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Lecture 6/9

Introduction to supervised learning
Linear models for regression

Course objectives

» Introduce the basic concepts of statistical learning

» Establish the mathematical framework for regression and
classification problems

» Learn how to build and use linear regression models
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Lecture outline

1 - Introduction to (supervised) statistical learning
2 — Linear regression
3 — Standard exercices (with solutions)

4 — Appendices
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1 - Introduction to (supervised) statistical learning
1.1 — Statistical learning
1.2 — The mathematical framework of supervised learning




Lecture outline

1 — Introduction to (supervised) statistical learning
1.1 — Statistical learning

Machine learning (apprentissage automatique)

One possible definition. . .

" Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.” — data !
(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54-64)
Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of Al and Design.

https://www . autodesk. con/redshift/machine-learning/
a/sa

Statistical learning: a “disciplinary” point of view

Computer science Mathematics

(“mathematical sciences")

Artificial intelligence (Al) l

l Statistics

Machine learning

N\

‘ Statistical learning

(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”
i istique) are often used i

s/5a

Example: handwritten character recognition
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A subset of the MNIST database
containing 70 000 images' of size 28 x 28 pixels

Supervised learning problems: examples are provided with a label.

m Learn to classify a new image in one of the 10 classes.

60 000 training examples and 10 000 test examples
Source: https://www.opennl.org/search?type=datakid=554 o/5a




Example: real estate pricing in Ames (lowa)

his is the target variable that you'e trying to predict,

k

o property

« Alley: Type of al
+ LotShape: G

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

m |earn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techn

iques”
(nttps://uuy.kaggle. - prices-advanced

) 7758

Several forms of learning

» Supervised learning: examples with labels.
> analogy: learning with a teacher.

m | ectures 6 to 8
» Unsupervised learning: examples without labels
» analogy: learning without a teacher, pattern discovery
e |ecture 9
and also... (not covered in this course)
» Active learning
> the labels are queried sequentially;
> example: detection of bank frauds
— in-depth analysis of “suspicious” cases only.
» Reinforcement learning
» Transfer learning
|

/50

Numerous fields of application

Computer vision

Speech recognition

Natural Language Processing (NLP)
Fraud detection

Personalized medicine

Recommender systems & targeted marketing

vVVYyVYVYVYVvYYyY
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Lecture outline

1 - Introduction to (supervised) statistical learning

1.2 — The mathematical framework of supervised learning




ML vocabulary: instance space and label space

Instance space: X’ Label space: Y
> instances x1,...,X, € X » labels y1,...,y, €Y

MNIST example:

0000000000000 000
LTINS
22222322221222222
3333333%30723333 . .
Hetidatvivadrey Class: zero, one, ...nine
355555515 csrses
(letuiitcacocecet
$771777197123777
YErREE IRy TYe et
2999979 999994299

> 28x28 “ " m "
X =[0,1] Y = {"zero", ..., "nine

In this and the following lectures, we will always assume:

X =RP Y = R — regression, or
Y ={0,1} — classification'.

T more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST). 10758

Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:
YD), ey (X Ya) PXY

where PX:Y is an unknown probability measure on &X' x ).

ii) Unless explicitely mentioned, we make no assumption on the
distribution: # = PX:Y and © = {probability measures on X x V}.

Notation. We denote by (X, Y) another pair of RVs, which follows the
same distribution PX- but is not observed.

A change of notation (wrt previous lectures)
w observations:  Xie X — (X,Y;)eXxY

11754

Goal
Goal of supervised learning (informally)
We want to “learn” from datat a prediction function®

h: x - ¥
x = y=hx)

such that the RVs Y and A(X) are as “close” as possible.

T We should write A(x) = A(x; (X1, Y1), -+, (Xa, Ya)). ..
*If Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L: YxY — Rt
.9 = Ly.9).

w [(y, h(x)) quantifies the loss when y is predicted by A(x). 1275

Goal (cont'd)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) =E(L(Y, (X)),

where the expectation is with respect to (X, Y).

(NB: the concept of “risk” in this context differs from that in the previous lectures)

A This risk depends on the unknown distribution § = PX-Y:

Ro(h) = ///H Ly, h(x) PXY (dx, dy).

m From now on, we will simply write R(h).

13/s8




Goal (cont'd)

The optimal prediction function depends on the unknown
distribution PX:Y:

h* = B(PXY) = argmin;, R(h).
(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X1, Y1), ..., (X», Y»), a prediction
function .
h: X — Y
X = y= i‘l(X)

such that the risk R(h) is as close as possible to the optimal risk
R* = il;f R(h)

(also called “Bayes risk").

