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Lecture 4/9
Hypothesis testing

Course objectives

» make (binary) decisions through hypothesis testing,
» choose and construct a test,

» define and compute risks of error of the first and second kind.
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Lecture outline

1 — Examples and first definitions

2 — Parametric tests

3 — Goodness-of-fit testing: Pearson’s y? test
4 — Standard exercises (with solutions)

5 — Annexes
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1 — Examples and first definitions
1.1 — Two introductory examples
1.2 — Risks associated to a test



Lecture outline

1 — Examples and first definitions
1.1 — Two introductory examples



Example: component reliability
Reminder: Xi,..., X, id £(9), 6 > 0.
Problem

The manufacturer considers offering a one-year warranty. ..
m is it a good idea ?
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Example: component reliability
Reminder: Xi,..., X, id £(9), 6 > 0.
Problem

The manufacturer considers offering a one-year warranty. ..
m is it a good idea ?

Formalization

The manufacturer considers that it is a “good idea"” if:

the return rate is lower than 10%

)
Pp(X1 <1)=1-exp(—6) <0.1

)
0 <by=— |n(0.9)

a/a2



Example: component reliability

Therefore, the manufacturer wants to know if 6 < g or 6 > 0.

m hypothesis to be tested: Hp : 6 > 6
(component quality is not sufficient)
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Example: component reliability

Therefore, the manufacturer wants to know if 6 < g or 6 > 0.

m hypothesis to be tested: Hp : 6 > 6
(component quality is not sufficient)

Making (binary) decisions from data

We want to evaluate the “compatibility” between Hy and x:

» if a strong incompatiblity is detected,
- Hp is rejected (and the warranty proposed);

> otherwise, Hy is accepted.

Note the asymmetry between the two scenarios
(Ho = is retained by default)

Hypothesis tests make it possible to formalize this decision making.
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.
> X1,...,X,,E</V(0,a(2)) (o0 known; n =10, o9 = 2.5)
» hypothesis to be tested — Hp : 6 = 0y (fixed),

> alternative hypothesis — H; : 6 = 0; (fixed, and 0y < 01).
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.
> X1,...,anq</1/(0,a§) (o0 known; n =10, o9 = 2.5)
» hypothesis to be tested — Hp : 6 = 6y (fixed),

» alternative hypothesis — H; : 6 = 0; (fixed, and 6y < 61).

Approach. Making a decision about Hp means estimating if it is
» either true ™ § =0,

> or false ™ §=1.

Constraint. We want § to be such that, if § = 6y (Hp true),
Py, (0 =1) =5% (= «).
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.
> X1,...,anq</1/(0,a§) (o0 known; n =10, o9 = 2.5)
» hypothesis to be tested — Hp : 6 = 6y (fixed),

» alternative hypothesis — H; : 6 = 0; (fixed, and 6y < 61).

Approach. Making a decision about Hp means estimating if it is
» either true ™ § =0,

> or false ™ §=1.

Constraint. We want § to be such that, if § = 6y (Hp true),
Py, (0 = 1) =5% (= «).

Intuitive construction of a test: § = 15,
> where t is chosen such that Py, (6 = 1) = Py, (X > t) = 5%.
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If Ho is true (6 = 6g): X ~ A (90, U—ng) , therefore
t = fo+do9s 5
where g, is the .#°(0,1) quantile of order r.
061

0.5

N (90, ”i)

0.4
Numerical app.

031

021

0o t
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If Hy is true (0 = 01): X ~ A <61, U—ng) , therefore

Py, (6= 0) =Py, (X < 1) = o (54

where ® is the cdf of the .47(0, 1) distribution.

0.6
o5} o2 : o2
Numerical app.
03 7 t=1.30
Vn 0L =2

.l 18.8%
011 {%

0 f

0o t 6;
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Lecture outline

1 — Examples and first definitions

1.2 — Risks associated to a test



How to formulate an hypothesis testing problem

Recall that we have a statistical model parameterized by 6 :

pX {]P%, eee}.

Statistical hypothesis

A statistical hypothesis is represented by a subset of 27X, and thus
by a subset of ©.

