ≫ n and strong correlation

Functional Magnetic Resonance Imaging (fMRI), with

approximately, p ≈ 300000 voxels

Typically, n ≈ 10 or 100!
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

β̂ = argminβ ‖Y − Xβ‖2

︸ ︷︷ ︸
data “fidelity”

+ λ︸︷︷︸
hyperparameter

Ω(β)︸ ︷︷ ︸
penalty

. (⋆)

NB: here and later on, ‖·‖ denotes the Euclidean norm.

Expected benefits of penalization:

◮ make the solution of (⋆) unique,

◮ take prior information into account

(this is related to the Bayesian approach),

◮ avoid over-fitting when the family of predictor functions is

“large” (for linear models: p ≫ n),

◮ make it easier to interpret the resulting model.
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Ridge regression

Penalty

Ω(β) = ‖β‖2 =
∑p

j=1 β
2
j

(usually, β0 is not penalized)

β̂
RIDGE

= argminβ ‖Y − Xβ‖2
+ λ‖β‖2

It can be proved that (✏ see PC):

β̂
RIDGE

=
(

X
⊤
X + λIp+1

)−1

X
⊤
Y .

➠ When λ ր, the conditioning of
(

X⊤X + λIp+1

)

improves.

Remark: β̂RIDGE has a Bayesian interpretation

(✏ see PC too).
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“Ozone” example: Evolution of β̂RIDGE as a function of λ
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LASSO regression

Penalty

Ω(β) = ‖β‖1 =
∑p

j=1 |βj |

(usually, β0 is not penalized)

β̂
LASSO

= argminβ ‖Y − Xβ‖2
+ λ‖β‖1 (⋆)

Minimization of the criterion

◮ no explicit solution for β̂LASSO (except in some cases, ➠ exercice 1 )

➠ dedicated algorithms
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LASSO regression: reformulation

β̂LASSO = argminβ ‖Y − Xβ‖2 + λ‖β‖1 (⋆)

◮ Let β̂ denote the OLS estimator of β:

β̂LASSO = β̂ for λ = 0

◮ Since ‖Y − Xβ‖2 = ‖X (β − β̂)‖2 + c , we have:

β̂LASSO = argminβ ‖X (β − β̂)‖2 + λ‖β‖1

◮ Reformulation with a contraint: it can be proved that there

exists cλ ∈ R
+ such that

β̂LASSO = argmin‖β‖1≤cλ
‖X (β − β̂)‖2
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LASSO regression: intuitive interpretation



15/60

“Ozone” example: β̂LASSO versus λ
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When λր, the number of coefficients equal to zero ր
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“Ozone” example: β̂LASSO for several λ

With λ = 0 (OLS)

MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

➠ The coefficient for NO2 may seem surprising

With λ = 0.5
MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

18.1 17.2 -2.1 0 4.9 2.2 1.9

➠ One of the two correlated variables is discarded,

makes it easier to interpret the coefficients

With λ = 3
MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

15.9 14.1 0 0 2.2 0 0

➠ The remaining variables are progressively discarded

Choice of the hyper-parameter λ ?
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Problem

Back to the general setting (regression/classification).

Let ĥ be a predictor X → Y learned from data:

ĥ(x) = ĥ(x ; (X1,Y1), . . . , (Xn,Yn)) = ĥ(x ;X ,Y ).

Recall that, given a loss function L, we define the risk, or

generalization error :

R
(
ĥ
)

= E

(
L(Y , ĥ(X ))

∣∣∣ X ,Y
)

=

∫∫

X×Y
L(y , ĥ(x)) P

X ,Y (dx , dy).

Examples. L(y , ỹ) = (y − ỹ)
2
, L(y , ỹ) = |y − ỹ |, L(y , ỹ) = 1y 6=ỹ , . . .

Problem

How can we estimate this risk (which depends on P
X ,Y ) ?
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ĥ
)

= E

(
L(Y , ĥ(X ))
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Problem

How can we estimate this risk (which depends on P
X ,Y ) ?



