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Lecture 4/9
Hypothesis testing

Course objectives

» make (binary) decisions through hypothesis testing,
» choose and construct a test,

» define and compute risks of error of the first and second kind.
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5 — Annexes

/a2

Lecture outline

1 — Examples and first definitions
1.1 — Two introductory examples
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Lecture outline

1 — Examples and first definitions
1.1 — Two introductory examples

Example: component reliability

Reminder: Xq,...,X, S £(6), 0 > 0.

Problem

The manufacturer considers offering a one-year warranty. ..
m is it a good idea ?

Formalization
The manufacturer considers that it is a “good idea” if:

the return rate is lower than 10%
Po (X <1)=1—exp(—0) < 0.1

0 < 6o = —In(0.9)

Example: component reliability

Therefore, the manufacturer wants to know if 8 < 6 or 6 > 6.

w hypothesis to be tested: Hp : 0 > 6
(component quality is not sufficient)

Making (binary) decisions from data

We want to evaluate the “compatibility” between Hp and x:
» if a strong incompatiblity is detected,
s Hy is rejected (and the warranty proposed);
» otherwise, Hp is accepted.

Note the asymmetry between the two scenarios
(Ho = is retained by default)

Hypothesis tests make it possible to formalize this decision making.
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.
> Xi,..., X, id JV((),(T%) (o0 known; n =10, gg = 2.5)
» hypothesis to be tested — Hy : 6 = 6 (fixed),
> alternative hypothesis — Hi : @ = 6; (fixed, and 0y < 61).

Approach. Making a decision about Hy means estimating if it is
» either true ™ § =0,

> orfalse m §=1.

Constraint. We want § to be such that, if § = 6 (Hp true),
Py (6 = 1) =5% (= ).

Intuitive construction of a test: § = 13,
> where t is chosen such that Pg, (5 = 1) = Py (X > t) = 5%.
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If Ho s true (0 = 6o)Hy is true (69 = 61): X ~ A (dob, ‘L) ,
therefore

t = 0o+ qoes %

where g, is the .4#7(0, 1) quantile of order r.
Pi(5=0) =Py (X < 1) = 0 (%)

ao/v/n
where @ is the cdf of the .4#7(0, 1) distribution.
061
05 V% (907 oo)
04t
Numerical app.
03F =0
t=1.30
02t
o1r Py (X > t) =5%
0 A .

If Ho s true (0 = 6o)Hy is true (6 = 61): X ~ A (dot, "i) ,
therefore

t = 0o+ qoes 7%

where g, is the .47(0,1) quantile of order r.
Pi(5=0) =Py (X < 1) =0 (%)

ao/V/n
where @ is the cdf of the .47(0, 1) distribution.
061
L 2
o (00,%)
04t
Numerical app.
03f =20
t=1.30
02t
otr Py (X > t) =5%
0 0 -

Lecture outline

1 — Examples and first definitions

1.2 — Risks associated to a test

How to formulate an hypothesis testing problem

Recall that we have a statistical model parameterized by 6 :

7% = {PY, 60}

Statistical hypothesis

A statistical hypothesis is represented by a subset of 27X, and thus
by a subset of ©.

Notation. Let ©; C © denote the subset representing H;
L4 Hj 10 e @j

Parametric / non-parametric test
A testing problem is called parametric if © is finite-dimensional.
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How to formulate an hypothesis testing problem (cont'd)

Null hypothesis
We call the null hypothesis the hypothesis Hy : 0 € ©g
» that we “want to test”, and
» that will be retained “by default” unless it is clearly at odds
with the data.

Legal analogy: presumption of innoncence

Alternative hypothesis

We call alternative hypothesis the hypothesis H; : 0 € ©1
» that will be chosen if Hp is rejected.
» We assume that ©1 N Oy = 2.

Remark : we can assume wlog that ©o U ©; = ©.

10742

Examples of parametric tests

Example 1.
> X0 Xor. . Xy 2 E(B), with 0 € © = [0, 400,

> O ={0>6}; ©1 ={0 < bp} with 6y > 0 a given threshold.

Example 2. Same example, with :
> Og = {6p} (singleton) ; ©1 = {6 # 6o},
> or ©g = {fo}; ©1 = {6 < bo}.

Definitions: simple / composite hypotheses

An hypothesis H; is called simple if ©; is a singleton.
Otherwise, it is called composite.