14754

Lecture outline

2 — Linear regression
2.1 — Introduction to regression models
2.2 — Linear model / quadratic loss
2.3 — Back to statistical inference
2.4 — Other loss functions
2.5 — Limitations of “ordinary least squares”

Lecture outline

2 — Linear regression
2.1 — Introduction to regression models

Regression

We consider in the rest of this lecture the regression case: J = R.

RATE oF REGRESSION IN HEREDITARY STATURE

HEIGHT

e Chilénen are 1o o uf oeviaTE
3 Bareans an £ s 3

Francis Galton (1886). " ion Towards Mediocrity in itary Stature”,
Journal of the Anthropological Institute, 15:246-263

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:
o N2
Ly, 7) = v =9
(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is

Vx € X, h(x)=E(Y|X = x).

Vocabulary : x — E(Y|X = x) is sometimes called “regression function”.

We will consider this loss function until further notice.

10/54

Quadratic loss (cont'd)

Proof. By the law of total expectation, we get:

R(h) = E|E ((Y — h(X))? | X)
T 7

Le term & can be decomposed as :
E((¥ = h(x) | X)
=E ((Y%E(Y | X)+E(Y | X) — h(X))? | x)
=var(Y | X) + (E(Y | X) — h(X))?.

The first term does not depend on h, and the second one is
minimal when h(X) =E(Y | X) as. O

17/s4

Empirical risk

Recall that the joint distribution PX:Y is unknown

s the risk R(h) cannot be computed.

Definition: empirical risk

We call empirical risk the risk
Ru(h) = // Ly, h(x)) Pa(dx,dy) = ZL (Y, h(X)

associated to the empirical measure P, = 1 Z, 1 0X,,Y;-

With the quadratic loss :

18/58

Empirical risk minimization
A general learning method:
@ Choose a family .77 of prediction functions.
® Select the function h which minimizes the empirical risk:
RERM — argminge p Ra(h).

Example: “linear” (affine) prediction functions

> = {h:R"—>R ‘HﬂeR"“,VxeX,

h(x) = Bo + BrxW + ...+ /a,,x<P>}

A the ERM method is reasonable if 77 is “not too large”

w otherwise, complex models must be penalized (more on this in
Lecture 8)

10/58




Other examples of families of prediction functions

» linear models with general basis functions
h(x) = Bihi(x)+ ...+ Brhk(x),
where the functions hy : X — R are known;
» additive models
h(x) = h(xD) + ...+ hy(xP),
where the hy's belong to a given family of R — R functions;

neural networks,
decision trees,

generalized linear/additive models

vvyVvyy
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2 — Linear regression

2.2 — Linear model / quadratic loss

Residual sum of squares

We consider prediction functions h of the form :

h(x) = Bo + BuxW 44 ’ypx(p) —8Tx

Bo 1

b1 x(M
with = | . and x =

P/j‘p X(-p)

Definition: RSS / least squares criterion
Empirical risk: R(h) =127, (Y, — 87X;)°.
We define the Residual Sum of Squares (RSS):

n

Rss(8) = > (Yi- 57x)"

i=1
or least squares criterion. e
Matrix-vector notations
1
1 Xlilz XIE”; v,
X, X \
Let X = 2 2 and Y = _2
1ox® o xP Ya

m X has size n x (p+ 1) and Y has length n.

Matrix form of the criterion

RSS(8) = IlY—Xx5|?

= (Y-Xx8)" (Y- XB)
BTXTXB —2Y'XB+ Y'Y

22/s8




Minimization of the least squares criterion

Assumption

We assume X ' X invertible

m implies p+1 < n.

Let = (X'X) ' X" Y. Then:

RSS(B) = BTX'XB-2Y"XB+Y'Y
= B=-8)X"X(B-B) +c

where c is a constant (i.e., does not depend on f3).

Indeed: 3'X"XB=YTX (Ex)’lgm =Y'X3.

23/s4

Minimization of the least squares criterion
Reminder : RSS(8) = (8 — B)TX"X(8 - B) +ec.
We have:
@ Vac R aT X Xa=|Xal?> >0,
® X X is invertible, hence positive definite.
(i) implies that RSS(/3) is minimal at 3;
(ii) implies that the minimizer is unique (a"X"Xa=0 = a=0).
Proposition: least squares estimator
When X X is invertible,
B=(x"X) " xTy

is the unique minimizer of the RSS function.

