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Lecture 8/9

Regularization and model selection

Course objectives

» Introduction to regularization for regression and classification.
> Estimation of generalization error.

» Selection of hyperparameter values and model selection.
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Lecture outline

1 — Regularized regression (or classification): penalization
2 — Estimation of the risk (generalization error)

3 — Hyper-parameters, model selection

4 — Exercises and solutions

5 — Appendices

3/59



Lecture outline

1 — Regularized regression (or classification): penalization
1.1 — Limitations of “ordinary least squares”
1.2 — Ridge regression
1.3 — LASSO regression



Lecture outline

1 — Regularized regression (or classification): penalization
1.1 — Limitations of “ordinary least squares”



Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).
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Limitations of “ordinary least squares”

Recall that X has size #individuals x #£variables (n x (p + 1)).

Critical situations for (ordinary) linear regression:
» when X' X is singular

» or poorly conditioned
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Limitations of “ordinary least squares”

Recall that X has size #individuals x #£variables (n x (p + 1)).

Critical situations for (ordinary) linear regression:
» when X' X is singular

» or poorly conditioned

Typical cases
@ when the number of variables is large

® when there are strong correlations between explanatory
variables

a/59



Example: p>n

Subset of a microarray for transcriptome analysis,
p ~ 25000 for one patient
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Example: p>n

Subset of a microarray for transcriptome analysis,
p ~ 25000 for one patient

Typically, n =~ 10 or 100!
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Example: p>n

Functional Magnetic Resonance Imaging (fMRI), with
approximately, p ~ 300000 voxels

Typically, n = 10 or 100!
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Example: strong correlation between explanatory variables

SRMH20  rpype MOCAGE  030bs
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“Ozone” example — correlation between variables NO and NO2
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Example: strong correlation. .. (cont'd)

Vector /3 obtained by OLS regression:

Bo MOCAGE | TEMPE | RMH20 [ NO2 [ NO | VentMOD [ VentANG
103.4 1.4 2.6

Observations:

» The negative coefficient associated to NO2 is surprising
m hazardous interpretation of the coefficients

» The least influential variables (small coefficients) could
perhaps be removed from the model?
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

A

B=argmin|Y - XBIP+ A Q(B) - (*)
B —_——— ~~~ S~~~
data “fidelity” hyperparameter penalty
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One possible solution: penalized regression

A penalty term is added to the empirical risk:
B =argmin|Y — X8|+ A Q(B) . (%)
B e — ~— ~——
data “fidelity” hyperparameter penalty
Expected benefits of penalization:
» make the solution of (x) unique,

» take prior information into account
(this is related to the Bayesian approach),

» avoid over-fitting when the family of predictor functions is
“large” (for linear models: p > n),

» make it easier to interpret the resulting model.
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Lecture outline

1 — Regularized regression (or classification): penalization

1.2 — Ridge regression



Ridge regression

Penalty
Q(B) = 1817

BRIDGE = arg mﬁin Y — Kﬁ”z + )‘Hﬂuz
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Ridge regression

Penalty
Q(8) = 11817

BRIDGE — 5rg min||Y - XBIP + A7

It can be proved that (" see PC) :

N -1
BRIDGE _ (KTKﬂL )‘Ip+1) xTy.

w \WWhen \ 7, the conditioning of (KTK—% Alp41) improves.
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Ridge regression

Penalty
Q(8) = 11817

BRIDGE _ 50 mﬁin LY — XB|1> + A8

It can be proved that (" see PC) :

) 1
BRIDGE _ <KTK + )\/p+1> X'y.

w \When \ 7, the conditioning of (KTK—% Alp41) improves.

