
1/77

Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Ziad Kobeissi, Gilles Faÿ, Laurent Le Brusquet,

Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator

2/77

Lecture 7/9

Classification: logistic regression.

Some models for supervised learning

Course objectives

◮ Classification using logistic regression

◮ Performance metrics for classifiers

◮ Prediction with decision trees

◮ Prediction with neural networks

3/77

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

Lecture outline

1 – Some general notions about classification

1.1 – Introduction

1.2 – Loss functions and associated optimal classifiers

1.3 – Performance metrics

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

Lecture outline

1 – Some general notions about classification

1.1 – Introduction

1.2 – Loss functions and associated optimal classifiers

1.3 – Performance metrics

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

4/77

Mathematical framework and objectives

Notations

◮ (X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y

◮ PX ,Y : unknown distribution on X × Y
◮ X ⊂ R

p, Y = {0, 1, . . . ,K − 1}
◮ unless stated otherwise: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h : x 7→ {0, 1}.

Synonyms: classification function, or “classifier”.

Objectives of this section

◮ introduction to the logistic regression method

◮ definition of relevant risk measures for classification

4/77

Mathematical framework and objectives

Notations

◮ (X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y

◮ PX ,Y : unknown distribution on X × Y
◮ X ⊂ R

p, Y = {0, 1, . . . ,K − 1}
◮ unless stated otherwise: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h : x 7→ {0, 1}.

Synonyms: classification function, or “classifier”.

Objectives of this section

◮ introduction to the logistic regression method

◮ definition of relevant risk measures for classification

4/77

Mathematical framework and objectives

Notations

◮ (X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y

◮ PX ,Y : unknown distribution on X × Y
◮ X ⊂ R

p, Y = {0, 1, . . . ,K − 1}
◮ unless stated otherwise: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h : x 7→ {0, 1}.

Synonyms: classification function, or “classifier”.

Objectives of this section

◮ introduction to the logistic regression method

◮ definition of relevant risk measures for classification

5/77

Example with two explanatory variables (p = 2)

-1 0 1 2 3
-2

-1

0

1

2

3

“Negative” label (0)

“Positive” label (1)

x (1)

x
(2
)

6/77

A taste of things to come: a possible classifier

-1 0 1 2 3
-2

0

2

4

“Negative” label (0)

“Positive” label (1)

Boundary between h = 0 and h = 1

x (1)

x
(2
)

Lecture outline

1 – Some general notions about classification

1.1 – Introduction

1.2 – Loss functions and associated optimal classifiers

1.3 – Performance metrics

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

7/77

Reminder: loss function and risk

Definition: risk (generalization error)

Given a loss function L : Y × Y → R+ and a prediction function

h : X → Y, the risk, or generalization error, is defined as :

R(h) = E (L(Y , h(X))) ,

where the expectation is with respect to (X ,Y).

△! This risk depends on the unknown distribution:

R(h) =

∫∫

X×Y
L(y , h(x)) PX ,Y (dx , dy).

7/77

Reminder: loss function and risk

Definition: risk (generalization error)

Given a loss function L : Y × Y → R+ and a prediction function

h : X → Y, the risk, or generalization error, is defined as :

R(h) = E (L(Y , h(X))) ,

where the expectation is with respect to (X ,Y).

△! This risk depends on the unknown distribution:

R(h) =

∫∫

X×Y
L(y , h(x)) PX ,Y (dx , dy).

8/77

Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h : X → Y from the

instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.

Definition: soft classifier

A soft classifier is a measurable function h : X → [0, 1] from the

instance space to [0, 1].

Given a soft classifier h : X → [0, 1], we can construct a family of hard

classifiers, of the form x 7→ 1h(x)≥δ, for δ ∈ [0, 1].

8/77

Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h : X → Y from the

instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.

Definition: soft classifier

A soft classifier is a measurable function h : X → [0, 1] from the

instance space to [0, 1].

Given a soft classifier h : X → [0, 1], we can construct a family of hard

classifiers, of the form x 7→ 1h(x)≥δ, for δ ∈ [0, 1].

8/77

Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h : X → Y from the

instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.

Definition: soft classifier

A soft classifier is a measurable function h : X → [0, 1] from the

instance space to [0, 1].

Given a soft classifier h : X → [0, 1], we can construct a family of hard

classifiers, of the form x 7→ 1h(x)≥δ, for δ ∈ [0, 1].