11762

Other examples of (non-parametric) tests

Goodness-of-fit tests for a distribution or family of distributions

>

Other types of tests
> testing the independence of two variables
> testing the symmetry of a distribution
> ...
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Test procedures

Definition: test (procedure)
A test is a statistic § = 6(X) with values in {0,1}:
5. X — {01},

0 if Ho is accepted,
1 ifitis rejected (in favour of Hy).

1%

Definition: critical region of a test

The critical region %5 of a test 4 is the region of rejection

A5 = {x € X such that 5(x) =1}.
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Quantifying the risks of error

Definition: risk (of error) of the first kind

We call the risk of the first kind, or risk of type | error, the
probability of rejecting Ho when it is true :

IF’@((S = 1) = ]Eg(&), 0 € ©.
(A This risk depends on the value of 6, for § € ©o.)

Definition: risk (of error) of the second kind

We call the risk of the second kind, or risk of type Il error, the

probability of accepting Ho when it is false :
]P()(O-:O):lf]Eg((s), 06@1.

(Note the asymmetry of terminology

— more emphasis is put on Ho.)
19722

Definition: power of a test

We define power as the probability to reject Hp when it is wrong:
]Pp((; = 1) = Eg((j), [ASKSIN

Remark: equal to “1 - risk of type Il error”.

Usual approach’ for the construction of tests.
Let 0 < o < 1 be a level of risk. We will look for tests s.t.

> V0 e O, Py(6 =1) <o

w control of the risk of type | errors.

The test § is said to have level (at most) a.
> V0 € ©1, Py(0 = 1) “as large as possible”;

m capacity to reject Ho when it is false.

Typical values: o = 5%, 1%, 1%o. .. t a.k.a. Neyman's

1s/42

Back to the introductory example
» type | error: blue area
» type Il error: red area

061

05t ((;h Lng)

04t
Numerical app.

03f 0p=0,t=130
01 =2

02t

01}

0

Probability density function of X under Hp and H;
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Definition: size of a test
We say that § has a level exactly a, or size a, if

sup Py (6 =1) = a.
000

Definition: comparing two tests

Let 6 and & be two tests with a level (at most) a.. We say that ¢’
is uniformly more powerful than ¢ if

VOEO, Pp(d/=1) > Py(5=1).
(Some authors require a strict inequality at one or all § € ©;.)

Remarks :
» this is a partial order on power functions,
» whenever possible, we will look for the uniformly most powerful (UMP)
test at level a (i.e., a test with «, that is uniformly more powerful than
all other tests with level o).
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2 — Parametric tests
2.1 - Simple null vs simple alternative

Likelihood ratio test
Assume two simple hypotheses : ©g = {fg} et ©1 = {61}.

Denote by £ : (0, x) — L(0,x) the likelihood function'.

Definition: likelihood ratio test
We call the likelihood ratio (LR) test the test

SR 1 if T'R> ¢,
o otherwise,

built using the likelihood ratio statistic:

TLR _ L(01,X)

L(60,X)"

T It can be proved that the family {u»?,iﬂfl} is always dominated (Radon-Nikodym).

Fundamental result

Let a € (0,1).

Theorem: Neyman-Pearson “lemma”

Assume that there exists® a threshold ¢ = ¢, such that
> the associated LR test §R has a level exactly a
(i.e., has size @).
Then 6'R is most powerfult at the level a:

> for any test & with a level (at most) a,
§'R is more powerful than 4.

m The LR test is optimal in this setting.

® Always true if the cdf of TLR is continuous.

T No need to specify “uniformly” since Hy is simple.




Back to the Gaussian example

Likelihood ratio :

TP (=01)?

20,

)
)

0263
exp <7"(2‘7{75°)> exp (% Dy X,) .

1 —
(Vanaol® ex”( z
7, (Xi—09)?

7
202

TLR

1
Vamoo) ex"(

LR test at level a: since 61 > 6, we have

R=1 = TR «—= T=X>1t,

m the test that was constructed in introduction is optimal.

Test statistic and p-value
The result of a test can be expressed using the concept of p-value.
Definition: p-value
Let T be the test statistic of a test of the form § = L75,,.
Definition. We call p-value the statistic
pval (x) = Py, (T(X) > T(x))

taking values in (0,1). A Function of the datal

Let Fo denote the cdf of T under Hp. Then:

pval(x) = 1— Fo(T(x)).