Remark: BRIPGE has a Bayesian interpretation (m see PC).
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6RIDGE

“Ozone” example: Evolution of as a function of A
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Lecture outline

1 — Regularized regression (or classification): penalization

1.3 — LASSO regression



LASSO regression

Penalty
Q(B) = 18Il = X271 18

5SSO — argmin Y — X3+ A



LASSO regression

Penalty
Q(B) = 1Bl = X2j=1 18]

l@LASSO = arg mﬁin HX—K5H2+)‘H5H1 (*)

Minimization of the criterion

» no explicit solution for FLASSO (except in some cases,

)

m dedicated algorithms
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LASSO regression: reformulation

BLASSO _ 510 mﬁin||£—&ﬁ||2+/\HBH1 (*)

> Let AOLS denote the OLS estimator of 3

[’)‘)LASSO _ BOLS forA =0
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LASSO regression: reformulation

BLASSO _ 510 mﬁin 1Y — XB|1% + Al18]1 (*)

> Let AOLS denote the OLS estimator of 3

5"LASSO — BOLS forA =0

> Since |LY — X8| = |X(8 — BOM5)|? + ¢, we have:
BUASSO = arg min {|X(5 — B2 + A8l
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LASSO regression: reformulation

BLASSO _ 510 mgn||x_gﬂ||2+)\\|ﬁ||1 (*)

> Let AOLS denote the OLS estimator of 3

5"LASSO — BOLS forA =0

> Since |LY — X8| = |X(8 — BOM5)|? + ¢, we have:
BHASS = argmin | X(8 — 37| + Al

» Reformulation with a contraint: it can be proved that there
exists ¢y € RT such that

350 — arg min 1 X(3 — AP such that| 9] < ¢

(and similarly for fRIDGE)
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LASSO regression: intuitive interpretation

FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions 1|+ |B2| < t and 53 + 35 < t2,
respectively, while the red ellipses are the contours of
the least squares error function.

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 3
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“Ozone” example: BLASSO

versus A
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“Ozone” example: BUA550 for several A

With A =0 (OLS)

Bo MOCAGE | TEMPE RMH20 NO2 NO
1034

m The coefficient for NO2 may seem surprising

VentMOD

VentANG

1.4

2.6

16/59



“Ozone” example: BUA550 for several A

With A =0 (OLS)

Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
1034 14 26

m The coefficient for NO2 may seem surprising

With A = 0.5
Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 2.2 1.9

w One of the two correlated variables is discarded,
makes it easier to interpret the coefficients
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“Ozone” example: BUA550 for several A

With A =0 (OLS)

Bo MOCAGE
103.4

TEMPE

RMH20 | NO2

NO VentMOD | VentANG
1.4 2.6

m The coefficient for NO2 may seem surprising

With A = 0.5
Bo MOCAGE | TEMPE | RMH20 [ NO2 | NO | VentMOD | VentANG
103.4 2.2 1.9

wm One of the two correlated variables is discarded,
makes it easier to interpret the coefficients

With A =3
Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 0 2.2

w The remaining variables are progressively discarded
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“Ozone” example: BUA550 for several A

With A =0 (OLS)

Bo MOCAGE
103.4

TEMPE

RMH20 | NO2

NO VentMOD | VentANG
1.4 2.6

m The coefficient for NO2 may seem surprising

With A = 0.5
Bo MOCAGE | TEMPE | RMH20 [ NO2 | NO | VentMOD | VentANG
103.4 2.2 1.9

wm One of the two correlated variables is discarded,
makes it easier to interpret the coefficients

With A =3
Bo MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG
103.4 0 2.2

w The remaining variables are progressively discarded

Choice of the hyper-parameter A\ ?

16/59



Lecture outline

2 — Estimation of the risk (generalization error)
2.1 — Problem
2.2 — Zoom in on an illuminating special case
2.3 — Training set and test set



Lecture outline

2 — Estimation of the risk (generalization error)
2.1 — Problem



Problem

Back to the general setting (regression/classification).
Let / be a predictor X — ) learned from data:

h(x) = h(x; (X1, Y1), ..., (Xn, Ya)) = h(x; X, Y).
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Problem

Back to the general setting (regression/classification).
Let / be a predictor X — ) learned from data:

h(x) = h(x; (X1, Y1), ..., (Xn, Ya)) = h(x; X, Y).

Recall that, given a loss function L, we define the risk, or
generalization error :

#(h) = E(LY. hXx) | x.Y)

-/ L0 RO P 0 ),

Examples. L(y,7) = (v — 7%, L(y.7) =y — 7. L(y,7)=1yzy, ...
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Problem

Back to the general setting (regression/classification).
Let / be a predictor X — ) learned from data:

h(x) = h(x; (X1, Y1), ..., (Xn, Ya)) = h(x; X, Y).