Notation. Let ©; C © denote the subset representing H;
w H;:0 €O

Parametric / non-parametric test
A testing problem is called parametric if © is finite-dimensional.
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How to formulate an hypothesis testing problem (cont'd)

Null hypothesis
We call the null hypothesis the hypothesis Hp : 6 € ©g

» that we “want to test”, and

> that will be retained “by default” unless it is clearly at odds
with the data.

Legal analogy: presumption of innoncence
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How to formulate an hypothesis testing problem (cont'd)

Null hypothesis

We call the null hypothesis the hypothesis Hp : 6 € ©g
> that we “want to test”, and
> that will be retained “by default” unless it is clearly at odds
with the data.

Legal analogy: presumption of innoncence

Alternative hypothesis

We call alternative hypothesis the hypothesis H; : § € ©;
» that will be chosen if Hy is rejected.
> We assume that ©1 N Oy = @.

Remark : we can assume wlog that ©o U ©; = ©.
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Examples of parametric tests

Example 1.
> X1, X, Xy S E(6), with 6 € © = [0, +o0],

> Og={0 >0t} ©1=1{6 <0} with Oy > 0 a given threshold.
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Examples of parametric tests

Example 1.

> X1, Xo,. .., Xn S E(B), with 6 € © = [0, +00],

> Og={0>6h}; ©1={6 < b} with 6y > 0 a given threshold.

Example 2. Same example, with :
» O = {0} (singleton) ; ©1 = {6 # o},
> or Oy = {90}; 0. = {9 < 90}.
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Examples of parametric tests

Example 1.
> X1, Xo,. .., Xn S E(B), with 6 € © = [0, +00],

> Og={0>6h}; ©1={6 < b} with 6y > 0 a given threshold.

Example 2. Same example, with :
» O = {6} (singleton) ; ©1 = {6 # o},
> or Oy = {90}; 0. = {9 < 90}.

Definitions: simple / composite hypotheses

An hypothesis H; is called simple if ©; is a singleton.
Otherwise, it is called composite.
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Other examples of (non-parametric) tests

Goodness-of-fit tests for a distribution or family of distributions
>

Other types of tests
> testing the independence of two variables
> testing the symmetry of a distribution
> ...
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Test procedures

Definition: test (procedure)

A test is a statistic § = §(X) with values in {0, 1}:

0: X ~ {0,1},
{0 if Hy is accepted,

X

1 if it is rejected (in favour of Hy).
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Test procedures

Definition: test (procedure)
A test is a statistic § = §(X) with values in {0, 1}:
0: X ~ {0,1},

{0 if Hy is accepted,

x
B 1 if it is rejected (in favour of Hy).

Definition: critical region of a test

The critical region %5 of a test ¢ is the region of rejection

Hs = {x € X suchthat §(x)=1}.
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Quantifying the risks of error

Definition: risk (of error) of the first kind

We call the risk of the first kind, or risk of type | error, the
probability of rejecting Hy when it is true :

Py(5 =1) = Eg(8), 6 € Oy.

(A This risk depends on the value of 8, for 8 € ©q.)
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Quantifying the risks of error

Definition: risk (of error) of the first kind

We call the risk of the first kind, or risk of type | error, the
probability of rejecting Ho when it is true :

P9(5 = 1) = E9(5), 0 € ©y.

(A This risk depends on the value of 6, for 8 € ©q.)

Definition: risk (of error) of the second kind

We call the risk of the second kind, or risk of type Il error, the
probability of accepting Hy when it is false :

P9(5 = 0) =1- E@((s), 0 € O;.

(Note the asymmetry of terminology
— more emphasis is put on Ho.)

14/42



Definition: power of a test

We define power as the probability to reject Hy when it is wrong:
PQ((S = 1) = E@((s), 0 € O;.

Remark: equal to “1 - risk of type Il error”.

15/42



Definition: power of a test

We define power as the probability to reject Hy when it is wrong:
P9(5 = 1) = E@((;), 0 € O;.

Remark: equal to “1 - risk of type Il error”.

Usual approach’ for the construction of tests.
Let 0 < v < 1 be a level of risk. We will look for tests s.t.

> VO € O, P9(6 = 1) < q;
m control of the risk of type | errors.
The test § is said to have level (at most) .

