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Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Gilles Faÿ, Ziad Kobeissi, Laurent Le Brusquet,

Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator
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Lecture 6/9

Introduction to supervised learning

Linear models for regression

Course objectives

◮ Introduce the basic concepts of statistical learning

◮ Establish the mathematical framework for regression and

classification problems

◮ Learn how to build and use linear regression models
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Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression

3 – Standard exercices (with solutions)

4 – Appendices
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Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for

improving performance by mechanizing the acquisition of

knowledge from experience.”
(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54–64)

Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of AI and Design.
https://www.autodesk.com/redshift/machine-learning/

https://www.autodesk.com/redshift/machine-learning/
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Statistical learning: a “disciplinary” point of view

Computer science

Artificial intelligence (AI)

Machine learning

Mathematics

(“mathematical sciences”)

Statistics

Statistical learning

(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”
(apprentissage statistique) are often used interchangeably.
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Example: handwritten character recognition

A subset of the MNIST database

containing 70 000 b&w images† of size 28 × 28 pixels

Supervised learning problems: examples are provided with a label.

➠ Learn to classify a new image in one of the 10 classes.

† 60 000 training examples and 10 000 test examples
Source: https://www.openml.org/search?type=data&id=554

https://www.openml.org/search?type=data&id=554
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Example: real estate pricing in Ames (Iowa)

Database of real estate transactions data

(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

➠ Learn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques)

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
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Several forms of learning

◮ Supervised learning: examples with labels.
◮ analogy: learning with a teacher.

➠ Lectures 6 to 8

◮ Unsupervised learning: examples without labels
◮ analogy: learning without a teacher, pattern discovery

➠ Lecture 9

and also. . . (not covered in this course)

◮ Active learning
◮ the labels are queried sequentially;
◮ example: detection of bank frauds

→ in-depth analysis of “suspicious” cases only.

◮ Reinforcement learning

◮ Transfer learning

◮ . . .
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Numerous fields of application

◮ Computer vision

◮ Speech recognition

◮ Natural Language Processing (NLP)

◮ Fraud detection

◮ Personalized medicine

◮ Recommender systems & targeted marketing

◮ . . .



Lecture outline

1 – Introduction to (supervised) statistical learning

1.1 – Statistical learning

1.2 – The mathematical framework of supervised learning

2 – Linear regression

3 – Standard exercices (with solutions)

4 – Appendices



10/53

ML vocabulary: instance space and label space

Instance space: X

◮ instances x1, . . . , xn ∈ X

Label space: Y

◮ labels y1, . . . , yn ∈ Y

MNIST example:

Class: zero, one, . . . nine

X = [0, 1]28×28 Y = {“zero” , . . . , “nine”}

In this and the following lectures, we will always assume:

X = R
p Y = R → regression, or

Y = {0, 1} → classification†.

† more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST). . .
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Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

(X1,Y1), . . . , (Xn,Yn)
iid
∼ PX ,Y

where PX ,Y is an unknown probability measure on X × Y.

ii) Unless explicitely mentioned, we make no assumption on the

distribution: θ = PX ,Y and Θ = {probability measures on X × Y}.

Notation. We denote by (X ,Y ) another pair of RVs, which follows the

same distribution P
X ,Y but is not observed.

△! change of notation (wrt previous lectures)

➠ observations: Xi ∈ X → (Xi ,Yi ) ∈ X × Y



11/53

Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

(X1,Y1), . . . , (Xn,Yn)
iid
∼ PX ,Y

where PX ,Y is an unknown probability measure on X × Y.

ii) Unless explicitely mentioned, we make no assumption on the

distribution: θ = PX ,Y and Θ = {probability measures on X × Y}.

Notation. We denote by (X ,Y ) another pair of RVs, which follows the

same distribution P
X ,Y but is not observed.

△! change of notation (wrt previous lectures)

➠ observations: Xi ∈ X → (Xi ,Yi ) ∈ X × Y



11/53

Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

(X1,Y1), . . . , (Xn,Yn)
iid
∼ PX ,Y

where PX ,Y is an unknown probability measure on X × Y.

ii) Unless explicitely mentioned, we make no assumption on the

distribution: θ = PX ,Y and Θ = {probability measures on X × Y}.