18/60

Refresher: empirical risk

We call empirical risk the risk

R̂n =

∫∫

X×Y
L(y , ĥ(x)) P̂n(dx , dy) =

1

n

n∑

i=1

L(Yi , ĥ(Xi ))

computed with P
X ,Y equal to P̂n = 1

n

∑n
i=1 δXi ,Yi

.

Question

Is this empirical risk R̂n, in general, a “good” estimator of the true

risk R(ĥ) ?

△! the data is used twice !

Intuition: It is “risky” to estimate the risk from the error observed

on the same data already used to construct ĥ. . .
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Zoom in on an illuminating special case

Consider the case of “ordinary” linear regression:

◮ h(x) = β0 + β1x
(1) + . . .+ βpx

(p),

◮ quadratic loss: L(y , ỹ) = (y − ỹ)2,

◮ p+ 1 ≤ n and X⊤X an a.s. invertible (p+ 1)× (p+ 1) matrix.

Empirical risk minimization : β̂ =
(
X⊤X

)−1
X⊤Y .

Remark: link between R̂n and the coefficient R2 of determination:

R2 = 1 − RSS(β̂)

TSS
= 1 −

∑n
i=1

(
Yi − β̂⊤Xi

)2

∑n
i=1

(
Yi − Ȳ

)2

= 1 − R̂n

v̂arn(Y )
with v̂arn(Y ) =

1

n

n∑

i=1

(
Yi − Ȳ

)2
.
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Zoom on an illuminating special case (cont’d)

Consider the generalization error wrt responses only:

R̃n = E

(
1

n

n∑

i=1

(
Ỹi − β̂⊤Xi

)2
∣∣∣∣∣ X ,Y

)
,

with, for all i , Ỹi and Yi iid conditionally to X .

Proposition

Assume that the unknown distribution P
X ,Y is such that

Yi = β⊤Xi + εi , with εi ∼ N (0, σ2), independent of Xi . Then

E

(
R̃n

)
= σ2

(
1 +

p + 1

n

)
,

E

(
R̂n

)
= σ2

(
1 − p + 1

n

)
.
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Zoom on an illuminating special case (cont’d)
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Zoom on an illuminating special case (cont’d)

Interpretation. On average, the empirical risk under-estimates

the generalization error:

E

(
R̃n − R̂n

)
= 2

p + 1

n
σ2 > 0.

Another way of looking at this result. Set

η =
p + 1

n
=

number of coefficients

sample size
·

Then
E

(
R̃n

)

E

(
R̂n

) =
1 + η

1 − η
−−−→
η→1

+∞.
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η =
p + 1

n
=

number of coefficients

sample size
·

Then
E

(
R̃n

)

E

(
R̂n

) =
1 + η

1 − η
−−−→
η→1

+∞.
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Zoom on an illuminating special case (cont’d)

Proof. Let us compute first E
(
R̃n | X

)
with (reminder)

R̃n = E

(
1

n

n∑

i=1

(
Ỹi − β̂⊤Xi

)2
∣∣∣∣ X ,Y

)
.

We have E

(
Ỹi | X

)
= E

(
β̂⊤Xi | X

)
= β⊤Xi , therefore

E

(
R̃n | X

)
=

1

n

n∑

i=1

var
(
Ỹi − β̂⊤Xi | X

)

=
1

n

n∑

i=1


var

(
Ỹi | X

)

︸ ︷︷ ︸
=σ2

+var
(
β̂⊤Xi | X

)

︸ ︷︷ ︸
=⊛


 .
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Zoom on an illuminating special case (cont’d)

We already know that var
(
β̂ | X

)
= σ2

(
X⊤X

)−1

. Therefore:

⊛ = var
(
β̂⊤Xi | X

)

= X⊤
i var

(
β̂ | X

)
Xi

= σ2 X⊤
i

(
X⊤X

)−1

Xi

= σ2 tr

((
X⊤X

)−1

XiX
⊤
i

)
.

