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Lecture 6/9

Introduction to supervised learning
Linear models for regression

Course objectives

> Introduce the basic concepts of statistical learning

» Establish the mathematical framework for regression and
classification problems

» Learn how to build and use linear regression models
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Lecture outline

1 — Introduction to (supervised) statistical learning
2 — Linear regression
3 — Standard exercices (with solutions)

4 — Appendices
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Lecture outline

1 — Introduction to (supervised) statistical learning
1.1 — Statistical learning
1.2 — The mathematical framework of supervised learning



Lecture outline

1 — Introduction to (supervised) statistical learning
1.1 — Statistical learning



Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.”

(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54-64)

Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of Al and Design.
https://www.autodesk.com/redshift/machine-learning/
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Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.” — data !

(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54-64)

Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of Al and Design.
https://www.autodesk.com/redshift/machine-learning/
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Statistical learning: a “disciplinary” point of view

Computer science Mathematics
l (“mathematical sciences”)
Artificial intelligence (Al) J,

l Statistics

Machine learning

\

Statistical learning
(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”

(apprentissage statistique) are often used interchangeably.
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Example: handwritten character recognition

00000002002 (¢ OO0
T T T N N AN 2 R U B B P |
Ad 2232222212222 2A
3333333323333 333
H¥ rY 44949 #5444 84
555855 SSS5859s5855479
b ebblobbbaoceédb6ecel
T2 7102 %F 777
¥ r®8 8P FRYPTTIELCE
799999%1919%94944919 9

A subset of the MNIST database
containing 70 000 b&w images' of size 28 x 28 pixels

T 60 000 training examples and 10 000 test examples
Source: https://www.openml.org/search?type=data&id=554 6/53
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Example: handwritten character recognition

00000002002 (¢ OO0
T T T N N AN 2 R U B B P |
Ad 2232222212222 2A
3333333323333 333
H¥ rY 44949 #5444 84
555855 SSS5859s5855479
b ebblobbbaoceédb6ecel
T2 7102 %F 777
¥ r®8 8P FRYPTTIELCE
799999%1919%94944919 9

A subset of the MNIST database
containing 70 000 b&w images' of size 28 x 28 pixels

Supervised learning problems: examples are provided with a label.

w Learn to classify a new image in one of the 10 classes.

T 60 000 training examples and 10 000 test examples
Source: https://www.openml.org/search?type=data&id=554 6/53
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Example: real estate pricing in Ames (lowa)

& 1 9
il O
il |

)

Data Description

[ SalePrice - the property's sale price in dullars]Thls is the target variable that you're trying to predict.
« MSSubClass: The building class k
= MSZoning: The general zoning classification

« LotFrontage: Linear feet of street connected to property
« LotArea: Lot size in square feet

« Street: Type of road access

« Alley: Type of alley access

« LotShape: General shape of property

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques) 7/53
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Example: real estate pricing in Ames (lowa)

Data Description

[- SalePrice - the property's sale price in dullars.]This is the target variable that you're trying to predict.
« MSSubClass: The building class &
= MSZoning: The general zoning classification

« LotFrontage: Linear feet of street connected to property
« LotArea: Lot size in square feet

« Street: Type of road access

« Alley: Type of alley access

« LotShape: General shape of property

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

w | earn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques)
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Several forms of learning

» Supervised learning: examples with labels.
» analogy: learning with a teacher.

e | ectures 6 to 8
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» Supervised learning: examples with labels.
» analogy: learning with a teacher.

e | ectures 6 to 8

» Unsupervised learning: examples without labels
» analogy: learning without a teacher, pattern discovery

we | ecture 9
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Several forms of learning

» Supervised learning: examples with labels.
» analogy: learning with a teacher.

e | ectures 6 to 8

» Unsupervised learning: examples without labels
» analogy: learning without a teacher, pattern discovery
e | ecture 9
and also... (not covered in this course)

» Active learning

» the labels are queried sequentially;
» example: detection of bank frauds
— in-depth analysis of “suspicious” cases only.

» Reinforcement learning
» Transfer learning
> ...
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Numerous fields of application

Computer vision
Speech recognition

Natural Language Processing (NLP)

Personalized medicine

>

>

>

» Fraud detection
>

» Recommender systems & targeted marketing
>
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Lecture outline

1 — Introduction to (supervised) statistical learning

1.2 — The mathematical framework of supervised learning



ML vocabulary: instance space and label space

Instance space: X

P instances xj,...,X, € X
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ML vocabulary: instance space and label space

Label space: Y

Instance space: X

SYn €Y

> labels yq, ..