> VO € ©1, Py(6d = 1) “as large as possible”;
s capacity to reject Hy when it is false.

Typical values: « = 5%, 1%, 1%e. .. t a.k.a. Neyman's
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Back to the introductory example

» type | error: blue area

> type |l error: red area

0.6

0.5

0.4

0.3

0.2

0.1

(00, %)

go

Jn
18.8%,

A (6:1,%)

Numerical app.
0o =0,t=1.30
0 =2

o

t 91‘

Probability density function of X under Hy and H;

16/42



Definition: size of a test
We say that ¢ has a level exactly a, or size a, if

sup Py (0 =1) = a.
0€O©o
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Definition: size of a test
We say that 0 has a level exactly «, or size «, if

sup Py (0 =1) =«
(AS(SL

Definition: comparing two tests

Let 6 and ¢’ be two tests with a level (at most) . We say that ¢’
is uniformly more powerful than ¢ if

Ve O, Pyp(d'=1) > Py(6=1).
(Some authors require a strict inequality at one or all 6 € ©1.)

Remarks :
» this is a partial order on power functions,

» whenever possible, we will look for the uniformly most powerful (UMP)
test at level « (i.e., a test with «, that is uniformly more powerful than
all other tests with level ).
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Lecture outline

2 — Parametric tests
2.1 — Simple null vs simple alternative
2.2 — Composite hypotheses
2.3 — Asymptotic tests



Lecture outline

2 — Parametric tests
2.1 — Simple null vs simple alternative



Likelihood ratio test

Assume two simple hypotheses : ©g = {6} et ©1 = {61}.
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Likelihood ratio test
Assume two simple hypotheses : ©g = {6p} et ©1 = {01 }.

Denote by £ : (6, x) — L(6,x) the likelihood functionf.

Definition: likelihood ratio test
We call the likelihood ratio (LR) test the test

sR _ J1f TR > c,
0 otherwise,

built using the likelihood ratio statistic:

T 1t can be proved that the family {PBKD s ]P)g(l} is always dominated (Radon-Nikodym).
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Fundamental result

Let a € (0,1).

Theorem: Neyman-Pearson “lemma”

Assume that there exists® a threshold ¢ = ¢, such that

» the associated LR test 6'R has a level exactly a
(i.e., has size ).

@ Always true if the cdf of TLR is continuous.
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Fundamental result

Let a € (0,1).

Theorem: Neyman-Pearson “lemma’

Assume that there exists® a threshold ¢ = ¢, such that
> the associated LR test 6'R has a level exactly o
(i.e., has size ).
Then 'R is most powerful® at the level :

> for any test § with a level (at most) a,
SR is more powerful than 9.

m The LR test is optimal in this setting.

@ Always true if the cdf of TLR is continuous.

T No need to specify “uniformly” since Hi is simple.
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Back to the Gaussian example

Likelihood ratio :

1 21 (Xi—01)
TLR _ (V2mog)" eXp( 20'(2)
1 ep(— 1, (Xi—00)?
(V2mog)" 20‘5
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Back to the Gaussian example

Likelihood ratio :

1 2 (Xi—01)
TR _  (roor eXp( 202
ey
(yﬁf;oo)" 200

LR test at level a: since 61 > g, we have

MR=1 «— TR> ¢, —= T=X>1,

m the test that was constructed in introduction is optimal.
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Test statistic and p-value
The result of a test can be expressed using the concept of p-value.
Definition: p-value
Let T be the test statistic of a test of the form 6 = 11~ .

Definition. We call p-value the statistic
pval (x) = Py, (T(X) > T(x))

taking values in (0, 1).
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Test statistic and p-value
The result of a test can be expressed using the concept of p-value.
Definition: p-value
Let T be the test statistic of a test of the form 6 = 11~ .

Definition. We call p-value the statistic
pval (x) = Py, (T(X) > T(x))

taking values in (0,1). A Function of the datal!
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Test statistic and p-value
The result of a test can be expressed using the concept of p-value.
Definition: p-value
Let T be the test statistic of a test of the form 6 = 11~ .