By noting that X⊤X =
∑

i XiX
⊤
i , we get:

∑

i

var
(
β̂⊤Xi | X

)
= σ2 tr

((
X⊤X

)−1∑

i

XiX
⊤
i

)

= σ2 tr (Ip+1) = σ2 (p + 1) .
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Zoom on an illuminating special case (cont’d)

Thus, we have:

E

(
R̃n | X

)
=

1

n

n∑

i=1


var

(
Ỹi | X

)

︸ ︷︷ ︸
=σ2

+var
(
β̂⊤Xi | X

)

︸ ︷︷ ︸
=⊛




= σ2 + σ2 p + 1

n
= σ2

(
1 +

p + 1

n

)
.

Hence the result: E

(
R̃n

)
= σ2

(
1 + p+1

n

)
.

Exercise (✏ see PC): prove the second inequality, i.e.,

E

(
R̂n

)
= σ2

(
1 − p + 1

n

)
.
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Training set and test set

Conclusion/extrapolation. The empirical risk is in general

◮ a negatively biased estimator of the risk,

◮ with a bias that is increasing when p ր.

Solution: split the data in two sets

◮ training data: used to construct ĥ,

◮ test data: used to estimate the generalization error.

Example:

training
(80%)

test
(20%)
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Exemple “Ozone” (cont’d from lecture #6)

Goal: predict the ozone concentation on day t + 1

from data available on day t
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“Ozone” example: 70/30

Here we use the 7 explanatory variables + 21 interactions XjXk (j 6= k).

Results from 10 random splits, 70% / 30%:

R2 R̂n R̂test
n

77.2% 345.1 573.3

76.8% 371.4 496.0

77.3% 344.0 608.6

76.1% 350.5 606.1

78.6% 345.5 669.7

75.5% 399.9 476.6

71.4% 343.7 643.7

77.7% 377.3 524.7

81.8% 317.8 695.9

79.8% 373.2 554.3
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Problem #1: choosing a “good” family H

Example. Selection of k variables among p. Let J ⊂ {1, . . . p}:

h(x) = β0 +
∑

j∈J

βjx
(j).

➠ Defines a family HJ with kJ = card(J) + 1 parameters.

Example. Expansion in a basis, truncated at order J :

h(x) =

J∑

k=0

βjψj(x).

➠ Defines a family HJ with kJ = J + 1 parameters. ➠ complement

Problem: model selection

How to choose the family HJ (and, in particular, its “size” kJ) ?

Remark: replace h(x) with ln
h(x)

1−h(x)
for logistic regression.
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Problem #2: choosing an hyper-parameter

Most methods require some “tuning”. . .

◮ Ridge/LASSO regression: β̂ = argmin R̂
pen

n,λ , with

R̂
pen

n,λ (β) = R̂n(β) + λ
∑

j

|βj |q , q ∈ {1, 2},

◮ Decision trees, neural networks: structure

(e.g., number of levels of the tree / layers in the network)

◮ The k-nearest neighbors method: h(x) = 1
k

∑
i∈Vn,k (x)

yi ,

with Vn,k(x) the indices of the k nearest neighbors of x .

Problem

How to choose the value of such hyperparameters ?
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Over-fitting: beware!

Idea

Choose the family HJ , or the hyperparameter λ, in order to

minimize (an estimation of) the generalization error.

△! again, the empirical risk R̂n, estimated on the training data, is

not appropriate !

Example. Polynomial regression with x ∈ R, degree ≤ J:

h(x) = β0 + β1x + . . .+ βJx
J ,

with J = 2, 5, 8, 11.

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of

parameters in the model.
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Example: polynomial regression

0 0.5 1
-1

0

1

2

0 0.5 1
-1

0

1

2

0 0.5 1
-1

0

1

2

0 0.5 1

0

5

10

R̂n = 0.22, R̂test
n = 0.24 R̂n = 0.069, R̂test

n = 0.18

R̂n = 0.022, R̂test
n = 0.24 R̂n = 4.310−19, R̂test

n = 4.83

degré: 2 degré: 5

degré: 8 degré: 11
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Understanding over-fitting: simulations

Blue: empirical risk R̂n / Red: error on the test set

Figure from Hastie, Tibshirani & Friedman (2017).
The Elements of Statistical Learning (12th edition), Springer.
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Let’s recapitulate. . .

Problem. We want to estimate the error to choose H or λ but. . .