24/54

Goodness of fit
Without explanatory variables, we would have
-1
h(X) =Po, with [Bop=Y = E Y.

i=1

Let us set TSS =7 (V; — )_/)2 — Total Sum of Squares.

Definition: coefficient of determination R?
Reminder : RSS(8) = >0, (Vi — BTX,-)? We set :

_ Rss(3)
TSS

R?=1

Properties.
> 0<R*<1,
> R2=1 < Vi Y;=pBX.

25/58

“Ozone" example: presentation of the data

variable description

030bs concentration of ozone on day t + 1

MOCAGE | pollution prediction obtained by a deterministic
computation fluid dynamics (CFD) model
TEMPE MétéoFrance temperature forecast for day t + 1
RMH20 humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t
VentMOD | wind strength on day t

VentANG | wind orientation of day t

Learning task

» predict the ozone concentation on day t + 1
from data available on day t

> predict if the concentration will exceed 150 ,ug/m3
(classification task, cf. lecture #7).

Application and data obtained from https://github. con/wikistat/Apprentissage/tree/master/Pic-ozone  q/ss




“Ozone" example: data visualization

A

SRWHIO  reype  MOCAGE  Odobs

oz
¥
5

wo

VentANG  VenthOD

Al

Olobs  MOCAGE  TEMPE  SRMH0  LNOZ N0 VentHOD  VentANG.
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“Ozone" example: linear regression

Linear regression using n = 210 days of data.

Remark. All variables for the sake of interpretability.
[ Bo__ | MOCAGE | TEMPE | RMH20 | NO2 | NO | VentMOD | VentANG |
[ 103.4 7280 225 | -32 37090 14 [ 26 |

Coefficient of determination. R? = 65.7%

Observations:

> the negative coefficient associated
to NO2 is surprising
(but NO2 is correlated with NO);

» RMH20, VentMOD and VentANG
appear to be of lesser importance;

50 100 150 200 250
Yi

> the model explains partially the
response variable (O3obs).

20/54
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2 — Linear regression

2.3 — Back to statistical inference

Properties of the least squares estimator

Recall that, until now: (X1, Y1),...,(Xy, Yn) & PXY.
w in the section, we assume instead deterministic X;'s
(equivalently, we work “conditionally on the X;'s").
Assume moreover that there exists 3 € RP*1 such that

() Vi, Yi=8"Xi+¢

where the errors ¢; are

(i) centered: E(e;) =0,
(iii) uncorrelated: i # j = cov(ej,¢j) =0,

(iv) homoscedastic: var(e;) = o for some o2 > 0.

20/58




Properties of the least squares estimator

Proposition

Under these assumptions, J is an unbiased estimator:

and its covariance matrix is:

E(3) = 5,
wr(5) = o ()"

30/s4

(i)

(ii)

Properties of the least squares estimator

Proof.
Recall that the X;'s are assumed deterministic.

Let € = (e1,. .. ,en)T. Then:

XB+e
XX XTY =5+ (XTX) X e

(e
= ~
I6]
= E(f) =8+ (X" X)X E()=75

A -1 -t
(ii)+(iv) = Var('-) - (fTK) éT (9 X(XTX)

= o2 (X'X)

O

Distribution of (3, 42) under a normality assumption
Assume furthermore that (v) € is Gaussian:
B.o2y) = " oy 1 _5Tx)’
log £(8,0%Y) = —7log(2m0?) — 5 > (Y, 8 x,) .
(see PC 6)

Proposition: MLE of (3,0?)
B = argming > (Y, = HZTX,)Q N
2= % i (Yi - BTXI‘) :

s \\e recover the least squares estimator of 3

The MLE is
(see PC 6)

P,

Student's theorem: distribution of (3, 52)
> A et 62 are independent.

32/s8

> B~ (5,02 (XTX)Y)
2(n—p—1),

2 ol
~ 2 X

| )

Tests / Cl on the value of a component ; of /3
g

We know that Bj ~ N (Bj,02v;) with v; = [(&Ti)fl}

Pivotal function
~ T(h—p-1)

with 7(n— p—1): Student’s t distrib. with n— p — 1 degrees of freedom

Remark: )
né 1 u R 2
:n—p—lg(y'iﬁ—rx')

3358

n—p—1

is an unbiased estimator of o2 (see PC 6).