S Xn €X

P instances xi, ..

MNIST example:

.nine

Class: zero, one, ..

O~Akmxrwrsr=o
ONAl ™39 N o
Sod MmN NN
S~AMmsLheatrs
O— 49T DS Npo
Q"B IVS~>
O~OMIT N =&
QAN O ©0d oo
Q=AO>PDD N5
ONAOTnI » o
ONBMTVL ~w o
NR—V O TwI oo
SeNNY oS mR T
Q=AM AINO N
Q- MILVS ~w
SNNMIT 99 R

nine” }

“
) Y

{"zero

y

[0 1]28X28

X =

10/53



ML vocabulary: instance space and label space

Instance space: X Label space: Y

P instances xj,...,x, € X > labels y1,...,yp €Y

MNIST example:

000000600 p0OOOCY ()OO

/A T I U VA A B U A A

2222232222122 222%

23333333%33333333 . H
i iiriliii; Class: zero, one, ...nine
555855 S$S555s5855579

e ebblocbbbgceoeéb6bGel

7777147901277 7

Y3783 PSEPTTTSI B

?299999%924%4949199

Il
—
S

=
=

N
o]
X

N
o]

Y ={"zero", ..., “nine"

In this and the following lectures, we will always assume:

X =RP Y = R — regression, or
Y = {0,1} — classification!.

T more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST)... 10/53



Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

iid
(X1, Y1), ooy (Xn, Yn) ~ PXY

PX’Y

where is an unknown probability measure on X' x ).

A change of notation (wrt previous lectures)
w observations: X;e X — (X,Y)eXxY
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Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

iid
(X1, Y1), ooy (Xn, Yn) ~ PXY

where PX:Y is an unknown probability measure on X' x ).

ii) Unless explicitely mentioned, we make no assumption on the
distribution: § = PX:Y and © = {probability measures on X' x V}.

Notation. We denote by (X, Y) another pair of RVs, which follows the
same distribution PXY but is not observed.

A change of notation (wrt previous lectures)
w observations: X;e X — (X,Y)eXxY

11/53



Goal
Goal of supervised learning (informally)
We want to “learn” from datat a prediction function?

h: x — Y
x = y=h(x)

such that the RVs Y and h(X) are as “close” as possible.

T We should write A(x) = h(x; (X1, Y1), ..., (Xn, Ya))- ..
YIf Y is finite, it is also called classification function or “classifier”.

12/53



Goal
Goal of supervised learning (informally)
We want to “learn” from data' a prediction function®

h: x — Y
x = y=h(x)

such that the RVs Y and h(X) are as “close” as possible.

T We should write A(x) = h(x; (X1, Y1), ..., (Xa, Ya))- ..
Y If Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L: YxY — Rt
(v,7) = Ly, 7).

w [ (y, h(x)) quantifies the loss when y is predicted by h(x). 22/53



Goal (cont'd)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).

(NB: the concept of “risk” in this context differs from that in the previous lectures)
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Goal (cont'd)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).

(NB: the concept of “risk” in this context differs from that in the previous lectures)

A This risk depends on the unknown distribution § = PX:Y:

R = /[ L ) P i, ).

m From now on, we will simply write R(h).

13/53



Goal (cont'd)

The optimal prediction function depends on the unknown
distribution PXY":

h* = h*(PXY) = argmin, R(h).

(existence/uniqueness not guaranteed)
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Goal (cont'd)

The optimal prediction function depends on the unknown
distribution PXY":

h* = h*(PXY) = argmin, R(h).
(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X, Y1), ..., (Xu, Y,), a prediction
function

h: x — Yy
x = y=hx)
such that the risk R(h) is as close as possible to the optimal risk
R* = ir),f R(h)

(also called “Bayes risk").

14/53



Lecture outline

2 — Linear regression
2.1 — Introduction to regression models
2.2 — Linear model / quadratic loss
2.3 — Back to statistical inference
2.4 — Other loss functions
2.5 — Limitations of “ordinary least squares”



Lecture outline

2 — Linear regression
2.1 — Introduction to regression models



Regression

We consider in the rest of this lecture the regression case: ) = R.