Notation. We denote by (X ,Y ) another pair of RVs, which follows the

same distribution P
X ,Y but is not observed.

△! change of notation (wrt previous lectures)

➠ observations: Xi ∈ X → (Xi ,Yi ) ∈ X × Y



12/53

Goal

Goal of supervised learning (informally)

We want to “learn” from data† a prediction function‡

ĥ : X → Y

x 7→ y = ĥ(x)

such that the RVs Y and ĥ(X ) are as “close” as possible.

† We should write ĥ(x) = ĥ(x ; (X1,Y1), . . . , (Xn,Yn)). . .
‡ If Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L : Y × Y → R
+

(y , ỹ) 7→ L(y , ỹ).

➠ L(y , ĥ(x)) quantifies the loss when y is predicted by ĥ(x).
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Goal (cont’d)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or

generalization error, is defined as :

R(h) = E (L(Y , h(X ))) ,

where the expectation is with respect to (X ,Y ).

(NB: the concept of “risk” in this context differs from that in the previous lectures)

△! This risk depends on the unknown distribution θ = PX ,Y :

Rθ(h) =

∫∫

X×Y
L(y , h(x)) PX ,Y (dx , dy).

➠ From now on, we will simply write R(h).
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Goal (cont’d)

The optimal prediction function depends on the unknown

distribution PX ,Y :

h∗ = h∗(PX ,Y ) = argminh R(h).

(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X1,Y1), . . . , (Xn,Yn), a prediction

function
ĥ : X → Y

x 7→ y = ĥ(x)

such that the risk R(ĥ) is as close as possible to the optimal risk

R∗ = inf
h
R(h)

(also called “Bayes risk”).
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Regression

We consider in the rest of this lecture the regression case: Y = R.

Francis Galton (1886). “Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246–263.

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:

L(y , ỹ) = (y − ỹ)2.

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is

∀x ∈ X , h∗(x) = E(Y |X = x).

Vocabulary : x 7→ E(Y |X = x) is sometimes called “regression function”.

We will consider this loss function until further notice.
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L(y , ỹ) = (y − ỹ)2.
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Quadratic loss (cont’d)

Proof. By the law of total expectation, we get:

R(h) = E


E

(
(Y − h(X ))2 | X

)

︸ ︷︷ ︸
⊛


 .

Le term ⊛ can be decomposed as :

E

(
(Y − h(X ))2 | X

)

= E

(
(Y−E(Y | X ) + E(Y | X )− h(X ))2 | X

)

= var(Y | X ) + (E(Y | X )− h(X ))2 .

The first term does not depend on h, and the second one is

minimal when h(X ) = E(Y | X ) a.s..
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Empirical risk

Recall that the joint distribution PX ,Y is unknown

➠ the risk R(h) cannot be computed.

Definition: empirical risk

We call empirical risk the risk

R̂n(h) =

∫∫

X×Y
L(y , h(x)) P̂n(dx , dy) =

1

n

n∑

i=1

L(Yi , h(Xi ))

associated to the empirical measure P̂n = 1
n

∑n
i=1 δXi ,Yi

.

With the quadratic loss :

R̂n(h) =
1

n

n∑

i=1

(Yi − h(Xi ))
2 .
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Empirical risk minimization
A general learning method:

1 Choose a family H of prediction functions.

2 Select the function h which minimizes the empirical risk:

ĥERM = argminh∈H R̂n(h).