Proof

It follows from Student’s theorem that

_ B8
> U=75~/(01)

52
> V=2 e p ),
» and U and V are independent.

Thus
_B-5 _ U
T = oy — ~ T(n—p-1),
n—p—1 n—p—1

by definition of the Student’s t distribution with k =n—p — 1
degrees of freedom. [m]

34/54

Test for Hy : |

Let0<a<1.
Take ; = 0in the def. of T (i.e.,
assume Hp) and

=0/H,: B #0

d=175 G-g

Exact confidence interval for f;

A né2y; A né2y;
B /j e B /j .
{J n—p—lql 2, Bj+ n7p71171 3

gr: quantile of order r of T(n—p—1)

35/s4

“Ozone" example: Cls and p-values

Clgso, t pval
Bo [100.1, 106.7] | 62.9 [ <10°©
MOCAGE | [21.1,36.8] |7.4 [<10°°
TEMPE [16.5,285] |76 | <10°©
RMH20 [-7.0,06] |-1.7 | 0.095
NO2 [-53.0, —15.7] | -3.7 |03
NO [19.8, 55.4] |42 | <1073
VentMOD |  [-2.7,5.4] | 0.7 |0.49
VentANG [-0.8,6.0] |1.6 |0.12

with t: realization of T for the corresponding coefficient

Remark: regression without RMH20, VentMOD et VentANG
m the coefficient of determination drops from 65.7% to 64.5%.

30/58

Lecture outline

2 — Linear regression

2.4 — Other loss functions




“Ozone" example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:

Bo MOCAGE | TEMPE | RMH20 | NO2 NO VentMOD | VentANG
w/o | 103.4 | 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with | 125.2 | 79.2 -15.6 24.2 -155.1 | 1414 | 47 24.9

m Strong sensitivity of the coefficients to “outliers”.

Solution

Use a loss function that leads to a prediction function with better
robustness properties than the quadratic loss.

37/s4

Usual loss functions

45 .
Y = 'L, (quadratic) loss )
\ Ly loss ]
35\ —Huber's loss !

—c-insensitive loss

0 € J
y—y
sorse
L loss
Loss function : L(y.y) = |y — y|.
Proposition (see PC 6)
For the L; loss, the optimal prediction function is
Vx e X, h*(x) = med(Y|X =x)
“Ozone” example
30 MOCAGE TEMPE RMH20 NO2 NO VentMOD VentANG
w/o | 1008 | 275 02 |33 322 | 339 | -1.0 39
with | 1014 | 283 186 | -16 35.1 | 375 | 05 32

w better stability with respect to outliers.

30/58
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2 — Linear regression

2.5 — Limitations of “ordinary least squares”




Limitations of "ordinary least squares”

Recall that X has size #individuals x #variables (n x (p + 1)).

Critical cases for “ordinary least squares”
> when X' X not invertible,

» or poorly conditioned.

Typical cases:
» when the number of variables is large
(p+1 > n, sometimes p > n)
Example: genomics.

» when there are strong correlations between explanatory
variables

Example: “ozone" data (cf. variables NO and NO2)
s |ack of interpretability of the coefficients

a0/s4

One possible solution: penalized regression

A penalty term is added to the empirical risk:

B = argmin RSS(8) + A Q(B) .
B e~ — ~— ——
data “fidelity”  hyperparameter penalty

m see Lecture 8

a/sa

Summary and preview

We have seen and will practice in PC 6:

» the mathematical framework for regression (and classification),
» the development and application of linear regression models.

> the properties of the least squares estimator.

We will cover in Lecture 7:

» performance metrics for classifiers,
» the development and application of logistic regression,

» tree-based models and neural networks.

a2/sa

Lecture outline

3 — Standard exercices (with solutions)
3.1 — Questions
3.2 — Solutions




Lecture outline

3 — Standard exercices (with solutions)
3.1 — Questions

Exercise 1 (Regression seen as a projection)

Let (Xj, ;) e R? x R, 1 </ < n, denote an n-sample of observations.

Consider the linear regression model from

P
h(x) = ﬂngZSjXU) = f'x, xeRPH,
j=1

and the corresponding least squares estimator:
u 2
[ = argming Z (Yi _ 5TX;) .
i=1

As in , we denote by
> X € R™(P1) the matrix of regressors,

» Y € R” the vector of responses.

a3/sa

Exercise 1 (Regression seen as a projection)

Questions
© Set Y = XB. Prove that Y is the projection of Y onto the
image of X.