Recall that, given a loss function L, we define the risk, or
generalization error :

#(h) = E(LY. hXx) | x.Y)

-/ L0 RO P 0 ),

Examples. L(y,7) = (v — 7%, L(y.7) =y — 7. L(y,7)=1yzy, ...

Problem

How can we estimate this risk (which depends on PX:Y) ?

17/59



Refresher: empirical risk

We call empirical risk the risk
A A 1
o = [[ L0 50) Palax.dy) = 5" LY X))
XY n<

computed with PX:Y equal to P, = N 0,y
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Refresher: empirical risk

We call empirical risk the risk

%n://XXyL(y,ﬁ(x)) o(dx,dy) = ZLY,,h

PX,Y

computed with equal to P, = N 0,y

Question

Is this empirical risk Z,, in general, a “good” estimator of the true

risk Z(h) ?
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Refresher: empirical risk

We call empirical risk the risk
. R 1 < R
o = [[ L0 50) Palax.dy) = 25" L(Y h00)
AxY g
computed with PX:Y equal to P, = N 0,y

Question

Is this empirical risk Z,, in general, a “good” estimator of the true

risk Z(h) ?

A the data is used twice !

Intuition: It is “risky” to estimate the risk from the error observed
on the same data already used to construct h. ..

18/59



Lecture outline

2 — Estimation of the risk (generalization error)

2.2 — Zoom in on an illuminating special case



Zoom in on an illuminating special case

Consider the case of “ordinary” linear regression:
> h(x) =B+ BixH+ ... + BPX(P),
> quadratic loss: L(y.7) = (y — 7)?,
> p+1<nand X" X an as. invertible (p+1) x (p+ 1) matrix.
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Zoom in on an illuminating special case

Consider the case of “ordinary” linear regression:
> h(x) = Bo+ BixP + ...+ Bpx(P),
> quadratic loss: L(y,7) = (y — 7)?,
> p+1<nand X" X an as. invertible (p+1) x (p+ 1) matrix.

Empirical risk minimization : B: (XTK)A XTy.
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Zoom in on an illuminating special case

Consider the case of “ordinary” linear regression:
> h(x) = Bo + BixM) + ...+ BxP),
> quadratic loss: L(y,7) = (y — 7)?,
> p+1<nand X" X an as. invertible (p+1) x (p+ 1) matrix.

Empirical risk minimization : B = (KTK)_I X'y

Remark: link between %, and the coefficient R? of determination:

N 2
N n ATy
R2 — 1— RSS(8) 1 doim (YI 6] X,)
- a o 2
=1- =€2?n Vvit|1 ‘7E;F,,( \/) — EE E ( \/; _ s;) 2 .

varp(Y) n <
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Zoom on an illuminating special case (cont'd)

Consider the generalization error wrt responses only:
~ 1</~ . 2
Fon = E(nz(vi—ﬁx,-) X,Y>,

i=1
with, for all i, \7, and Y; iid conditionally to X.
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Zoom on an illuminating special case (cont'd)

Consider the generalization error wrt responses only:

Gon = E(i S (V- 57x)’ X,Y>,

i=1

with, for all i, \7, and Y; iid conditionally to X.

Proposition

Assume that the unknown distribution PX>Y is such that
Y; = BT X; + ¢, with ; ~ #(0,02?), independent of X;.
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Zoom on an illuminating special case (cont'd)

Consider the generalization error wrt responses only:
~ 1</~ . 2
Trn = E(nz(vf—ﬂx,-) x,v>,

i=1
with, for all i, \7, and Y; iid conditionally to X.