Example: “linear” (affine) prediction functions

H =
{
h : Rp → R

∣∣∣ ∃β ∈ R
p+1, ∀x ∈ X ,

h(x) = β0 + β1x
(1) + . . .+ βpx

(p)
}

△! the ERM method is reasonable if H is “not too large”

➠ otherwise, complex models must be penalized (more on this in

Lecture 8)
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Other examples of families of prediction functions

◮ linear models with general basis functions

h(x) = β1h1(x) + . . .+ βKhK (x),

where the functions hk : X → R are known;

◮ additive models

h(x) = h1(x
(1)) + . . .+ hp(x

(p)),

where the hk ’s belong to a given family of R → R functions;

◮ neural networks,

◮ decision trees,

◮ generalized linear/additive models

◮ . . .
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Residual sum of squares
We consider prediction functions h of the form :

h(x) = β0 + β1x
(1) + . . .+ βpx

(p) = β⊤x

with β =




β0

β1
...

βp


 and x =




1

x (1)

...

x (p)


.

Definition: RSS / least squares criterion

Empirical risk: R̂(h) = 1
n

∑n
i=1

(
Yi − β⊤Xi

)2
.

We define the Residual Sum of Squares (RSS):

RSS(β) =
n∑

i=1

(
Yi − β⊤Xi

)2

or least squares criterion.
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Matrix-vector notations

Let X =




1 X
(1)
1 . . . X

(p)
1

1 X
(1)
2 . . . X

(p)
2

...
...

1 X
(1)
n . . . X

(p)
n




and Y =




Y1

Y2
...

Yn


.

➠ X has size n × (p + 1) and Y has length n.

Matrix form of the criterion

RSS(β) = ‖Y − Xβ‖2

= (Y − Xβ)⊤ (Y − Xβ)

= β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y
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Minimization of the least squares criterion

Assumption

We assume X⊤X invertible

➠ implies p + 1 ≤ n.

Let β̃ =
(
X⊤X

)−1
X⊤Y . Then:

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y

= (β − β̃)⊤X⊤X (β − β̃) + c

where c is a constant (i.e., does not depend on β).

Indeed: β̃⊤X⊤Xβ = Y⊤X
(
X⊤X

)−1
X⊤Xβ = Y⊤Xβ.
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Minimization of the least squares criterion

Reminder : RSS(β) = (β − β̃)⊤X⊤X (β − β̃) + c.

We have:

i ∀a ∈ R
p+1, a⊤X⊤Xa = ‖Xa‖2 ≥ 0,

ii X⊤X is invertible, hence positive definite.

(i) implies that RSS(β) is minimal at β̃;

(ii) implies that the minimizer is unique (a⊤X⊤Xa = 0 =⇒ a = 0).

Proposition: least squares estimator

When X⊤X is invertible,

β̂ =
(
X⊤X

)−1
X⊤Y

is the unique minimizer of the RSS function.

➠ complement: matrix calculus
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Goodness of fit

Without explanatory variables, we would have

ĥ(x) = β̂0, with β̂0 = Ȳ =
1

n

n∑

i=1

Yi .

Let us set TSS =
∑n

i=1

(
Yi − Ȳ

)2
→ Total Sum of Squares.

Definition: coefficient of determination R
2

Reminder : RSS(β) =
∑n

i=1

(
Yi − β⊤Xi

)2
. We set :

R2 = 1 −
RSS(β̂)

TSS
.

Properties. ➠ proof: see exercise 1

◮ 0 ≤ R2 ≤ 1,

◮ R2 = 1 ⇐⇒ ∀i , Yi = β̂Xi .
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“Ozone” example: presentation of the data

variable description

O3obs concentration of ozone on day t + 1

MOCAGE pollution prediction obtained by a deterministic

computation fluid dynamics (CFD) model

TEMPE MétéoFrance temperature forecast for day t + 1

RMH2O humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t

VentMOD wind strength on day t

VentANG wind orientation of day t

Learning task

◮ predict the ozone concentation on day t + 1

from data available on day t

◮ predict if the concentration will exceed 150µg/m3

(classification task, cf. lecture #7).

Application and data obtained from https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone

https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone
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“Ozone” example: data visualization
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“Ozone” example: linear regression

Linear regression using n = 210 days of data.

Remark. All variables ➠ standardized for the sake of interpretability.