® Give the expression of the projection matrix, assuming that
X X is invertible.

© Prove that the coefficient of determination, defined in
, satisfies the property 0 < R < 1, with R? = 1 iff
Vi, Yi = AT X..

as/sa
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3 — Standard exercices (with solutions)

3.2 — Solutions




Solution of exercise 1

© Reminders:

» The projection of y € R" onto a closed convex set C C R" is
the unique y* € C such that ||y — y*|| = min,cc[ly — v||.

» The image of X, which we will denote by Im(X), is the linear
subspace of R" generated by the columns of X:

Im(X) = {v €R"[IBeRPHD = g@}.

To begin with, note that

» Im(X) is indeed a closed convex set (since all linear subspaces
are closed in finite dimension),

> ¥ = XB belongs to Im(X).

as/sa

Solution of exercise 1
Furthermore, for all v = X8 € Im(X), using the fact that
B = argmin [|Y.— X5,
we find that ‘»

ly—¥| = |y -x3|
|y — X8| = ¥ -vl

IA

therefore Y is indeed the projection of Y onto Im(X).

@ Using the expression of B established in class, we can write the
projection of Y onto Im(X) as

¥ = xb = Xx(X"X) Xy

as/sa

Solution of exercise 1

This being true for all Y € R”, we conclude that the matrix of the
projection operator is:

P=x(xX) "X

© Recall the characterization of the projection onto a linear
subspace:
Theorem

Let y € R" and let F be a linear subspace of R". Then, y* is the
projection of y onto F if, and only if,

> y*eF,

> y—y*eFL

/58

Solution of exercise 1

We apply the theorem with F = Im(X) and y = Y.

fm(X)

as/sa




Solution of exercise 1

Consider now the coefficient of determination:

RSS(5) TSS = Y- Vil
RP=1- h > s
Tss 0 Where { RSS(8) = |Y — XA|?
Let us decompose the TSS:
A~ A — 2
TSS = [Y-¥+¥- Vipa (1)

2

= ¢ +]|2 - 71

A ~ — 2
= RSS(B)+ | ¥ = V1na

The transition from (1) to (2) follows from Pythgora's theorem.

a9/5a

Solution of exercise 1

Indeed,

> Ve Im(X) and Y — Ye Im(&)L since Y is the projection
of Y onto the linear subspace Im(X).

> ¥ — Y1 € Im(X) since 1px1 € Im(X).

Thus:
@ 0 < RSS(B) < SCT, therefore 0 < R2 < 1,

® R2=1 iff SCR(B)=0 iff Y =Xj.

s0/s4
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4 — Appendices

Matrix calculus

The result can also be found using matrix calculus.
Let v € RY, z € R and M € R*9.

1) differentiation of h(z) = v'z = Yiiviz

dh

9z %
V,h(z) = : = : = v therefore V, (sz) =v.
oh
0z, va
. L B
2) differentiation of h(z) = z' Mz = 3°7,_, ziM;z;
BN T Mgt X Mz
V.h(z) = :
o S Mujzi+ Ly Miaz

therefore V. (z"Mz) = (M +M")z.

s1/58




Matrix calculus (cont'd)

Application to the minimization of the least squares criterion.
Recall that
RSS(8) = BTXTX5 — 2YTX5 + YTY
Thus we have
VsRSS(8) = 2XTX5-2XTY = 2 (X" x8-X"Y),
and finally:

~ ~ 1
V4RSS(B) =0 = ;a:(g‘g) XTy.

52/s4

Data standardization
Let X = (X1,...,X,) be an n-sample taking values in RP.
Data standardization consists in transforming X to X as follows:
Xi(j) _ *g')

YU _
X = 5,('1.)

) SUs S S

where 79 and 5,(;’.) are the sample average and standard deviation
of the j-th variable, respectively:

X9 — %zn:x}’),
i=1
i D ; s
() = L5200 3.
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Student's t distribution 7 (k)

Definition of 7(k), k integer > 1
Let U and V be two RVs such that
> U~ .#(0,1)
> Vo~ x3(k)
» U and V are independent
then T = —L follows a Student’s t distribution with k degrees of freedom.

iz
Properties Probability density function
T(k) = #(0,1) o = L TC2 (1 . i)fi
Exercise : prove it. " Vkr F(g) k
Mean Variance

> for k> 2, Ex(T) =0 > for k>3, vari(T) = %5

se/5e