Definition. We call p-value the statistic
pval (x) = Py, (T(X) > T(x))

taking values in (0, 1).

Let Fg denote the cdf of T under Hy. Then:

pval(x) = 1— Fo(T(x)).
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Interpretation of the p-value

Assume that Fy is continuous and strictly increasing:

Va € (0,1), 3ty €R, 0 =17, has level exactly «
Proposition

Hp is rejected at the levela < T >1t, < pval <a.

t, is called the critical value for the test statistic T.
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Interpretation of the p-value
Assume that Fy is continuous and strictly increasing:

Va € (0,1), 3Tty €R, §=17sy, has level exactly «
Proposition

Hp is rejected at the levela < T >t, < pval<a.

t, is called the critical value for the test statistic T.

Interpretation: p-value = mesure of evidence against Hy

p-value evidence against

pval < 0.01 very strong evidence
0.01 < pval < 0.05 | strong evidence
0.05 < pval < 0.10 | weak evidence

0.1 < pval no evidence

22/42



Back to the Gaussian example, where T(X) = X

04f Hp rejected

0.2

04f Ho accepted

.l a =0.233
° T(x) = ta

0.4- Hy accepted

021

a = 0.05

b0 T(x)ta
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Back to the Gaussian example, where T(X) = X

04r Ho rejected

04f Ho accepted: pval = 0.233
.l a =0.233
° T(x) = ta
04f Hp accepted
021

a = 0.05

0

b0 T(x)ta

(pval is the maximal level o at which Hp is accepted.)
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Lecture outline

2 — Parametric tests

2.2 — Composite hypotheses



Examples of problems with composite hypotheses

Simple null / composite alternative
> O ={0} / ©1=1{0 >0} (one-sided test),
» O ={0} /©1={0#06} (two-sided test),
> ...
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Examples of problems with composite hypotheses

Simple null / composite alternative
> O ={0} /] ©1={0 >0} (one-sided test),
» O ={0} /©1={0#6} (two-sided test),
> ...

Composite null / composite alternative
> Og={0<bh} /©1={0 >0y} (one-sided test),
> O = {1 =po} [ O1={n=m},
where 6 = (u, 02) with unknown o2 (nuisance parameter),
> Oy = {01 =9} /07 = (V) £ )},
where 6 € © = R? (egality of two parameters),
> ...



Differences with the case of simple hypotheses
» Test with a level (at most) «, when ©g is composite :

Ve B©p, Pp(0=1) < a < supP(d=1) < a.
[USISH
S~—— —

size of the test
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Differences with the case of simple hypotheses
» Test with a level (at most) «, when ©g is composite :

VO €Oy, Py(0=1) < a & supPy(d=1) < a.
[USIS]
—_

size of the test
» If ©; is composite, the power is a function of § € ©1 :

el - [0’ 1]
0 — P@ (5 = 1) .
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Differences with the case of simple hypotheses

» Test with a level (at most) «, when ©g is composite :

VO €Oy, Py(0=1) < a & supPy(d=1) < a.

[USIS]
—_———

size of the test

> If ©; is composite, the power is a function of § € ©1 :

©; — [0,1]
0 — Pg(5:1).

» p-value for a test of the form 6 = 11~ :

pval = sup (1— Fp(T)).
(4SSN

where Fy is the cdf of T under Py.
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Back to the Gaussian example / testing the mean

» Simple hypothesis testing

H029:90/H129:91, with 6y < 61

» Reminder of the optimal test.

5(X)=1 < X >to, with ty =0+ q1_a—2

vn

Following the Neyman-Pearson lemma, § is UMP among tests
of level a.
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Back to the Gaussian example / testing the mean

» Simple hypothesis testing

H0:9:90/H129161, with 6y < 61

» Reminder of the optimal test.

— X 00
5(&) = 1 < X > ta, Wlth ta = 90 + ql_a%
Following the Neyman-Pearson lemma, § is UMP among tests

of level a.

» Analysis of the test. ¢ is the same for any 6; > 6 (it only
depends on « and 6p); therefore § is also UMP for a test of

the form:
H019:90/H129>90.
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Back to the Gaussian example / testing the mean

» Simple hypothesis testing

H029:90/H129:€1, with 6y < 61

» Reminder of the optimal test.