Interpretation of the p-value

Assume that Fg is continuous and strictly increasing:

Va € (0,1), 3ty €R, §=1L7s¢, has level exactly «
Proposition
Ho is rejected at the level @ & T >t, < pval<a.

t, is called the critical value for the test statistic T.

Interpretation: p-value = mesure of evidence against Hyp

p-value

evidence against

pval < 0.01
0.01 < pval < 0.05
0.05 < pval < 0.10

0.1 < pval

very strong evidence
strong evidence
weak evidence

no evidence
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Back to the Gaussian example, where T(X) = X

04k Ho rejected
il a=04
’ B0 taT(x)

04f Ho accepted: pval = 0.233
.l o =0.233

0 B T(x)=ta

04l Ho accepted

.l a =005

o

AT(g)ta

(pval is the maximal level v at which Hy is accepted.)
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2 — Parametric tests

2.2 — Composite hypotheses

Examples of problems with composite hypotheses

Simple null / composite alternative
> ©g={bp} / ©1={0>0s} (one-sided test),
> Q9= {0}/ O1=1{0+#0} (two-sided test),
> ...

Composite null / composite alternative
> Qg ={0<0}/O1={0>0} (onesided test),
> O ={n=ypo}/O1={p=u}
where 0 = (u1,02) with unknown o2 (nuisance parameter),
> Q)= {9(1) — 9(2>} /1= {9(1> # 9(2)}'
where § € © = R? (egality of two parameters),
|

Differences with the case of simple hypotheses
> Test with a level (at most) «, when © is composite :
Ve ®©y, Pp(d=1) < a <« Osuep Py(6=1) < a.
€00
size of the test

» If ©1 is composite, the power is a function of § € ©7 :

©; — [0,1]
0 — Py(6=1).

» p-value for a test of the form § = L7~ :
pval = sup (1—Fp(T)).
0€600

where Fy is the cdf of T under Py.
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Back to the Gaussian example / testing the mean

» Simple hypothesis testing

Ho:0=00/Hy:0 =0, with6 <6

» Reminder of the optimal test.

v . a0

(X)=1+= X >t,, witht,=0+ ql,aﬁ

Following the Neyman-Pearson lemma, ¢ is UMP among tests
of level a.

» Analysis of the test. § is the same for any 6; > 6 (it only
depends on « and 6); therefore § is also UMP for a test of
the form:

H0:0:00/H1:9>90.

It can be proved that § is also UMP for a test of the form:
Ho:60< 6o/ H:0> 0
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2 — Parametric tests

2.3 — Asymptotic tests

Context : X1, Xa,... iid Py

When the distribution of T,(X,,) is hard to determine
m yse of the limit distribution for n — cc.

Example: component reliability
Ra,n = {x, such that T,(x,) = %, > tan}-
with £, , chosen in such a way that :

lim Py, (Ta(X,) > fan) = .
n—o0

By the CLT under Ho : /n ()_(n - %) % N (O. i), therefore
n—oo

%

- 1 1

an = %+WQ1 a

~+

where g, is the .4#7(0, 1) quantile of order r.

Example: component reliability (cont'd)

18 ta,n (exact) |
= t,n (asymptotique)
16 [ 1
14 [ ta,n and fap 1
computed for a = 0.05
12 1
1 L T
O log(0.9) .

sample size n

28/a2
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3 - Goodness-of-fit testing: Pearson’s y? test




Goodness-of-fit test for a single distribution

Context: Xi, Xo. ... i P with unknown P (can be anything)
m ) =P, © = {probability distributions on (R, B(R)) }.

Statistical hypotheses to be tested

For a given probability Po, we consider the hypotheses:
Ho:P = Pq
H1 e # Po

Component reliability example:

» The component manufacturer knows, from past analyses, that the
component lifetimes should follow a £(6o) distribution.

» In order to check that the production line is still properly working, he
wants to test if Ho : P = £(6o) is still true.

Pearson's x? test statistic
Let (Aq,...,Ak) be a partition of Py's support, and
> N =(Ni,...,Nk) with
Ni=>"114,(X;) — observed frequencies (counts),
> p=(p1;-..,pk) with
pk = Po (X1 € Ax) — npx = expected frequ. under Hp.
Proposition
Under hypothesis Hy, N follows a multinomial Multi(n, p)
distribution, and
K
(Nk — np)® 2
Ty = s K—-1).
n Z e == 3 )

n—o00
k=1

(x? distribution with K — 1 degrees of freedom)
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Pearson's chi-squared test (x?)
Recall that we want to test Hy : P = Pg against Hy : P # Po.