RATE oF REGRESSION FIN(H)EREDITARY STATURE.
ig, (2)

HEIGHT
in
inches

‘The Deviates of the Children are to those of DEVIATE
their Mid-Parents as 2to 3 in
inches

71 | When Mid-Parents are taller than mediocrity,
their Children tend to be shorter than they.

67 H

66 H ‘mediocrity,

than
their Children tend to be taller than they.

65

Francis Galton (1886). “Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246—263.
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Regression

We consider in the rest of this lecture the regression case: ) = R.

RATE oF REGRESSION FIN(H)EREDITARY STATURE.
ig, (2)

HEIGHT
in
inches

‘The Deviates of the Children are to those of DEVIATE
their Mid-Parents as 2to 3 in
inches

71 | When Mid-Parents are taller than mediocrity,
their Children tend to be shorter than they.

&
% When Mid Parents are shorter than mediocrity, | |
Al their Children tend to be taller than they.

H -+

Francis Galton (1886). “Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246—263.

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:

Ly, y) = (y - 7).

(this is the most commonly used in regression settings)
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Quadratic loss

Consider for a start the quadratic loss:

Ly, y) = (y - 7).

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is

Vx e X, h"(x) =E(Y|X = x).

Vocabulary : x — E(Y|X = x) is sometimes called “regression function”.
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Quadratic loss

Consider for a start the quadratic loss:

Ly, y) = (y - 7).

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is
Wx e X, h(x)=E(Y|X = x).
Vocabulary : x — E(Y|X = x) is sometimes called “regression function.

We will consider this loss function until further notice.

16/53



Quadratic loss (cont'd)

Proof. By the law of total expectation, we get:

R(h) = E ]E((Y—h(X))2 | x)

-

®
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Quadratic loss (cont'd)

Proof. By the law of total expectation, we get:

R(h) = E E((Y—h(X))2 | x)

-

®

Le term ® can be decomposed as :

E((Y = h(x) | X)
—E ((Y—E(Y | X) + E(Y | X) = h(X))? | x)
=var(Y | X) + (E(Y | X) — h(X))?.
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Quadratic loss (cont'd)

Proof. By the law of total expectation, we get:

R(h) = E E((Y—h(X))2 | x)

-~

®

Le term ® can be decomposed as :
E((Y = h(x) | X)
~E ((Y—E(Y | X) +E(Y | X) — h(X))? | x)
=var(Y | X) + (E(Y | X) — h(X))?.

The first term does not depend on h, and the second one is
minimal when h(X) =E(Y | X) as.. O

17/53



Empirical risk

Recall that the joint distribution PX:Y" is unknown

w the risk R(h) cannot be computed.
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Empirical risk
Recall that the joint distribution PX:Y is unknown
w the risk R(h) cannot be computed.
Definition: empirical risk

We call empirical risk the risk

Bty = [ L hG0) Pl dy) = S (v X))

i=1

associated to the empirical measure P, = %27:1 0X,.Y;-

With the quadratic loss :

18/53



Empirical risk minimization
A general learning method:
@ Choose a family 7 of prediction functions.

® Select the function h which minimizes the empirical risk:

RERM — argming,c . Ra(h).

19/53



Empirical risk minimization
A general learning method:
@ Choose a family 7 of prediction functions.

@® Select the function h which minimizes the empirical risk:
RERM — argming,c . Ra(h).

Example: “linear” (affine) prediction functions

A = {h:]R”—HR{ ‘HBG]R”“, Vx € X,

h(x) = Bo+ ix® + ...+ ﬂpx(P)}

A the ERM method is reasonable if 57 is “not too large”

m  otherwise, complex models must be penalized (more on this in
Lecture 8) 19/53



Other examples of families of prediction functions

» linear models with general basis functions

h(x) = Pih(x)+ ...+ Brhk(x),

where the functions h, : X — R are known;

20/53



Other examples of families of prediction functions

» linear models with general basis functions

h(X) = ﬂlhl(X) 4+ ...+ 5KhK(X),
where the functions h, : X — R are known;

» additive models
h(x) = b (xW) 4+ ... 4 hy(xP)),

where the h's belong to a given family of R — R functions;
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Other examples of families of prediction functions