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

Coefficient of determination. R2 = 65.7%

Observations:

◮ the negative coefficient associated

to NO2 is surprising

(but NO2 is correlated with NO);

◮ RMH2O, VentMOD and VentANG

appear to be of lesser importance;

◮ the model explains partly the data.
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Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression

2.1 – Introduction to regression models

2.2 – Linear model / quadratic loss

2.3 – Back to statistical inference

2.4 – Other loss functions

2.5 – Limitations of “ordinary least squares”

3 – Standard exercices (with solutions)

4 – Appendices
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Properties of the least squares estimator

Recall that, until now: (X1,Y1), . . . , (Xn,Yn)
iid
∼ PX ,Y .

➠ in the section, we assume instead deterministic Xi ’s

(equivalently, we work “conditionally on the Xi ’s”).

Assume moreover that there exists β ∈ R
p+1 such that

(i) ∀i , Yi = β⊤Xi + ǫi

where the errors ǫi are

(ii) centered: E(ǫi ) = 0,

(iii) uncorrelated: i 6= j ⇒ cov(ǫi , ǫj) = 0,

(iv) homoscedastic: var(ǫi ) = σ2 for some σ2 > 0.
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Properties of the least squares estimator

Proposition

Under these assumptions, β̂ is an unbiased estimator:

E

(
β̂
)

= β,

and its covariance matrix is:

var
(
β̂
)

= σ2
(
X⊤X

)−1
.
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Properties of the least squares estimator

Proof.

Recall that the Xi ’s are assumed deterministic.

Let ǫ = (ǫ1, . . . , ǫn)
⊤. Then:

(i) ⇒

{
Y = Xβ + ǫ

β̂ =
(
X⊤X

)−1
X⊤Y = β +

(
X⊤X

)−1
X⊤ǫ

(ii) ⇒ E

(
β̂
)
= β +

(
X⊤X

)−1
X⊤

E (ǫ) = β

(iii)+(iv) ⇒
var

(
β̂
)

=
(
X⊤X

)−1
X⊤ var (ǫ) X

(
X⊤X

)−1

= σ2
(
X⊤X

)−1



31/53

Properties of the least squares estimator

Proof.

Recall that the Xi ’s are assumed deterministic.

Let ǫ = (ǫ1, . . . , ǫn)
⊤. Then:

(i) ⇒

{
Y = Xβ + ǫ

β̂ =
(
X⊤X

)−1
X⊤Y = β +

(
X⊤X

)−1
X⊤ǫ

(ii) ⇒ E

(
β̂
)
= β +

(
X⊤X

)−1
X⊤

E (ǫ) = β

(iii)+(iv) ⇒
var

(
β̂
)

=
(
X⊤X

)−1
X⊤ var (ǫ) X

(
X⊤X

)−1

= σ2
(
X⊤X

)−1



31/53

Properties of the least squares estimator

Proof.

Recall that the Xi ’s are assumed deterministic.

Let ǫ = (ǫ1, . . . , ǫn)
⊤. Then:

(i) ⇒

{
Y = Xβ + ǫ

β̂ =
(
X⊤X

)−1
X⊤Y = β +

(
X⊤X

)−1
X⊤ǫ

(ii) ⇒ E

(
β̂
)
= β +

(
X⊤X

)−1
X⊤

E (ǫ) = β

(iii)+(iv) ⇒
var

(
β̂
)

=
(
X⊤X

)−1
X⊤ var (ǫ) X

(
X⊤X

)−1

= σ2
(
X⊤X

)−1



32/53

Distribution of (β̂, σ̂2) under a normality assumption

Assume furthermore that (v) ǫ is Gaussian:

logL(β, σ2;Y ) = −
n

2
log(2πσ2) −

1

2σ2

n∑

i=1

(
Yi − β⊤Xi

)2
.

Proposition: MLE of (β, σ2) (see PC 6)

The MLE is





β̂ = argminβ
∑n

i=1

(
Yi − β⊤Xi

)2
,

σ̂2 = 1
n

∑n
i=1

(
Yi − β̂⊤Xi

)2
.