Chi-square (x?) goodness-of-fit test

Let 0 < @ < 1 and let T denote Pearson's statistic:

-y

K
=1

(Ne = npi)*
NPk
The chi-squared (x?) test is
0 = Irse,,
where t, is the x?(K — 1) quantile of order 1 — a.

A In practice: choose Ay, ..., Ak such that npx > 5, Vk.
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The x? test for goodness-of-fit: “component reliability”

25
" . [[] Observed frequencies Ny
g 20 . « expected frequencies n py
g's .
Z10 .
L o/
= R

0

0 3 6 9 12 15 18 24 30

class | [0,3[ | [3,6] | [6,9] | [9,12[ | [12,15] | [15,18[ | [18,00]
Ne | 19 | 23 | 12 4 9 7 19
npe | 2590 | 192 | 142 | 105 78 58 116

T(X) = T (Ni—npi)®  a 274
(7,.)—27 — X(7-1)
k=1
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The x? test for goodness-of-fit: “‘component reliability”

Numerical application. n =100, T(x,) = 12.24

0.14 )
—x*(6) pdf
0.12
Numerical application
01 T(x,) = 12.24
0.08 pval = 0.057
0.06
0.04
0.02 a=5%
0 S
0 3 6 9T(x,) ta15 18
=1224 =126

s at the 5% level, Hp is accepted
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More on goodness-of-fit testing. ..

» Pearson's 2 test for a family of distributions
> extension of the test just presented to the case where some
parameters must be estimated under Hp

» Kolmogorov-Smirnov test
» another test, based on the cumulative distribution function,
» without requiring the choice of a partition

34/a2
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4 — Standard exercises (with solutions)
4.1 — Questions




Exercise 1 (Testing a proportion)

In the context of a coin toss game, we want to test if the coin is
balanced.

Questions

@ Propose a statistical experiment to test this hypothesis.
Specify the underlying statistical model, and define the null
and alternative hypotheses.

@ Propose a test at the asymptotic level «.

3s/a2

Exercise 2 (Component reliability testing)

A manufacturer wishes to offer its customers a guarantee on light
bulbs. It is assumed that the lifetime of a bulb follows an
exponential distribution with parameter 6 > 0.

Questions

Propose a UMP test for the following test:
Ho:©9=1{0 >0y} (bulb insufficiently reliable)
Hy:©1={0 <6y} (bulb sufficiently reliable)

with a given threshold 6y > 0.

30/42
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4 — Standard exercises (with solutions)

4.2 — Solutions

Solution of exercise 1

i) n "coin toss" experiments are carried out, and the outcomes are
modeled as n independent, identically distributed random variables
X1,...,Xp according to a Ber(6) distribution.

We want to test if

Ho: 0= %7 ie, ©= {%} (simple hypothesis),

VS.

Hy: 0 # % therefore ©1 = }0, % [U} %, 1[ (two-sided hypothesis).
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Solution of exercise 1

i) Let G, = X, be the empirical mean of the sample. By direct
application of CLT, it follows that:

0,0
P4, M0,1)
V01 —8)/n n—oo
To construct a two-sided asymptotic test of level o, we place
ourselves under Hp. We obtain the following convergence in
distribution:

2vn (én - %) ﬁ N(0,1).

We consider a critical region of the form: 2,/n|f, — 1| > ca.
where ¢, is chosen so that the Type | error rate is equal to a.

38/a2

Solution of exercise 1

ii) Let
lim P (2\/5
n—oo
We deduce that ¢, = q-g, the (1 — $)-th quantile of a standard
normal distribution A/(0,1).

A 1
9,,—5' > ca) =a.

We reject the null hypothesis Hp in favor of H; at the level a when:

~ 1
(9,,7*‘ > qr-a

1
D 22vn
Thus, the difference between én and 1/2 is considered significant at
the level « if it exceeds ql,%ﬁ.

30/42

Solution of exercise 2

Let X, ..., X» 2 £(6)

Ho:©9=1{0 >0} (component is not reliable enough)
Hy :©1={0 <6} (component is reliable enough)

By the Neyman-Pearson lemma, the LRT is UMP for

Hy:©9 = {90} / Hi:0: = {91}, with 6; < 69

07 exp (=013 74 Xi)
08 exp (=t 27y Xi)

= (&) en (- ) 20, X)

TR =

ao/a2

Solution of exercise 2

We then define the critical region of this test at level a:
Ra = {1 | TR(x) > th} ={x| T)=%>ta}.