5(X)=1 < X >to, with ty =0+ q1_a—2
Vvn
Following the Neyman-Pearson lemma, ¢ is UMP among tests

of level a.

» Analysis of the test. ¢ is the same for any 6; > 6 (it only
depends on « and 6p); therefore § is also UMP for a test of

the form:
H029:90/H129>90.

It can be proved that ¢ is also UMP for a test of the form:
Ho:0<6y/ Hi:0> 80

26/42



Lecture outline

2 — Parametric tests

2.3 — Asymptotic tests



id
Context : Xi, Xp,... ~ Py

When the distribution of T,(X,,) is hard to determine

m» yse of the limit distribution for n — oo.
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id
Context : Xi, Xp,... ~ Py

When the distribution of T,(X,,) is hard to determine

m yse of the limit distribution for n — oco.
Example: component reliability

Ra,n = {Kn such that Tn(in) =Xp > fa,”}'
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iid

Context : Xi,X5,... ~ Py

When the distribution of T,(X,,) is hard to determine

m yse of the limit distribution for n — oco.
Example: component reliability
Ra.n = {x, such that Tp(x,) = X > tan}

with %, , chosen in such a way that :

lim Pgy (Ta(X,) > fan) = @
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Context : Xi, Xp,... “Nd Py

When the distribution of T,(X,,) is hard to determine

m yse of the limit distribution for n — co.
Example: component reliability
Ra.n = {x, such that Tp(x,) = X > tan}
with £, , chosen in such a way that :

lim Po, (Tn(X,) > fan) = .

n—o0
By the CLT under Hy : +/n ()?,, — %) LN <0, 6—12> therefore
0

1 . 1
00 Qoﬁqlfu,

o ,n —

where g, is the .47(0, 1) quantile of order r.
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Example: component reliability (cont'd)

18 ~ta,n (exact) |
= ta,n (asymptotique)
16 | ]
14 ta.n and T, n 1
computed for o = 0.05
12 |
I r . ——
0o log(0.9) ‘

sample size n
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Lecture outline

3 — Goodness-of-fit testing: Pearson’s y? test



Goodness-of-fit test for a single distribution
Context: X, Xo, ... 'S P with unknown P (can be anything)
w § =P, © = { probability distributions on (R, B(R)) }.
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Goodness-of-fit test for a single distribution

Context: X, Xo, ... 'S P with unknown P (can be anything)

m § =P, © = { probability distributions on (R, B(R)) }.

Statistical hypotheses to be tested

For a given probability Py, we consider the hypotheses:

HoZP:PQ
Hy : P # Py
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Goodness-of-fit test for a single distribution

Context: X, Xo, ... 'S P with unknown P (can be anything)

m § =P, © = { probability distributions on (R, B(R)) }.

Statistical hypotheses to be tested

For a given probability Py, we consider the hypotheses:

HoZP:PQ
H; : P # Py

Component reliability example:

» The component manufacturer knows, from past analyses, that the
component lifetimes should follow a £(6o) distribution.

» In order to check that the production line is still properly working, he
wants to test if Ho : P = £(0o) is still true.
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Pearson’s y? test statistic
Let (A1,...,Ak) be a partition of Py's support, and
> N:(Nl,...,NK) with
Nie =" 114,(X;) — observed frequencies (counts),

> pP= (p17"’7pK) with
pk = Po (X1 € Ax) — npx = expected frequ. under Hp.
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Pearson’s y? test statistic
Let (A1,...,Ak) be a partition of Py's support, and
> N:(Nl,...,NK) with
Ne =" ,14,(X;) — observed frequencies (counts),

> pP= (plv"‘7pK) with
pk = Po (X1 € Ak) — npx = expected frequ. under Hp.

Proposition

Under hypothesis Hy, N follows a multinomial Multi(n, p)
distribution, and

K
Z Nk*npk d (K —1).

n—o00
k=1

(x? distribution with K — 1 degrees of freedom)
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Pearson's x? test statistic
Let (A1,...,Ak) be a partition of Py's support, and
> N:(Nl,...,NK) with
Ne =" ,14,(X;) — observed frequencies (counts),

> pP= (plv"‘7pK) with
pk = Po (X1 € Ak) — npx = expected frequ. under Hp.