Proposition

Assume that the unknown distribution PX>Y is such that
Y; = BT X; + ¢, with g; ~ #(0,0?), independent of X;. Then

E(@,& = 02(1+pj:1),
E (%) = 02<1—p:1).
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Zoom on an illuminating special case (cont'd)

Interpretation. On average, the empirical risk under-estimates
the generalization error:

L 1
E(%n—%n) _ Pl g
n
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Zoom on an illuminating special case (cont'd)
Interpretation. On average, the empirical risk under-estimates
the generalization error:

_ +1
E(%n— %) = 287202 > 0.
n
Another way of looking at this result. Set

p-+1 _ number of coefficients

n sample size

Then B
IE: é?%?n ) 1 _+_ 77

= —+00.

(
E (@0 1—-n no1
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Zoom on an illuminating special case (cont'd)

Proof. Let us compute first E ( Zn | X) with (reminder)

n

( ’1(v ﬂTX)

S|
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Zoom on an illuminating special case (cont'd)

Proof. Let us compute first E (@n | X) with (reminder)

( d(v ,BTX) X,Y).

We have E (\7, | K) =K (BTX,- | K) = BT X;, therefore

S|

E (% |X) = %ivar(%fﬁ*x;m)
i=1



Zoom on an illuminating special case (cont'd)

Proof. Let us compute first E (@n | K) with (reminder)

X, Y) :

We have E (\7, | K) =K (BTX,- | K) = BT X;, therefore

E (% |X) = %ivar(%fﬁx;m)
i=1

_ % i (var(?,- | K) + var (QTX,- X)) )

i=1
—g2 =®




Zoom on an illuminating special case (cont'd)

We already know that var (B | K) =02 (KTK)A.

23/59



Zoom on an illuminating special case (cont'd)

N T -1
We already know that var (ﬂ | K) = g2 (K 5) . Therefore:

® = var (BTX,- |5)
= X;' var (B | K) Xi
1

— 52 X/T (KTi

X>_ X;



Zoom on an illuminating special case (cont'd)

N T -1
We already know that var (ﬂ | K) = g2 (K 5) . Therefore:

®

var (BTX,' | X
= X" var (B |

1



Zoom on an illuminating special case (cont'd)

N T -1
We already know that var (ﬂ | K) = g2 (K 5) . Therefore:

® = var (QTXJ

1

= X" var (B|

By noting that X' X = SXXT, we get:

Zvar (BTX’_ |K) _ U2tr(<KTK>—1ZX,-X,_T>

= Pt () = o2 (p+1).



Zoom on an illuminating special case (cont'd)

Thus, we have:

E(@n |g> - %Z var(\~/,-|K)+var (BTX,-|K>
i=1
—g2 -®

1 1
:Gz+02P+ _ (1+P+)
n n

Hence the result: E <,%7,,) =02 (1+ p+1).

n
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Zoom on an illuminating special case (cont'd)

Thus, we have:

E(@n |g> - %Z var(\~/,-|K)+var (BTX,-|5)
i=1
—g2 -®

1 1
:Gz+02P+ _ (1+P+)
n n

n

Hence the result: E <,%7,,) =02 (1+ p+1).

Exercise: prove the second inequality, i.e.,

JE(%Z) - 02(1—":1).

s see PC O
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Lecture outline

2 — Estimation of the risk (generalization error)

2.3 — Training set and test set



Training set and test set

Conclusion/extrapolation. The empirical risk is in general
> a negatively biased estimator of the risk,

» with a bias that is increasing when p .
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Training set and test set

Conclusion/extrapolation. The empirical risk is in general
> a negatively biased estimator of the risk,

> with a bias that is increasing when p .

Solution: split the data in two sets

> training data: used to construct h,

> test data: used to estimate the generalization error.

Example:

training test
(e.g., 80%) (20%)
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Exemple “Ozone” (cont'd from lecture #6)

SRMHZO  reype MOCAGE  O3obs _

LNO2
%
¥
¥
3

LNO

VentANG  VentMOD

© m o 2 a0 m 400 01 0w S 0 5 5 o s 0 5 w02 o 2
030bs MOCAGE TEMPE SRMH20 LNO2 LNO VentMOD  VentANG

Goal: predict the ozone concentation on day t + 1
from data available on day ¢
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“Ozone” example: 70/30

All 7 explanatory variables and their 21 interactions are used.