Reminder : if § = 6, then 6o X ~ [(p = n, A = n).
"= ta,n = % qi-a

where g, is the [(p = n, A = n) quantile of order r.

This test is also UMP for its composite version, indeed :
» the likelihood ratio test is the same for any 61 < 6o,
» the function 0 — Py(d = 1) is strictly ..

Summary. The test that we have built is UMP at the level a.
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Solution of exercise 2

0.15¢
T'(p=n,A=nfo)
Numerical application:
0.1r n=10
0o = —10g(0.9)
t, = 14.91
0.05 x =10.15
pval = 0.47
Py (X > to) = 5%
0 )
0 X to 20 30

s at the 5% level, Hp is not rejected
m out of precaution, the manufacturer will not propose a warranty . ..

Lecture outline

5 — Annexes
5.1 — Proof & complements

Lecture outline

5 — Annexes
5.1 — Proof & complements

Proof

Note that ¢, is, by construction, such that
Fo(ta) =1-oq.
Thus we have

=1 & T>t,
& F(T)> Fo(ta) =1—a
& pval<a




Generalized likelihood ratio test

It enables the construciton of a test when ©¢ and/or ©; are/is
composites.

» Test statistic :
_ suppee, £(0:X)
supgee, £(0; X)”

» The test is not, in general, uniformly most powerful (UMP) at
level .

The multinomial family of distributions

Parameters
» ninteger, > 1,
> K integer, >2and p € (R:’)K such that Zle Pk =1

Let ny,...,nk entiers > 0 such that Zle ng=n:

: n!
If N~ Multi(n, p), P(Ny = ny,..., Nk = ni) = mpl

Nk

Pk

Moments

> expectation : E,(N) = np

> covariance matrix : covp(N;, N;) = n(p;d; — pip;)
Marginal distributions

» Marginal distributions are binomial : N; ~ Bin(n, p;).

The x? family of distributions

Parameters
» g integer, > 1 : number of "degrees of freedom”.

Definition. If Y4,..., Y, "4 #(0,1) then

T=30_,Y2 ~x()
The x? distribution is a special case of the I distribution :
2 q 1
=2 N==
x“(q) (p > 2)
m The properties of the x? follow from those of the I' distribution.

Expectation Variance

> Eo(T)=gq > varg(T) =2q

The x? test with parameter estimation
Does the lifetime of a component follow an exponential
distribution?
= Null hypothesis Hp: 30 > 0, P =P, = £(6).

Two-step approach

© Construction of a consistent estimator of 6 — 0.
@ Test the goodness of fit to P;.

Details
Pr = Py (X1 € Ay)

K
(Ne = npi)® 4 )
T(X,) = Z T m XZ(K —1—q) with g = card()
k=1

Rejection of Hp if T(x,) > ti—a (t1—a being the quantile of order
1—aofa x*(K —1- q) distribution).




The Kolmogorov-Smirnov test
Goodness-of-fit test for a single distribution : Hp : P = Pg.

Kolmogorov-Smirnov distance
The Kolmogorov-Smirnov distance is defined as

Dy = sup |Falx) = Fo()] .

with Fo the cdf of Py and £, the empirical cdf: I:-n(x) =Ly Lix<xy-

n

Kolmogorov-Smirnov test, with asymptotic level a
Under the null hypothesis Hy, if Fo is continuous:

T(X,) = vaD, —— K,
where K is the Kolmogorov-Smirnov distribution.

w Ho is rejected if T, > to, with t, the (1 — )-quantile of K.

The Kolmogorov-Smirnov test

“Component reliability example”: Hy : P = £(6p) with 6p = 0.1

—F(x)
08f —Fo(x) .
= Dn = supy|F(x) — Fo(x)]
06F
Numerical application
0.4 n=30
D, =0.13
02 V/nD, =0.71
% 10 20 30 40 50 60 70 80
X

The Kolmogorov-Smirnov test

2
—pdf of the K distribution
1.5
Numerical application
J/nD, = 0.71
1 pval = 0.69
05
0 . 3 .
0 T(x,) ta 1.8 24

=071 =136

w at the 5% level, Hy is accepted