>

vvyYyy

linear models with general basis functions

h(X) = ,81h1(x) 4+ ...+ 5KhK(X),
where the functions h, : X — R are known;

additive models
h(x) = h (xW) 4+ ...+ hp(x(P)),
where the h;'s belong to a given family of R — R functions;

neural networks,
decision trees,

generalized linear/additive models

20/53



Lecture outline

2 — Linear regression

2.2 — Linear model / quadratic loss



Residual sum of squares
We consider prediction functions h of the form :

h(x) = o + BixM 4+ 4 Bpx(p) =8"x
Bo
with 8 = 6 and x =

5p (p)



Residual sum of squares

We consider prediction functions h of the form :

h(x) = Bo + BixM + ... + BxP) = 8T x

Bo (1)

1

with 5 = 5,1 and x = X.
Bp x(P)

Definition: RSS / least squares criterion
Empirical risk: R(h) = I (Yi— BTX,-)Z.
We define the Residual Sum of Squares (RSS):

RSS(8) =3 (Yi— 57x)’
or least squares criterion. -



Matrix-vector notations

1 x® L xW i
1 XM xP) Y
Let X = | = 2 2 landy=| °
) xM x,é”) Y

m X has size n x (p+ 1) and Y has length n.
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Matrix-vector notations

1 x® L xW i
1 XM xP) Y
Let X = | = 2 2 landy=| °
) xM x,é”) Y

m X has size n x (p+ 1) and Y has length n.

Matrix form of the criterion

RSS(8) = Y —X8|?
(Y - XB)" (Y - XB)

BTXTXB —2YTXB+ Y'Y



Minimization of the least squares criterion

Assumption

We assume X ' X invertible

m implies p + 1 < n.
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Minimization of the least squares criterion

Assumption

We assume X X invertible

- implies p + 1 < n.

1

Let = (X'X) XTY.
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Minimization of the least squares criterion

Assumption

We assume X X invertible

- implies p + 1 < n.

Let 5= (X"X) "' XTY. Then:

RSS(B) = BTX'XB-2Y'XB+Y'Y
= (B-0)'X'X(B-F)+c

where c is a constant (i.e., does not depend on ).
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Minimization of the least squares criterion

Assumption

We assume X | X invertible

- implies p + 1 < n.

Let 5= (XTX) ' XTY. Then:

RSS(B) = B'X'XB-2Y'XB+Y'Y
= B-BTXX(B-P)+c

where c is a constant (i.e., does not depend on ).

Indeed: §7X" X5 =YX (X"X) ' XTX3=YX5.

23/53



Minimization of the least squares criterion
Reminder : RSS(8) = (8 — B)T X" X(8 — 3) +c.
We have:
@ VacRPH aTXTXa=|Xa|* >0,
® X' X is invertible, hence positive definite.
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Minimization of the least squares criterion
Reminder : RSS(8) = (8 — B)T X" X(8 — 3) +c.
We have:
@ Vac R aTXTXa=||Xa|* >0,
® X' X is invertible, hence positive definite.

(i) implies that RSS(3) is minimal at /3;
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Minimization of the least squares criterion
Reminder : RSS(8) = (8 — B)T X" X(8 — 3) +c.
We have:
@ VacRPH aTXTXa=|Xa|* >0,
® X' X is invertible, hence positive definite.
(i) implies that RSS() is minimal at f;

(i) implies that the minimizer is unique (a' X" Xa=0 = a=0).
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Minimization of the least squares criterion
Reminder : RSS(8) = (8 — B)T X" X(8 — 3) +c.
We have:
@ VacRPH aTXTXa=|Xa|* >0,
® X' X is invertible, hence positive definite.
(i) implies that RSS() is minimal at f;

(i) implies that the minimizer is unique (a' X" Xa=0 = a=0).

Proposition: least squares estimator
When X T X is invertible,
o T\l
B=(x"x) X7y

is the unique minimizer of the RSS function.

24/53



Goodness of fit

Without explanatory variables, we would have
B(X) = Bo, with Bo =Y =

Let usset TSS =", (Y,- — \_/)2 — Total Sum of Squares.
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Goodness of fit

Without explanatory variables, we would have

B(X) = Bo, with Bo =Y =

Let usset TSS =31, (Y; — \7)2 — Total Sum of Squares.

Definition: coefficient of determination R?

Reminder : RSS(8) = 327, (Vi — 87 X;)%. We set :

N

RSS(5)
- TSS

R%2 =1
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Goodness of fit

Without explanatory variables, we would have

h(x) = Bo, with Bo=Y = %z

Let usset TSS =31, (Y; — \7)2 — Total Sum of Squares.