◮ it should be done neither on the training data

(➠ over-fitting problem),

◮ nor on the test data

(➠ bias in the final estimation of the generalization error).



33/60

Let’s recapitulate. . .

Problem. We want to estimate the error to choose H or λ but. . .

◮ it should be done neither on the training data

(➠ over-fitting problem),

◮ nor on the test data

(➠ bias in the final estimation of the generalization error).



Lecture outline

1 – Regularized regression (or classification): penalization

2 – Estimation of the risk (generalization error)

3 – Hyper-parameters, model selection

3.1 – Problem

3.2 – Cross validation

3.3 – AIC criterion

4 – Exercises and solutions

5 – Appendices



34/60

Solution: validation set

Idea: split the data in three sets

◮ training data: construct ĥ with given H /λ,

◮ validation set: choose H , λ, etc.

◮ test data: estimate the generalization error.

Simple validation (hold-out)

training
(e.g., 60%)

validation
(e.g., 20%)

test
(e.g., 20%)
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Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

train. 1
(20%)

train. 1
(20%)

train. 1
(20%)

valid. 1
(20%)

train. 2
(20%)

train. 2
(20%)

valid. 2
(20%)

train. 2
(20%)

train. 3
(20%)

valid. 3
(20%)

train. 3
(20%)

train. 3
(20%)

valid. 4
(20%)

train. 4
(20%)

train. 4
(20%)

train. 4
(20%)

test
(e.g., 20%)

➠ the error is averaged over the k validation sets.

Special case: leave-one-out cross validation

◮ k = n blocks (of size n/k = 1).
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“Ozone” example: LASSO / choice of λ

◮ Predictor: LASSO regression using all variables and their

interactions

◮ λ̂ obtained by CV (LOO)

5 10
15

20

25

30

λ

training

validation

λ̂ = 1.02

√
〈(
ŷ
−
y
)2
〉



37/60

“Ozone” example: interactions

◮ We add variables of the form X (j)X (j ′) and X (j)X (j ′)X (j ′′).

◮ LASSO regression (L1 penalty).

◮ Hyper-parameter λ estimated through 10-fold CV.

model X (j) X (j) X (j′) X (j) X (j′) X (j′′)

total number

of variables
7 35 119

number of selected

variables (βj 6= 0)
4 9 8

√
MSE CV (10-fold) 49.1 41.5 33.0

selected variables MOCAGE

TEMPE

NO

VentANG

MOCAGE

TEMPE

NO2

MOCAGE · TEMPE

TEMPE2

TEMPE · MH2O

TEMPE · NO2

NO2 · VentANG

VentANG · VentANG

MOCAGE

TEMPE

NO2

MOCAGE · TEMPE

TEMPE2

TEMPE · RMH2O

TEMPE2 · MOCAGE

VentANG2 · TEMPE
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Another approach to model selection: the AIC criterion

Assumption: parametric statistical models Mj for P
Y |X .

Denote by θ̂MLE
j the MLE of θ in model Mj .

Then the AIC criterion can also be used for model selection:

ĵ = argminAIC(j), AIC(j) = −2 lnL
(
θ̂MLE
j ;X ,Y

)
+ 2kj ,

with kj the number of parameters in model Mj .

➠ see PC for a partial justification (OLS linear regression)
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“Ozone” example: AIC

◮ Predictor obtained by the ordinary least squares method, on an

increasing number of variables

(linear terms first, then interactions)

0 20
1300

1320

1340

1360

1380

1400

# variables

AIC

k̂ = 8
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Summary and preview

We have seen and will practice in PC 8:

◮ Ridge and LASSO regularization for penalized linear regression;

◮ the problem of estimating the generalization error (risk);

◮ the cross-validation method for hyper-parameter tuning and

model selection.

We will cover in the last lecture:

◮ the challenges of unsupervised learning;

◮ principal component analysis (PCA) for dimension reduction;

◮ K -means algorithm for clustering.
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Exercise 1 (Penalized regression) ➠ solution

Let X1, . . . ,Xn represent the examples, taking values in R
p, and

Y1, . . . ,Yn be the labels, taking values in R The relationship

between Yi and Xi is given by:

Yi = β1X
(1)
i + . . .+ βpX

(p)
i + εi ,

where β is the parameter vector to be estimated, and εi is a

random variable following N (0, σ2), independent of Xi .