Results from 10 random splits, 70% / 30%:

R2
0.77185
0.76831
0.77292
0.76093
0.78584
0.75459
0.71367
0.77689

0.8176
0.79784

A

Kn
345.1
371.41
343.96
350.53
345.45
399.9
343.72
377.32
317.83
373.18

(@?Eest
573.32
496.03
608.62
606.14
669.66
476.61
643.72
524.74
695.86
554.25
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Lecture outline

3 — Hyper-parameters, model selection
3.1 — Problem
3.2 — Cross validation
3.3 — AIC criterion



Lecture outline

3 — Hyper-parameters, model selection
3.1 — Problem



Problem #1: choosing a “good” family 7

Example. Selection of k variables among p. Let J C {1,...p}:

h(x) = Bo+ > _ BixY).
jed

m Defines a family 22 with k; = card(J) + 1 parameters.

Remark: replace h(x) with In LGOIy logistic regression.
1—h(x) 28/59



Problem #1: choosing a “good” family 7

Example. Selection of k variables among p. Let J C {1,...p}:

h(X) = ﬁO + ZﬁjX(j).
jed

m Defines a family 27 with k; = card(J) + 1 parameters.

Example. Expansion in a basis, truncated at order J :

J
h(x) = ) Bii(x).
k=0

m Defines a family 7 with k; = J + 1 parameters.

. . h(x) - .
Remark: replace h(x) with In T=h(0) for logistic regression. soje0



Problem #1: choosing a “good” family 7

Example. Selection of k variables among p. Let J C {1,...p}:

h(X) = ﬁO + ZﬁjX(j).
jed

m Defines a family 27 with k; = card(J) + 1 parameters.
Example. Expansion in a basis, truncated at order J :

J
h(x) = ) Bii(x).
k=0

m Defines a family 7 with k; = J + 1 parameters.

Problem: model selection
How to choose the family 4% (and, in particular, its “size” k;) ?
h(x)

Remark: replace h(x) with In T=h() for logistic regression. soje0



Problem #2: choosing a regularization hyper-parameter
Most methods require some “tuning”. ..

> Ridge/LASSO regression: 3 = argmin @Ee; with

FLB) = Fa(B)+ 21517, qe{1,2},
J

20/59



Problem #2: choosing a regularization hyper-parameter
Most methods require some “tuning”. ..

> Ridge/LASSO regression: 3 = argmin @ge; with

FLB) = Za(B)+ A 1517, qe {12},
J

» Choosing the number k of neighbors in a k-NN model:

=0 3w

ievn,k(x)

with V, «(x) the indices of the k nearest neighboors of x.
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Problem #2: choosing a regularization hyper-parameter
Most methods require some “tuning”. ..

> Ridge/LASSO regression: 3 = argmin @ge; with

FLB) = Za(B)+ A 1517, qe {12},
J

» Choosing the number k of neighbors in a k-NN model:

=0 3w

ievn,k(x)

with V, «(x) the indices of the k nearest neighboors of x.

Problem: calibration

How to “tune” the values of such hyperparameters ?

20/59



Over-fitting: beware!
|dea

Choose the family 77}, or the hyperparameter ), in order to
minimize (an estimation of) the generalization error.

30/59



Over-fitting: beware!

Idea

Choose the family 77}, or the hyperparameter ), in order to
minimize (an estimation of) the generalization error.

A again, the empirical risk @n, estimated on the training data, is
not appropriate !

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of
parameters in the model.
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Over-fitting: beware!

Idea

Choose the family 77}, or the hyperparameter ), in order to
minimize (an estimation of) the generalization error.

A again, the empirical risk L%o’,,, estimated on the training data, is

not appropriate !
Example. Polynomial regression with x € R, degree < J:

h(x) Zﬁo+51x+...—|—5_/XJ,
with J =2,5,8, 11.

Recall that, in linear regression, the empirical risk has a downward bias proportional to the number of
parameters in the model.

30/59



Example: polynomial regression

P =0.22, At =024, =0.069, %yt = 0.18

31/59



Understanding over-fitting: simulations

Prediction Error
0.6 0.8 1.0 1.2

0.4
|

0.2

Model Complexity (df)

Blue: empirical risk %, / Red: error on the test set

Figure from Hastie, Tibshirani & Friedman (2017).
The Elements of Statistical Learning (12th edition), Springer.
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Let's recapitulate. . .