Definition: coefficient of determination R?
Reminder : RSS(8) = 327, (Vi — 87 X;)%. We set :

RSS(5)

R2=1—
TSS

Properties.
» 0<R?°<1,
> R2=1 <« Vi, Y =p5X,.
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“Ozone” example: presentation of the data

variable

description

O3o0bs

concentration of ozone on day t + 1

26/53


https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone

“Ozone” example: presentation of the data

variable description

O3obs concentration of ozone on day t + 1

MOCAGE | pollution prediction obtained by a deterministic
computation fluid dynamics (CFD) model
TEMPE MétéoFrance temperature forecast for day ¢t + 1
RMH20 humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t
VentMOD | wind strength on day t

VentANG | wind orientation of day t

26/53


https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone

“Ozone” example: presentation of the data

variable description

O3obs concentration of ozone on day t + 1

MOCAGE | pollution prediction obtained by a deterministic
computation fluid dynamics (CFD) model
TEMPE MétéoFrance temperature forecast for day ¢t + 1
RMH20 humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t
VentMOD | wind strength on day t

VentANG | wind orientation of day t

Learning task

» predict the ozone concentation on day t + 1
from data available on day t

> predict if the concentration will exceed 150 pg/m>
(classification task, cf. lecture #7).

Application and data obtained from https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone 26/53
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“Ozone” example: data visualization

0O30bs
8. 8 &

MOCAGE
8

LNO2

LNO

VentANG VentMOD

ry

"

%
MOCAGE TEMPE SRMH20 LNO2 LNO VentMOD

2 o 2
VentANG
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"Ozone” example: linear regression

Linear regression using n = 210 days of data.
Remark. All variables for the sake of interpretability.

Bo MOCAGE | TEMPE | RMH20 [ NO2 | NO | VentMOD | VentANG
103.4 1.4 2.6

Coefficient of determination. R? = 65.7%

28/53



"Ozone” example: linear regression

Linear regression using n = 210 days of data.
Remark. All variables for the sake of interpretability.

Bo

103.4

MOCAGE | TEMPE

RMH20 | NO2 NO VentMOD | VentANG

14 26

Coefficient of determination. R? = 65.7%

50

100 150 200 250
Yi

Observations:

> the negative coefficient associated
to NO2 is surprising
(but NO2 is correlated with NO);

» RMH20, VentMOD and VentANG
appear to be of lesser importance;

» the model explains partly the data.
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Lecture outline

2 — Linear regression

2.3 — Back to statistical inference



Properties of the least squares estimator

Recall that, until now: (X1, Y1),. .., (Xn, Ya) S PXY.

m# in the section, we assume instead deterministic X;'s

(equivalently, we work “conditionally on the X;'s").
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Properties of the least squares estimator

Recall that, until now: (X1, Y1),. .., (Xn, Ya) S PXY.

m in the section, we assume instead deterministic X;'s

(equivalently, we work “conditionally on the X;'s").

Assume moreover that there exists 3 € RP*! such that

() Vi, Yi=pBTX+¢

where the errors ¢; are

(ii) centered: E(¢;) =0,
(iii) uncorrelated: i # j = cov(e;, €j) =0,

(iv) homoscedastic: var(e;) = o for some o2 > 0.

20/53



Properties of the least squares estimator

Proposition

Under these assumptions, 3 is an unbiased estimator:
E(8) = &,
and its covariance matrix is:

w(5) = (x7%)"

30/53



Properties of the least squares estimator

Proof.
Recall that the X;'s are assumed deterministic.
Let € = (€1, ... ,e,,)T. Then:

(i) = {

= XB+e
XTX) "Xy =5+ (X'X) X

<
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Properties of the least squares estimator

Proof.
Recall that the X;'s are assumed deterministic.

Let € = (€1, ... ,e,,)T. Then:

(i) = {

(M = E(8) =8+ (X" X)XTE() =5

= XB+e

@ <

XTX) XY =8+ (XTX) " XTe
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Properties of the least squares estimator

Proof.
Recall that the X;'s are assumed deterministic.