We aim to estimate β by minimizing a criterion of the form

1

2

n∑

i=1

(
Yi − β⊤Xi

)2
+ λP(β) (1)

where P is a penalty term, and λ ≥ 0 is a hyper-parameter.
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Exercise 1 (Penalized regression) ➠ solution

➠ slide 12

We denote X = [X1 . . .Xn]
⊤, the n × p matrix containing the

observations. We are considering the case where X⊤X = Ip.

Question

1 Give the expression of the estimator when λ = 0. Denote this

estimator β̂.

2 We consider a penalty of the form P(β) = ‖β‖2
2. Give the

expression of this estimator, denoted β̂R , and deduce that

there exists a constant c1,λ (to be specified) such that

β̂Rj = c1,λβ̂j , j = 1, . . . , p.



43/60

Exercise 1 (Penalized regression) ➠ solution

➠ slide 12

Question

3 We consider a penalty of the form P(β) = ‖β‖1.

To begin with, demonstrate that the minimum on R of the

function

f : α 7→ 1

2
(x − α)2 + λ |α|

is achieved atα∗ = sign(x) max (0, |x | − λ).

4 Deduce the solution of the optimization problem (1) for

P(β) = ‖β‖1, which will be expressed in terms of β̂. Denote

this estimator β̂L.
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Solution of exercise 1 ➠ back to questions

1 We recognize the least squares criterion, and we have:

β̂ = (X⊤X )−1X⊤Y = X⊤Y

2 This corresponds to ridge regression..

β̂R = (X⊤X + 2λI )−1X⊤Y

= (1 + 2λ)−1β̂

Therefore β̂Rj = (1 + 2λ)−1β̂j .
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Solution of exercise 1 ➠ back to questions

3 The function f is not differentiable, but it is differentiable at

every point α 6= 0 and continuous at α = 0. Thus, we can

determine its minimum by analyzing its variations using the

sign of the derivative, as if it were differentiable everywhere.

The derivative at every α 6= 0 is given by

f ′(α) =

{
α− x + λ si α > 0,

α− x − λ si α < 0,

hence

f ′(α) > 0 ⇔ (α > x − λ et α > 0) ou (α > x + λ et α < 0) .

(2)



46/60

Solution of exercise 1 ➠ back to questions

3 Let’s consider, for example, x > 0. Then, the second case in

the right-hand side of (2) is impossible, and we’re left with:

f ′(α) > 0 ⇔ α > x−λ et α > 0 ⇔ α > max (0, x − λ) .

(3)

Similarly, still assuming x > 0,

f ′(α) < 0 ⇔ (α < x − λ et α > 0) ou (α < x + λ et α < 0)

⇔ (0 < α < max(0, x − λ)) ou (α < 0)

⇔ (α < max(0, x − λ)) et (α 6= 0) .

Thus, f strictly decreases to the left of max(0, x − λ), and

strictly increases to the right, which concludes the case x > 0.

The case x < 0 follows similarly.
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Solution of exercise 1 ➠ back to questions

4 Here, we’ll manipulate the initial optimization problem to

reduce it to the optimization problem from the previous

question.:

β̂L = argmin
β

1

2
‖Y − Xβ‖2 + λ‖β‖1

= argmin
β

1

2
‖Y − X β̂ + X β̂ − Xβ‖2 + λ‖β‖1

= argmin
β

1

2

{
‖Y − X β̂‖2 + ‖X β̂ − Xβ‖2

}
+ λ‖β‖1

The cross product vanishes because the residual (Y − X β̂) is,

by construction, orthogonal to any linear combination of

columns of X , thus (Y − X β̂)⊤(X β̂ − Xβ) = 0.
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Solution of exercise 1 ➠ back to questions

4 Since the first term is independent of β, we have:

β̂L = argmin
β

1

2
‖X β̂ − Xβ‖2 + λ‖β‖1

= argmin
β

1

2
(β̂ − β)⊤X⊤X (β̂ − β) + λ‖β‖1

= argmin
β

1

2
(β̂ − β)⊤(β̂ − β) + λ‖β‖1

= argmin
β

1

2

p∑

j=1

(β̂j − βj)
2 + λ|βj |

The problem is separable and, from the previous question, we

have:

β̂Lj = sign(β̂j)max(0, |β̂j | − λ)
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Non-linearities in linear models. . .