➠ We recover the least square estimator of β

Student’s theorem: distribution of (β̂, σ̂2) (see PC 6)

◮ β̂ ∼ N

(
β, σ2

(
X⊤X

)−1
)
,

◮ σ̂2 ∼ σ2

n
χ2(n − p − 1),

◮ β̂ et σ̂2 are independent.
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Tests / CI on the value of a component of β

We know that β̂j ∼ N
(
βj , σ

2vj
)

with vj =
[(
X⊤X

)−1
]

j ,j
.

Pivotal function

T =
β̂j − βj√

n σ̂2vj
n−p−1

∼ T (n − p − 1)

with T (n− p− 1): Student’s t distrib. with n− p− 1 degrees of freedom

➠ Student’s t distribution

Remark:
n σ̂2

n − p − 1
=

1

n − p − 1

n∑

i=1

(
Yi − β̂⊤Xi

)2

is an unbiased estimator of σ2 (see PC 6).
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Proof

It follows from Student’s theorem that

◮ U =
β̂j−βj

σ
√
vj

∼ N (0, 1)

◮ V = n σ̂2

σ2 ∼ χ2(n − p − 1),

◮ and U and V are independent.

Thus

T =
β̂j − βj√

n σ̂2vj
n−p−1

=
U√
V

n−p−1

∼ T (n − p − 1),

by definition of the Student’s t distribution with k = n − p − 1

degrees of freedom.
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Test for H0 : βj = 0 / H1 : βj 6= 0

Let 0 < α < 1.

Take βj = 0 in the def. of T (i.e.,

assume H0) and

δ = 1|T |>q1−α

2

Exact confidence interval for βj

[
β̂j −

√
n σ̂2vj

n − p − 1
q1−α

2
, β̂j +

√
n σ̂2vj

n − p − 1
q1−α

2

]

qr : quantile of order r of T (n − p − 1)
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“Ozone” example: CIs and p-values

CI95% t pval

β0 [100.1, 106.7] 62.9 < 10−6

MOCAGE [21.1, 36.8] 7.4 < 10−6

TEMPE [16.5, 28.5] 7.6 < 10−6

RMH2O [−7.0, 0.6] -1.7 0.095

NO2 [−53.0, −15.7] -3.7 < 10−3

NO [19.8, 55.4] 4.2 < 10−3

VentMOD [−2.7, 5.4] 0.7 0.49

VentANG [−0.8, 6.0] 1.6 0.12

with t: realization of T for the corresponding coefficient

Remark: regression without RMH2O, VentMOD et VentANG

➠ the coefficient of determination drops from 65.7% to 64.5%.



36/53

“Ozone” example: CIs and p-values

CI95% t pval

β0 [100.1, 106.7] 62.9 < 10−6

MOCAGE [21.1, 36.8] 7.4 < 10−6

TEMPE [16.5, 28.5] 7.6 < 10−6

RMH2O [−7.0, 0.6] -1.7 0.095

NO2 [−53.0, −15.7] -3.7 < 10−3

NO [19.8, 55.4] 4.2 < 10−3

VentMOD [−2.7, 5.4] 0.7 0.49

VentANG [−0.8, 6.0] 1.6 0.12

with t: realization of T for the corresponding coefficient

Remark: regression without RMH2O, VentMOD et VentANG

➠ the coefficient of determination drops from 65.7% to 64.5%.



Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression

2.1 – Introduction to regression models

2.2 – Linear model / quadratic loss

2.3 – Back to statistical inference

2.4 – Other loss functions

2.5 – Limitations of “ordinary least squares”

3 – Standard exercices (with solutions)

4 – Appendices



37/53

“Ozone” example: data corruption

Assume that 5 out of n measurements of ozone concentration

(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 103.4 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with 125.2 79.2 -15.6 24.2 -155.1 141.4 4.7 24.9

➠ Strong sensitivity of the coefficients to “outliers”.

Solution

Use a loss function that leads to a prediction function with better

robustness properties than the quadratic loss.
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Usual loss functions

1

2

3

4

ǫ−ǫ δ−δ
0

0

y − ỹ

L2 (quadratic) loss

L1 loss

Huber’s loss

ǫ-insensitive loss
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L1 loss

Loss function : L(y , ỹ) = |y − ỹ |.