Problem. We want to estimate the error to choose J#Z or \ but. ..

» it should be done neither on the training data
(m over-fitting problem),
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Let's recapitulate. . .

Problem. We want to estimate the error to choose J#Z or \ but. ..

» it should be done neither on the training data
(m over-fitting problem),

» nor on the test data
(m bias in the final estimation of the generalization error).

33/59



Lecture outline

3 — Hyper-parameters, model selection

3.2 — Cross validation



Solution: validation set

Idea: split the data in three sets

» training data: construct h with given S/ \,
» validation set: choose 7, )\, etc.

> test data: estimate the generalization error.

34/59



Solution: validation set

Idea: split the data in three sets

> training data: construct h with given I,
» validation set: choose 7, )\, etc.

> test data: estimate the generalization error.

Simple validation (hold-out)

training validation test
(e-g., 60%) (e.g., 20%) (e.g., 20%)

34/59



Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

(train. 1 | [ train. 1 | [ train. 1 | [ valid. 1
(20%) (20%) (20%) (20%)

-

( train. 2 N ( train. 2 N ( valid. 2 1 ( train. 2 )
(20%) (20%) 20%) | (0%) | test

(e.g., 20%)

AN J \C AN

J

train. 3 N ( valid. 3 N ( train. 3 1 ( train. 3 )
(20%) (20%) (20%) (20%)

AN

AN AN AN J

valid. 4 N ( train. 4 N ( train. 4 1 ( train. 4 )
0%) | | (20%) (20%) (20%)

m the error is averaged over the k validation sets.
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Better validation: the cross validation method

k-fold cross-validation, here with k = 4:

(train. 1 | [ train. 1 | [ train. 1 | [ valid. 1
(20%) (20%) (20%) (20%)

-

( train. 2 N ( train. 2 N ( valid. 2 1 ( train. 2 )
(20%) (20%) 20%) | (0%) | test
(e.g., 20%)

AN J \C AN

J AN

train. 3 N ( valid. 3 N ( train. 3 1 ( train. 3 )
(20%) (20%) (20%) (20%)

AN

. N . N
valid. 4 train. 4
(20%) | | (20%)

U
r

AN

. N O B N
train. 4 train. 4
(20%) (20%)

m the error is averaged over the k validation sets.

Special case: leave-one-out cross validation
» k = n blocks (of size n/k =1).
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“Ozone” example: LASSO / choice of A

» Predictor: LASSO regression using all variables and their
interactions

> X obtained by CV (LOO)
30

—training

—validation

—~ -

15 : ‘ ‘
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“Ozone” example: interactions

» We add variables of the form XU XU") and XU xU)xU"),
» LASSO regression (L' penalty).
» Hyper-parameter \ estimated through 10-fold CV.

model X0 X0 xU") x0) x0") xG")
total r.1umber 7 35 119
of variables
nur:nber of selected 4 9 8
variables (3; # 0)
VMSE CV (10-fold) | 49.1 415 33.0
selected variables MOCAGE MOCAGE MOCAGE
TEMPE TEMPE TEMPE
NO NO2 NO2
VentANG MOCAGE - TEMPE MOCAGE - TEMPE
TEMPE? TEMPE?
TEMPE - MH20 TEMPE - RMH20
TEMPE - NO2 TEMPE2 . MOCAGE

NO2 - VentANG
VentANG - VentANG

VentANG2 . TEMPE
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3 — Hyper-parameters, model selection

3.3 — AIC criterion



Another approach to model selection: the AIC criterion

Assumption: parametric statistical models .7 for pYIX.