Proposition

Under hypothesis Hy, N follows a multinomial Multi(n, p)
distribution, and

K
Z k_npk d X2(K_]-)‘

n—00
k=1

(x? distribution with K — 1 degrees of freedom)
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Pearson’s chi-squared test (x?)

Recall that we want to test Hy : P = Py against H; : P # Py.

31/42



Pearson’s chi-squared test (x?)
Recall that we want to test Hy : P = Py against H; : P # Py,.

Chi-square (x?) goodness-of-fit test

Let 0 < a < 1 and let T denote Pearson’s statistic:

K
N, — 2
= (Nk — npic)”
—1 NPk
The chi-squared (x?) test is

6 - ]1T>t(w

where t, is the x?(K — 1) quantile of order 1 — a.

A In practice: choose Ay, ..., Ak such that npx > 5, Vk.
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The x? test for goodness-of-fit: “component reliability”

frequencies
- - n n
o ()] o (6)] o [¢)]

[ ] Observed frequencies Ny
* expected frequencies n py

.

o

12 15 18 24 30
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The x? test for goodness-of-fit: “component reliability”

251
w0l * [] Observed frequencies N
2 . * expected frequencies n py
c 15
(] .
= L]
310 -
o= .
5 .
0 "—r—.—'—.—‘
0 3 6 9 12 15 18 24 30
X
class | [0,3[ | [3,6[ | [6,9] | [9,12[ | [12,15] | [15,18[ | [18, oo
Ny 19 23 12 4 9 7 19
npx | 25.90 | 19.2 14.2 10.5 7.8 5.8 11.6
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The x? test for goodness-of-fit: “component reliability”

25r
wsol * [] Observed frequencies N
2 . * expected frequencies n py
c 15
(] .
= L]
310 -
o= .
5 .
0 "—f—.—’—.—‘
0 3 6 9 12 15 18 24 30
X
class | [0,3[ | 3.6[ | 16,9 | [9,12[ | [12,15[ | [15,18[ | [18, 00l
Ny 19 23 12 4 9 7 19
npx | 25.90 | 19.2 14.2 10.5 7.8 5.8 11.6
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The x? test for goodness-of-fit: “component reliability”

Numerical application. n =100, T(x,) = 12.24

0.14r )
—x*(6) pdf
012t
Numerical application
017 T(x,) = 12.24
0.08+ pval = 0.057
0.06F
0.04F
0.02} a=5%
0 : : : *+ T
0 3 6 9T(x,) ta15 18

=12.24 =126
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The x? test for goodness-of-fit: “component reliability”

Numerical application. n =100, T(x,) = 12.24

0.141

0.12r

0.1r

0.08 1

0.06 |

0.04

0.02 -

—x*(6) pdf

Numerical application
T(x,) = 12.24
pval = 0.057

oa=5%

e

9T(x,) ta1s 18
=12.24 =126

- at the 5% level, Hy is accepted
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More on goodness-of-fit testing. . .

» Pearson’s x? test for a family of distributions

> extension of the test just presented to the case where some
parameters must be estimated under Hy
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More on goodness-of-fit testing. . .

» Pearson’s x? test for a family of distributions

> extension of the test just presented to the case where some
parameters must be estimated under Hy

» Kolmogorov-Smirnov test

» another test, based on the cumulative distribution function,
» without requiring the choice of a partition

34/42
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4 — Standard exercises (with solutions)
4.1 — Questions
4.2 — Solutions



Lecture outline

4 — Standard exercises (with solutions)
4.1 — Questions



Exercise 1 (Testing a proportion)

In the context of a coin toss game, we want to test if the coin is
balanced.

Questions

@ Propose a statistical experiment to test this hypothesis.
Specify the underlying statistical model, and define the null
and alternative hypotheses.

@ Propose a test at the asymptotic level a.
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Exercise 2 (Component reliability testing)

A manufacturer wishes to offer its customers a guarantee on light
bulbs. It is assumed that the lifetime of a bulb follows an
exponential distribution with parameter 6 > 0.