Proposition (see PC 6)

For the L1 loss, the optimal prediction function is

∀x ∈ X , h∗(x) = med(Y |X = x)

“Ozone” example

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 100.8 27.5 19.2 -3.3 -32.2 33.9 -1.0 3.9
with 101.4 28.3 18.6 -1.6 -35.1 37.5 0.5 3.2

➠ better stability with respect to outliers.
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Limitations of “ordinary least squares”

Recall that X has size #individuals ×#variables (n × (p + 1)).

Critical cases for “ordinary least squares”

◮ when X⊤X not invertible,

◮ or poorly conditioned.

Typical cases:

◮ when the number of variables is large

(p + 1 > n, sometimes p ≫ n)

Example: genomics.

◮ when there are strong correlations between explanatory

variables

Example: “ozone” data (cf. variables NO and NO2)

➠ lack of interpretability of the coefficients
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

β̂ = argmin
β

RSS(β)
︸ ︷︷ ︸

data “fidelity”

+ λ
︸︷︷︸

hyperparameter

Ω(β)
︸ ︷︷ ︸
penalty

.

➠ see Lecture 8
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Exercise 1 (Regression seen as a projection) ➠ solution

Let (Xi ,Yi ) ∈ R
p × R, 1 ≤ i ≤ n, denote an n-sample of observations.

Consider the linear regression model from ➠ slide 21 :

h(x) = β0 +

p∑

j=1

βjx
(j) = β⊤ x , x ∈ R

p+1,

and the corresponding least squares estimator:

β̂ = argminβ

n∑

i=1

(
Yi − β⊤Xi

)2
.

As in ➠ slide 22 , we denote by

◮ X ∈ R
n×(p+1) the matrix of regressors,

◮ Y ∈ R
n the vector of responses.
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Exercise 1 (Regression seen as a projection) ➠ solution

Questions

1 Set Ŷ = X β̂. Prove that Ŷ is the projection of Y onto the

image of X .

2 Give the expression of the projection matrix, assuming that

X⊤X is invertible.

3 Prove that the coefficient of determination, defined in

➠ slide 25 , satisfies the property 0 ≤ R2 ≤ 1, with R2 = 1 iff

∀i , Yi = β̂⊤ Xi .
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Solution of exercise 1 ➠ back to questions

➊ Reminders:

◮ The projection of y ∈ R
n onto a closed convex set C ⊂ R

n is

the unique y∗ ∈ C such that ‖y − y∗‖ = minv∈C ‖y − v‖.

◮ The image of X , which we will denote by Im(X ), is the linear

subspace of Rn generated by the columns of X :

Im(X ) =
{
v ∈ R

n | ∃β ∈ R
(p+1), v = Xβ

}
.

To begin with, note that

◮ Im(X ) is indeed a closed convex set (since all linear subspaces

are closed in finite dimension),

◮ Ŷ = X β̂ belongs to Im(X ).
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Solution of exercise 1 ➠ back to questions

Furthermore, for all v = Xβ ∈ Im(X ), using the fact that

β̂ = argmin
β

‖Y − Xβ‖2 ,

we find that

‖Y − Ŷ ‖ = ‖Y − X β̂‖

≤ ‖Y − Xβ‖ = ‖Y − v‖,

therefore Ŷ is indeed the projection of Y onto Im(X ).

➋ Using the expression of β̂ established in class, we can write the

projection of Y onto Im(X ) as

Ŷ = X β̂ = X
(
X⊤X

)−1
X⊤ Y .
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Solution of exercise 1 ➠ back to questions

This being true for all Y ∈ R
n, we conclude that the matrix of the

projection operator is:

P = X
(
X⊤X

)−1
X⊤.

➌ Recall the characterization of the projection onto a linear

subspace:

Theorem

Let y ∈ R
n and let F be a linear subspace of Rn. Then, y∗ is the

projection of y onto F if, and only if,

◮ y∗ ∈ F ,

◮ y − y∗ ∈ F⊥.
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Solution of exercise 1 ➠ back to questions

We apply the theorem with F = Im(X ) and y = Y .