Denote by 9JMLE the MLE of 6 in model .#;.
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Another approach to model selection: the AIC criterion

Assumption: parametric statistical models .#; for PYIX.
Denote by 9JMLE the MLE of 6 in model .#;.
Then the AIC criterion can also be used for model selection:

j=argminAIC(j),  AIC(j) = —2|nc<é}"LE;g.l) +2k;,

with k; the number of parameters in model .Z;.

m see PC for a partial justification (OLS linear regression)
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"Ozone” example: AIC

» Predictor obtained by the ordinary least squares method, on an
increasing number of variables

(linear terms first, then interactions)

1400

1380

1360

1340

1320

1300
0

>

Il
o

20
# variables
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Lecture outline

4 — Exercises and solutions
4.1 — Questions



Exercise 1 (Penalized regression)

Let Xi,...,X, represent the examples, taking values in RP, and
Y1,..., Y, be the labels, taking values in R The relationship
between Y; and X; is given by:

Yi=gxX 4+ 4 BxP) g,

where (3 is the parameter vector to be estimated, and ¢; is a
random variable following N(0, o?), independent of X;.
We aim to estimate 8 by minimizing a criterion of the form

;Z (vi-67%)" + xP(8) (1)

where P is a penalty term, and A\ > 0 is a hyper-parameter.
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Exercise 1 (Penalized regression)

We denote X = [X;...X,]", the n x p matrix containing the
observations. We are considering the case where XX = I,.

Question

@ Give the expression of the estimator when A = 0. Denote this
estimator f3.

® We consider a penalty of the form P(3) = ||8]|3. Give the
expression of this estimator, denoted 3R, and deduce that
there exists a constant ¢; ) (to be specified) such that

IBJR: Cl,)\ﬁj!.j: ].7...,p.
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Exercise 1 (Penalized regression)

Question

©® We consider a penalty of the form P(3) = ||8]|1-
To begin with, demonstrate that the minimum on R of the
function

1
f:a— E(X—Oé)2+)\|()é|
is achieved ata* = sign(x) max (0, |x| — A).
©® Deduce the solution of the optimization problem (1) for

P(B) = |8]|1, which will be expressed in terms of 3. Denote
this estimator AL.
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4 — Exercises and solutions

4.2 — Solutions



Solution of exercise 1

@ We recognize the least squares criterion, and we have:
B=(XTX)XTy=xTYy
® This corresponds to ridge regression..

BR=(XTX +2x)"IxTy
= (1420715

Therefore BR (T+2X)~ lﬁj
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Solution of exercise 1

© The function f is not differentiable, but it is differentiable at
every point a # 0 and continuous at & = 0. Thus, we can
determine its minimum by analyzing its variations using the
sign of the derivative, as if it were differentiable everywhere.
The derivative at every a. # 0 is given by

F(a) = a—x+A sia>0,
a—x—XA sia<0,
hence

flla) >0 & (a>x—Xdeta>0)ou (a>x+Aeta<D0).

(2)
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Solution of exercise 1

© Let's consider, for example, x > 0. Then, the second case in
the right-hand side of (2) is impossible, and we're left with:

flla) >0 & a>x-deta>0 < a>max(0,x—A).
(3)
Similarly, still assuming x > 0,
flla) <0 & (a<x—Xdeta>0)ou (a<x+Aeta<D0)
& (0 <a<max(0,x—A)) ou (< 0)
< (a<max(0,x —A)) et (a«#0).

Thus, f strictly decreases to the left of max(0,x — A), and
strictly increases to the right, which concludes the case x > 0.
The case x < 0 follows similarly.
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Solution of exercise 1

O Here, we'll manipulate the initial optimization problem to
reduce it to the optimization problem from the previous
question.:

2 .1
Bt = arggnlnEHY — XB1> + A8l
.1 A )
= argﬁmmEHY —XB+ Xp6 — XBH2 + |81

.1 A A
= argmin {||Y = XB? + |IXB - XBI* | + A[5x
B

The cross product vanishes because the residual (Y — X ) is,
by construction, orthogonal to any linear combination of
columns of X, thus (Y — X3)T (X3 — X3) =0.
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Solution of exercise 1

O Since the first term is independent of 3, we have:

N

Bt = argmin X3 - XBI° + A5l
- arggﬁn;(@ — B)"XTX(B - B) + MBI

.1 A
= argmin (8= )" (8 =~ £) + Al
<=
= argmin > (B — B)? + AlBj]
8B 2
The problem is separable and, from the previous question, we
have:

/S’J-L = sign(ﬁj)max(o, |[§’j| —A)
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Lecture outline

5 — Appendices
5.1 — Model building: feature engineering



Non-linearities in linear models. . .