Questions

Propose a UMP test for the following test:
Ho:©9={0 > 6y}  (bulb insufficiently reliable)
Hi:©1={0 <0y} (bulb sufficiently reliable)

with a given threshold 6y > 0.
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Lecture outline

4 — Standard exercises (with solutions)

4.2 — Solutions



Solution of exercise 1

i) n "coin toss" experiments are carried out, and the outcomes are
modeled as n independent, identically distributed random variables
Xi, ..., X, according to a Ber(6) distribution.

We want to test if

1 1
Ho: 6= 5 i.e., ©g= {2} (simple hypothesis),
vs.

Hy: 6=+ % therefore ©; = ]O, % {U} %, 1[ (two-sided hypothesis).
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Solution of exercise 1

ii) Let 6, = X, be the empirical mean of the sample. By direct
application of CLT, it follows that:

QA,, —0 d
6(1 —0)/n n—oo
To construct a two-sided asymptotic test of level «, we place

ourselves under Hy. We obtain the following convergence in
distribution:

N(0,1)

2v/n <én - ;) —4 5 N(0,1).

n—o0

We consider a critical region of the form: 2y/n|6, — 1| > c,.
where ¢, is chosen so that the Type | error rate is equal to «.
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Solution of exercise 1

ii) Let
1
I|mIP’< ‘>ca>:a.
n—o0

We deduce that ¢, = qi-g, the (1 — $)-th quantile of a standard
normal distribution A/(0,1).

We reject the null hypothesis Hy in favor of H; at the level o when:

1
v
Thus, the difference between én and 1/2 is considered significant at

the level o if it exceeds qi-g3

S
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Solution of exercise 2

Let X1, ..., Xo S £(6)

Ho:©9={0 > 6y} (component is not reliable enough)
Hi:©1={0 <0y} (component is reliable enough)
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Solution of exercise 2

Let X1, ..., Xo S £(6)

Ho:©9={0 > 6y} (component is not reliable enough)
Hi:©1={0 <0y} (component is reliable enough)

By the Neyman-Pearson lemma, the LRT is UMP for

Hp : ©g = {90} / Hy:061 = {(9]_}7 with 61 < 6y
07 exp (=61 311 Xi)
08 exp (—bo 311 X;)

- (%)n exp ((0o — 61) 211 Xi)

TLR(K) —
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Solution of exercise 2

We then define the critical region of this test at level a:
Ra={x | TR > iR} = {x | T() =x>t}.

Reminder : if § = 6, then 6oX ~ I'(p = n, A\ = n).

1
> t(x,n - 0o d1—a

where g, is the ['(p = n, A = n) quantile of order r.
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Solution of exercise 2

We then define the critical region of this test at level a:
Ra={x | TR(x)> R} = {x | T(x) =% > ta}.

Reminder : if § = 6, then 6oX ~ I'(p = n, A\ = n).
L7 toz,n = % dl1—a

where g, is the ['(p = n, A = n) quantile of order r.

This test is also UMP for its composite version, indeed :
» the likelihood ratio test is the same for any #; < 6,
» the function 6 — Py(d = 1) is strictly \..
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Solution of exercise 2

We then define the critical region of this test at level a:
Ra={x | TR(x)> R} = {x | T(x) =% > ta}.

Reminder : if § = 6, then 6oX ~ I'(p = n, A\ = n).
L7 ta,n = % dl1—a

where g, is the ['(p = n, A = n) quantile of order r.

This test is also UMP for its composite version, indeed :
» the likelihood ratio test is the same for any 61 < 6,
» the function 6 — Py(d = 1) is strictly \,.

Summary. The test that we have built is UMP at the level a.
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Solution of exercise 2

0157
['(p=n,\= nb)
Numerical application:
0.1} n=10
0o = — log(0.9)
t, = 14.01
005" x =10.15
pval = 0.47
Pgo()_( > ta) =5%
0 | )
0 X to 20 30

w at the 5% level, Hp is not rejected
m out of precaution, the manufacturer will not propose a warranty ,, .,
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Proof

Note that ¢, is, by construction, such that
Fo(ta) =1-—oa.
Thus we have

0=1 & T>t,
= Fo(T) > Fo(ta) =1—«
& pval < o



Generalized likelihood ratio test

It enables the construciton of a test when ©g and/or ©; are/is
composites.