Y
Y − Ŷ

Im(X )
Ŷ
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Solution of exercise 1 ➠ back to questions

Consider now the coefficient of determination:

R2 = 1 −
RSS(β̂)

TSS
, where

{
TSS =

∥∥Y − Ȳ 1n×1

∥∥2

RSS(β) = ‖Y − Xβ‖2

Let us decompose the TSS:

TSS =
∥∥∥Y − Ŷ + Ŷ − Ȳ 1n×1

∥∥∥
2

(1)

=
∥∥∥Y − Ŷ

∥∥∥
2
+
∥∥∥Ŷ − Ȳ 1n×1

∥∥∥
2

(2)

= RSS(β̂) +
∥∥∥Ŷ − Ȳ 1n×1

∥∥∥
2
.

The transition from (1) to (2) follows from Pythgora’s theorem.
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Solution of exercise 1 ➠ back to questions

Indeed,

◮ Ŷ ∈ Im(X ) and Y − Ŷ ∈ Im(X )⊥ since Ŷ is the projection

of Y onto the linear subspace Im(X ).

◮ Ŷ − Ȳ 1n×1 ∈ Im(X ) since 1n×1 ∈ Im(X ).

Thus:

i 0 ≤ RSS(β̂) ≤ SCT , therefore 0 ≤ R2 ≤ 1,

ii R2 = 1 iff SCR(β̂) = 0 iff Y = X β̂.
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Matrix calculus

The result can also be found using matrix calculus.

Let v ∈ R
q, z ∈ R

q and M ∈ R
q×q.

1) differentiation of h(z) = v
⊤
z =

∑q

j=1 vjzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




v1

...

vq


 = v therefore ∇z

(
v⊤z

)
= v .

2) differentiation of h(z) = z
⊤
Mz =

∑p

i ,j=1 ziMi ,jzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




∑q

j=1
M1,jzj +

∑q

i=1
Mi,1zi

...∑q

j=1
M1,jzj +

∑q

i=1
Mi,1zi




therefore ∇z

(
z⊤Mz

)
= (M +M⊤)z .
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Matrix calculus (cont’d)

Application to the minimization of the least squares criterion.

Recall that

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y

Thus we have

∇β RSS(β) = 2X⊤Xβ − 2X⊤Y = 2
(
X⊤Xβ − X⊤Y

)
,

and finally:

∇βRSS(β̂) = 0 =⇒ β̂ =
(
X⊤X

)−1
X⊤Y .

➠ back to slide 24
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Data standardization

Let X = (X1, . . . ,Xn) be an n-sample taking values in R
p.

Data standardization consists in transforming X to X̃ as follows:

X̃
(j)
i =

X
(j)
i − X

(j)
n

S
(j)
n

, 1 ≤ i ≤ n, 1 ≤ j ≤ p,

where X
(j)
n and S

(j)
n are the sample average and standard deviation

of the j-th variable, respectively:

X
(j)
n =

1

n

n∑

i=1

X
(j)
i ,

(
S
(j)
n

)2
=

1

n

n∑

i=1

(
X

(j)
i − X

(j)
n

)2
.

➠ back to slide 28
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Student’s t distribution T (k)

Definition of T (k), k integer ≥ 1

Let U and V be two RVs such that

◮ U ∼ N (0, 1)

◮ V ∼ χ
2(k)

◮ U and V are independent

then T = U
√

V
k

follows a Student’s t distribution with k degrees of freedom.

Properties

T (k)
d−−−→

k→∞
N (0, 1)

Exercise : prove it.

Probability density function

f (x) =
1√
kπ

Γ( k+1
2

)

Γ( k
2
)

(

1 +
x2

k

)− k+1
2

Mean

◮ for k ≥ 2, Ek(T ) = 0

Variance

◮ for k ≥ 3, vark(T ) = k
k−2

➠ back to slide 33
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