If the empirical risk @(ﬁ) is high, several possible causes:

» noise: intrinsic difficulty in predicting Y
m jrreducible statistical error.
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Non-linearities in linear models. . .

If the empirical risk @(ﬁ) is high, several possible causes:

» noise: intrinsic difficulty in predicting Y
w jrreducible statistical error.

» non-linearity of the optimal predictor wrt the XU)'s
m reducible approximation error.
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Non-linearities in linear models. . .

If the empirical risk @(ﬁ) is high, several possible causes:

» noise: intrinsic difficulty in predicting Y
w jrreducible statistical error.

> non-linearity of the optimal predictor wrt the XU)'s
- reducible approximation error.

Possible workaround: x(), ... x(P) — (1) (@)
> with XU) function of x(1), ... x(P).

» The model is still linear with respect to §.
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Examples

A few examples:
» scalar transformations: In(x{)), vx0), (x)k_ .

> interactions (here, of order two): xU)x(k) j £ k,
» higher-order interactions,

» (truncated) expansion in a basis. . .

A if g > p, risk of over-fitting.
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Examples

A few examples:
» scalar transformations: In(x1)), vx0), (xW)k .

> interactions (here, of order two): xU)x(k) j £ k,
» higher-order interactions,

» (truncated) expansion in a basis. . .
A if g > p, risk of over-fitting.

Remarks: feature engineering
» Proposing new relevant variables
m domain expertise (or model selection. .. ?)
» The same principle can be used to reduce dimension

m features extraction.
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Expansion in a basis

Principle

Let {¢)m} -0 be a function basis of L2(X)T.
Consider X(") = 4, (X), m=1,....M

w truncated expansion in the basis {¢,}.

T or any other function space assumed to contain the optimal predictor h*.
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Expansion in a basis

Principle

Let {¢)m} -0 be a function basis of L2(X)T.
Consider X(™ = 4, (X), m=1,....M

w truncated expansion in the basis {1, }.

Examples of bases (preferably orthogonal):
» polynomial bases,
> wavelet bases,

» Fourier bases. . .

T or any other function space assumed to contain the optimal predictor h*.
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Example: LIDAR data

0.2r
Or ‘%mﬁﬂucgcc%m“
& 0c® °% o
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i\ © 00l
- 040 0 S
a0 é‘; 000” ° ‘o
Ke) cwole o °
0 o %o °
06F R
® %
0.8} e
- I I I ° | |
300 400 500 600 700 800
distance

x-axis: distance travelled before the light is reflected back to its source
y-axis: logarithm of the ratio of received light from two laser sources

Data obtained from http://matt-wand.utsacademics.info/webspr/lidar.html

LIDAR: Llght Detection And Ranging
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Basis of orthogonal cosines (basis of L2(]0, 1])

1 .ES T T T T
—degree=1
1F AN —degree=3 |
degree=8
0.5r \ 1
0 L -
-0.5¢ \ i
A \ 1
/ -
15 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

i back to slide 28
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Example: LIDAR data (cont'd)

Quadratic loss + basis of cosines

0.2y
—degree=1
Or degree=3
—degree=8
-0.2r
.0
)
T
0.4
80
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i back to slide 28

53/59



Legendre polynomials (orthonormal basis of L?([—1,1]))

3
—degree=1
ol —degree=3
degree=8

i back to slide 28 o



Example: LIDAR data (cont'd)

Quaderatic loss + Legendre polynomials

0.2y
—degree=1
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Haar wavelet basis
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Example: LIDAR data (cont'd)

Quadratic loss + Haar wavelets
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Example: LIDAR data (cont'd)

Quaderatic loss + Legendre polynomials
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Example: LIDAR data (cont'd)

Madel celection

MSE (LOO-CV)

0.2

0.1

0.05

—cosine

— Legendre

I

d/\cos =6 C,]poly =10

20
degré

40
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