> Test statistic :

T(X) — SUP6661 E(e' K) )
- Sup@E@o 5(9'K)

» The test is not, in general, uniformly most powerful (UMP) at
level .



The multinomial family of distributions

Parameters
» ninteger, > 1,

> K integer, > 2 and p € (Rj)K such that Eszl prk = 1.

Let nq, ..., nk entiers > 0 such that Zle ng=n:

|
If N~ Multi(n, p), P(Ny = ny,..., Nk = ng) = =

n
n1!...nK!

Moments
> expectation : E,(N) = np

» covariance matrix : cov,(N;, N;) = n(p;d;; — pip;j)

Marginal distributions

» Marginal distributions are binomial : N; ~ Bin(n, p;).

pit ...

Nk

Pk



The x? family of distributions

Parameters
» g integer, > 1 : number of “degrees of freedom”.

Definition. If Yi,..., Y], I A4(0,1) then

T= ZZ:I Y/<2 ~ X2(q)
The 2 distribution is a special case of the I' distribution :
2 q 1
x“(q) (p > 2>
m The properties of the x? follow from those of the I distribution.

Expectation Variance

> E(T)=g¢q » varg(T) =2q



The 2 test with parameter estimation
Does the lifetime of a component follow an exponential
distribution?

w Null hypothesis Hy: 30 > 0, P = Py = £(0).



The 2 test with parameter estimation
Does the lifetime of a component follow an exponential
distribution?

w Null hypothesis Hy: 360 > 0, P =Py = £(0).

Two-step approach

@ Construction of a consistent estimator of  — 0.
@® Test the goodness of fit to P;.



The 2 test with parameter estimation
Does the lifetime of a component follow an exponential
distribution?

w Null hypothesis Hy: 360 > 0, P =Py = £(0).
Two-step approach

@ Construction of a consistent estimator of  — 0.
@® Test the goodness of fit to P;.

Details
Pk = Pé (Xl S Ak)

o~ (M= np)?
T(Kn)zz LSl d x?(K — 1 — q) with g = card(f)

n n—o0
—1 Pk



The x? test with parameter estimation
Does the lifetime of a component follow an exponential
distribution?

w Null hypothesis Hy: 360 > 0, P =Py = £(0).

Two-step approach

@ Construction of a consistent estimator of  — 0.
@® Test the goodness of fit to P;.

Details
Pk = Pé (Xl S Ak)

o~ (M= np)?
T(X,) = Z k nﬁkpk njoo x?(K — 1 — q) with g = card(f)
k=1

Rejection of Hp if T(x,) > ti—a (ti—o being the quantile of order
1—-aofa x?(K—1- q) distribution).



The Kolmogorov-Smirnov test
Goodness-of-fit test for a single distribution : Hp : P = Py.

Kolmogorov-Smirnov distance

The Kolmogorov-Smirnov distance is defined as

N

D, = sup |Fn(x) — Fo(x)|,

with Fo the cdf of Pg and F,, the empirical cdf: I:_,,(x) = % Py Tix<x}

Kolmogorov-Smirnov test, with asymptotic level «

Under the null hypothesis Hy, if Fg is continuous:
T(X,) = VnD, —— K,
n—o0
where K is the Kolmogorov-Smirnov distribution.

m Ho is rejected if T, > t,, with t, the (1 — a)-quantile of K.



The Kolmogorov-Smirnov test

“Component reliability example™ Hp : P = £(6p) with 6y = 0.1

—F(x) |
0.8 — Fo(x)
=D, = sup,, ]I:_(x) — Fo(x)|
06
Numerical application
0.4r n=30
D,=0.13
02f v/nD, =0.71
% 10 20 30 20 50 60 70 80



The Kolmogorov-Smirnov test

2 -
—pdf of the K distribution
1.5
Numerical application
J/nD, = 0.71
1F pval = 0.69
051
0 + :
0 T(x,) to 1.8 2.4
=0.71 =1.36

wm at the 5% level, Hp is accepted
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