Let € = (€1, ... ,e,,)T. Then:

0 _ {Y = XB+e

b= (XTX0TXTY =5+ (XTX) X

(i) = E(B) =8+ (X"X) ' XTE() =8

B) = (XTX)TTXT var(e) X (XTX)

(iil)+(iv) = ( 2 ()]

1
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Distribution of (3, 42) under a normality assumption

Assume furthermore that (v) e is Gaussian:
n
2.vy _ D 2 1 4Ty \?
l0g £(3.0%¥) = —7 log(2m0®) — 53 ) 1 (Y,—ﬁ x,) .
=
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Distribution of (3, 42) under a normality assumption

Assume furthermore that (v) ¢ is Gaussian:
n

1 2
= Y — Tx,-) .
202 ( B

i=1

log £(8,0% Y) = —7 log(2mo®) —

Proposition: MLE of (3, 0?) (see PC 6)
B =argming 37, (Yi—-B8"'X -)2,

A2 1 2

U = Zl 1 (Y /B )

m \We recover the least square estimator of 3

The MLE is
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Distribution of (3, 42) under a normality assumption

Assume furthermore that (v) ¢ is Gaussian:
n

2.yy _ 2y 1 5Ty’
log £(8. 0% Y) = — log(2mo®) — = > (y, 3 x,) .
Proposition: MLE of (3, 0?) (see PC 6)
~ 2
B=argming> ", (Vi = B"X)",
The MLEis § ) 820 (Y= 6 %)
U = Zl 1 (Y /B )
m \We recover the least square estimator of 3
Student's theorem: distribution of (5’, 52) (see PC 6)
> 3~ N (5702 (KTK)_l), > /3 et 62 are independent.
> 6'2 ~ U—nzxz(n—p_].),
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Tests / Cl on the value of a component of 3

We know that Bj ~ N (ﬂj,dz\/j) with v; = [(KTK)A] .
Jd
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Tests / Cl on the value of a component of

We know that Bj ~ N (Bj, CT2Vj) with v; = [(KTK) 71] .
Jd

Pivotal function

né2v;
n—p—1

with 7(n— p—1): Student's t distrib. with n — p — 1 degrees of freedom
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Tests / Cl on the value of a component of

We know that Bj ~ N (51',02‘/1‘) with v; = [(KTK)A} .
Jd

Pivotal function

né2v;
n—p—1

with 7(n— p—1): Student’s t distrib. with n — p — 1 degrees of freedom

Remark:
D n

an—lz lflz:(y"_BTX")2

n—p i=1

is an unbiased estimator of 02 (see PC 6).
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Proof

It follows from Student’s theorem that

. Bi—B; N
> U="20~r(0,1)

> V=15~ 2 (n—p-1),

o2

» and U and V are independent.
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Proof

It follows from Student’s theorem that

—-B_ﬁ'm
> U="20~r(0,1)

A2
> V="1% ~x*(n-p-1)
» and U and V are independent.

Thus
5 4 U
B R A
né&ev; |4
n—p—1 n—p—1

by definition of the Student's t distribution with k =n—p—1
degrees of freedom. O
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Exact confidence interval for 3

52\, 521/,
5 no VJ 3 no VJ
o =& ﬂj

|
nN|R
| I

qr: quantile of order r of T(n—p —1)
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Test for Hy : 5j =0/ Hy : B; #0
Let 0 < a < 1. 0.4

Take 8; = 0 in the def. of T (i.e., o5
assume Hp) and '
0.2

0 =1\75q, o
2 0.1

0

gr: quantile of order r of T(n—p—1)
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Test for Hy : 5; =0/ Hy : B; #0
Let 0 < a < 1. 0.4

Take 8; = 0 in the def. of T (i.e., o5
assume Hp) and '
0.2

0=1T|>q, o
0.1

Exact confidence interval for 3

A | né2y; A | né2y;
lﬂj n—p—lql_%’ﬂj—i_ n_p_lql—%

gr: quantile of order r of T(n—p—1)
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“Ozone” example: Cls and p-values

Clos t
5o [100.1, 106.7] | 62.9
MOCAGE | [21.1,36.8] |7.4
TEMPE [16.5, 28.5] | 7.6
RMH20 [-7.0,06] |-17
NO2 [-53.0, —15.7] | -3.7
NO [19.8, 55.4] | 4.2
VentMOD [—2.7, 5.4] 0.7
VentANG [—0.8, 6.0] 1.6

with t: realization of T for the corresponding coefficient
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“Ozone” example: Cls and p-values