If the empirical risk R̂(ĥ) is high, several possible causes:

◮ noise: intrinsic difficulty in predicting Y

➠ irreducible statistical error.

◮ non-linearity of the optimal predictor wrt the X (j)’s

➠ reducible approximation error.

Possible workaround: x (1), . . . , x (p) 7→ x̃ (1), . . . , x̃ (q)

◮ with x̃ (j) function of x (1), . . . , x (p).

◮ The model is still linear with respect to β.
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If the empirical risk R̂(ĥ) is high, several possible causes:

◮ noise: intrinsic difficulty in predicting Y

➠ irreducible statistical error.

◮ non-linearity of the optimal predictor wrt the X (j)’s

➠ reducible approximation error.

Possible workaround: x (1), . . . , x (p) 7→ x̃ (1), . . . , x̃ (q)

◮ with x̃ (j) function of x (1), . . . , x (p).

◮ The model is still linear with respect to β.



49/60

Non-linearities in linear models. . .
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Examples

A few examples:

◮ scalar transformations: ln(x (j)),
√
x (j), (x (j))k . . .

◮ interactions (here, of order two): x (j)x (k), j 6= k ,

◮ higher-order interactions,

◮ (truncated) expansion in a basis. . .

△! if q ≫ p, risk of over-fitting.

Remarks: feature engineering

◮ Proposing new relevant variables

➠ domain expertise (or model selection. . . ?)

◮ The same principle can be used to reduce dimension

➠ features extraction.
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Expansion in a basis

Principle

Let {ψm}m>0 be a function basis of L2(X )†.

Consider X̃ (m) = ψm(X ), m = 1, . . . ,M

➠ truncated expansion in the basis {ψm}.

Examples of bases (preferably orthogonal):

◮ polynomial bases,

◮ wavelet bases,

◮ Fourier bases. . .

† or any other function space assumed to contain the optimal predictor h∗.

➠ back to slide 28
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Example: LIDAR data

300 400 500 600 700 800
-1

-0.8
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-0.4

-0.2

0
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lo
g-

ra
ti
o

distance

x-axis: distance travelled before the light is reflected back to its source

y -axis: logarithm of the ratio of received light from two laser sources

Data obtained from http://matt-wand.utsacademics.info/webspr/lidar.html

LIDAR: LIght Detection And Ranging

➠ back to slide 28

http://matt-wand.utsacademics.info/webspr/lidar.html
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Basis of orthogonal cosines (basis of L2([0, 1])

0 0.2 0.4 0.6 0.8 1
-1.5
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x

degree=1

degree=3

degree=8

➠ back to slide 28



54/60

Example: LIDAR data (cont’d)

Quadratic loss + basis of cosines
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➠ back to slide 28
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Legendre polynomials (orthonormal basis of L2([−1, 1]))
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➠ back to slide 28
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Example: LIDAR data (cont’d)

Quadratic loss + Legendre polynomials
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➠ back to slide 28
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Haar wavelet basis

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.1

0

0.1

0 50 100 150 200 250
-0.2

0
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level j = 1 → 1 element

level j = 2 → 2 elements

level j = 3 → 2(j−1) = 4 elements

➠ back to slide 28
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Example: LIDAR data (cont’d)

Quadratic loss + Haar wavelets
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➠ back to slide 28
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Example: LIDAR data (cont’d)

Quadratic loss + Legendre polynomials
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Example: LIDAR data (cont’d)
Model selection

0 20 40

degré

0.05

0.1

0.15

0.2

cosine

Legendre

√
M
S
E

(L
O

O
-C

V
)

d̂cos = 6 d̂poly = 10

➠ back to slide 28
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