Clos t
5o [100.1, 106.7] | 62.9
MOCAGE | [21.1,36.8] |7.4
TEMPE [16.5, 28.5] | 7.6
RMH20 [-7.0,06] |-17
NO2 [-53.0, —15.7] | -3.7
NO [19.8, 55.4] | 4.2
VentMOD [—2.7, 5.4] 0.7
VentANG [—0.8, 6.0] 1.6

with t: realization of T for the corresponding coefficient

Remark: regression without RMH20, VentMOD et VentANG

w the coefficient of determination drops from 65.7% to 64.5%.
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Lecture outline

2 — Linear regression

2.4 — Other loss functions



"Ozone” example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:

Bo MOCAGE | TEMPE | RMH20 | NO2 NO VentMOD | VentANG
w/o | 103.4 | 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with | 125.2 | 79.2 -15.6 24.2 -155.1 | 1414 | 4.7 24.9

m Strong sensitivity of the coefficients to “outliers”.
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"Ozone” example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:

Bo MOCAGE | TEMPE | RMH20 | NO2 NO VentMOD | VentANG
w/o | 103.4 | 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with | 125.2 | 79.2 -15.6 24.2 -155.1 | 1414 | 4.7 24.9

m Strong sensitivity of the coefficients to “outliers”.

Solution

Use a loss function that leads to a prediction function with better
robustness properties than the quadratic loss.
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Usual loss functions

4y ’
\ = 'Ly (quadratic) loss /
\\ —L; loss I’
3R Y — Huber's loss /

—e-insensitive loss
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L1 loss

Loss function : L(y.y) = |y — y|.
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L1 loss

Loss function : L(y,y) = |y — y|.

Proposition (see PC 6)

For the L; loss, the optimal prediction function is

Vx e X, h*(x) = med(Y|X = x)
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L1 loss

Loss function : L(y,y) = |y — y|.

Proposition (see PC 6)
For the L; loss, the optimal prediction function is
Vx e X, h*(x) = med(Y|X = x)
“Ozone” example
60 MOCAGE TEMPE RMH20 NO2 NO VentMOD VentANG
w/o | 100.8 | 27.5 192 33 322 | 339 | -1.0 3.9
with | 101.4 | 28.3 18.6 -1.6 351 | 375 | 0.5 3.2

m better stability with respect to outliers.
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Lecture outline

2 — Linear regression

2.5 — Limitations of “ordinary least squares”



Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).
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Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).

Critical cases for “ordinary least squares”
» when X' X not invertible,

» or poorly conditioned.
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Limitations of “ordinary least squares”
Recall that X has size #individuals x #variables (n x (p + 1)).
Critical cases for “ordinary least squares”

» when X' X not invertible,

> or poorly conditioned.

Typical cases:

» when the number of variables is large
(p+ 1> n, sometimes p > n)

Example: genomics.
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Limitations of “ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).

Critical cases for “ordinary least squares”
» when X' X not invertible,

> or poorly conditioned.

Typical cases:
» when the number of variables is large
(p+ 1> n, sometimes p > n)

Example: genomics.

» when there are strong correlations between explanatory
variables

Example: “ozone” data (cf. variables NO and NO2)
w |ack of interpretability of the coefficients

40/53



One possible solution: penalized regression

A penalty term is added to the empirical risk:

A

f =argmin RSS(B) + A ).
B ~—

data “fidelity”  hyperparameter penalty

Q

sy

{
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

A

f =argmin RSS(B) + A ).
B ~—

data “fidelity”  hyperparameter penalty

Q

sy

{

m see Lecture 8
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3 — Standard exercices (with solutions)
3.1 — Questions
3.2 — Solutions



Lecture outline

3 — Standard exercices (with solutions)
3.1 — Questions



Exercise 1 (Regression seen as a projection)

Let (Xi, Yi) € R? xR, 1 </ < n, denote an n-sample of observations.
Consider the linear regression model from
p .
h(x) = fBo+ ZBJX(J) — 8Tx, xeRPH,
j=1

and the corresponding least squares estimator:
N n 2
B = argming Z (Y,- = ,BTX,-> .
i=1

As in , we denote by
> X € R™(P+1) the matrix of regressors,

» Y € R" the vector of responses.
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Exercise 1 (Regression seen as a projection)

Questions

® Set Y = KBA. Prove that Y is the projection of Y onto the
image of X.

® Give the expression of the projection matrix, assuming that
X" X is invertible.

© Prove that the coefficient of determination, defined in
, satisfies the property 0 < R? < 1, with R? = 1 iff
Vi, Yi =BT X.
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Lecture outline

3 — Standard exercices (with solutions)

3.2 — Solutions



Solution of exercise 1

@ Reminders:

» The projection of y € R" onto a closed convex set C C R" is
the unique y* € C such that ||y — y*|| = min,ec|ly — v|.

» The image of X, which we will denote by Im(X), is the linear
subspace of R” generated by the columns of X:

Im(X) = {v cR" |3 e RPHD, y :m}.

To begin with, note that

» Im(X) is indeed a closed convex set (since all linear subspaces
are closed in finite dimension),

> ¥V =XA belongs to Im(X).
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Solution of exercise 1

Furthermore, for all v = X3 € Im(X), using the fact that
BA = argmin ||Y — KBH2 ,
B
we find that

LY - Y| = |Y - X3

< l¥X-XB8| = ¥ —vl,

therefore Y is indeed the projection of Y onto Im(X).

@ Using the expression of 3 established in class, we can write the
projection of Y onto Im(X) as

A~

~ —1
AX::KB::K<§¢K) xTy.
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Solution of exercise 1

This being true for all Y € R”, we conclude that the matrix of the
projection operator is:

1
P=X (KTQ xT.

® Recall the characterization of the projection onto a linear
subspace:

Theorem

Let y € R" and let F be a linear subspace of R”. Then, y* is the
projection of y onto F if, and only if,

> y* e F,
> y—y*eFh
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Solution of exercise 1

We apply the theorem with F = Im(X) and y = Y.

<
|
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Solution of exercise 1

Consider now the coefficient of determination:

5 = 2
R2_1_ RSS(B)’ where TSS = HX— Yl,,;lH
TSS RSS(8) = [I¥ - X8|
Let us decompose the TSS:
A oA - 2
TSS = [Y-¥+¥- Vi (1)
2
- nx1 (2)

2
— RSS(3 +Hv V11

The transition from (1) to (2) follows from Pythgora's theorem.
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Solution of exercise 1

Indeed,

> Ve Im(X) and Y — = Im(&)L since Y is the projection
of Y onto the linear subspace Im(X).

> ¥ — Y1 € Im(X) since 1,51 € Im(X).

Thus:
®0< RSS(B) < SCT, therefore 0 < R2 < 1,

® R2=1 iff SCR(B)=0 iff Y =X§.
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Lecture outline

4 — Appendices



Matrix calculus

The result can also be found using matrix calculus.

Let v e R9, z € R9 and M € R9%9,

1) differentiation of h(z) = v’z =37, vz

h
Oz1 Vi
V.h(z) = : = : =v therefore V,(v'z)=v.
oh
0zq Vg

2) differentiation of h(z) = z"Mz =>F._ ziM; ;z

=il

oh

bz 2 Mz + 300 Miaz
V:h(z) = =

Oh

Bz, > Myjzi+ 3 Miaz,

therefore V. (z"Mz) = (M + MT)z.
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Matrix calculus (cont'd)

Application to the minimization of the least squares criterion.
Recall that
RSS(8) = BTXTXB - 2YTXB + Y'Y
Thus we have
VsRSS(8) = 2XTXp—2XTY = 2 (XX - XTY),

and finally:

VsRSS(B) =0 = [= (fz) Xy,
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Data standardization
Let X = (Xi,...,X,) be an n-sample taking values in RP.
Data standardization consists in transforming X to X as follows:
. x0) _ xU)
XU = 4 _Zn o 1<i<n, 1<j<p,

H )

5,(71 )

where Y(j) and S,(,j) are the sample average and standard deviation
of the j-th variable, respectively:

X0 _ ,172 X0,
i=1
()" = 13,0 -R0'
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Student's t distribution 7 (k)

Definition of T(k), k integer > 1
Let U and V be two RVs such that

> U~.#(0,1)

> Vo~ 3 (k)

» U and V are independent
then T = \/—Uv follows a Student'’s t distribution with k degrees of freedom.

©
Properties Probability density function
d
Tl o (0D oo — L TC) (1+x2>_k21
X) = — -

Exercise : prove it. vk r(g) k
Mean Variance

> for k>2, Ex(T)=0 > for k>3, vark(T) = %5
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