9/77

Commonly used loss functions

Definition: 0/1 loss for hard classification

L : Y × Y → R+

(y , ỹ) 7→ L(y , ỹ) = 1y 6=ỹ .

◮ R(h) = P (Y 6= h(X)) is the probability of misclassification.

Definition: Logarithmic loss for soft classification

L : Y × [0, 1] → R+

(y , ỹ) 7→ L(y , ỹ) =

{

− ln(ỹ) if y = 1,

− ln(1− ỹ) if y = 0.

9/77

Commonly used loss functions

Definition: 0/1 loss for hard classification

L : Y × Y → R+

(y , ỹ) 7→ L(y , ỹ) = 1y 6=ỹ .

◮ R(h) = P (Y 6= h(X)) is the probability of misclassification.

Definition: Logarithmic loss for soft classification

L : Y × [0, 1] → R+

(y , ỹ) 7→ L(y , ỹ) =

{

− ln(ỹ) if y = 1,

− ln(1− ỹ) if y = 0.

10/77

Commonly used loss functions (cont’d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

ỹ

L
(y
,ỹ

)

y = 0
y = 1

Remark: for both loss functions,

◮ L(y , ỹ) ≥ 0,

◮ L(y , ỹ) = 0 ⇔ ỹ = y .

11/77

Optimal classification functions

Proposition

h : X → Y is optimal for the 0/1 loss iff, PX -ae,

◮ h(x) = 1 when P (Y = 1 | X = x) > 1
2 ,

◮ h(x) = 0 when P (Y = 1 | X = x) < 1
2 .

with the notation P (A | X = x) = E (1A | X = x).

➠ proof: see PC 7

For instance, x 7→ 1P(Y=1|X=x)≥ 1
2

is optimal.

Remark: a more general formula can be proved for an asymmetric loss

(L(0, 1) 6= L(1, 0)). See PHC’s lecture notes.

12/77

Optimal classification functions (cont’d)

Proposition

h : X → [0, 1] is optimal for the logarithmic loss iff, PX -ae,

h(x) = P (Y = 1 | X = x) .

➠ proof: exercise 1

Remark: since Y takes its values in {0, 1}, we have:

P (Y = 1 | X = x) = E (Y | X = x) .

☞ soft classification + logarithmic loss ≈ regression.

(Hence the name of the method that we are about to study!)

12/77

Optimal classification functions (cont’d)

Proposition

h : X → [0, 1] is optimal for the logarithmic loss iff, PX -ae,

h(x) = P (Y = 1 | X = x) .

➠ proof: exercise 1

Remark: since Y takes its values in {0, 1}, we have:

P (Y = 1 | X = x) = E (Y | X = x) .

☞ soft classification + logarithmic loss ≈ regression.

(Hence the name of the method that we are about to study!)

Lecture outline

1 – Some general notions about classification

1.1 – Introduction

1.2 – Loss functions and associated optimal classifiers

1.3 – Performance metrics

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

13/77

Confusion matrix & associated definitions

Truth

Negative (N)

Truth

Positive (P)

Prediction

Negative

True Negative

(TN)

False Negative

(FN)

Prediction

Positive

False Positive

(FP)

True Positive

(TP)

True Positive Rate

TPR =
TP

P
=

TP

TP + FN

(also called sensitivity)

True Negative Rate

TNR =
TN

N
=

TN

TN + FP

(also called specificity)

13/77

Confusion matrix & associated definitions

Truth

Negative (N)

Truth

Positive (P)

Prediction

Negative

True Negative

(TN)

False Negative

(FN)

Prediction

Positive

False Positive

(FP)

True Positive

(TP)

True Positive Rate

TPR =
TP

P
=

TP

TP + FN

(also called sensitivity)

True Negative Rate

TNR =
TN

N
=

TN

TN + FP

(also called specificity)

14/77

Confusion matrix & associated definitions (cont’d)

Alternative terminology, from the field of signal processing:

◮ 1− TPR is the miss rate (false negative rate)

◮ 1− TNR is the false alarm rate (false positive rate)

Applications to soft classifiers

◮ Reminder: to any given soft classifier h, we can associate a

family of hard classifiers

hδ : x 7→ 1h(x)≥δ, δ ∈ [0, 1] .

◮ The value of δ impacts the TNR/TPR trade-off

◮ when δ ր, TNR ր, and TPR ց

14/77

Confusion matrix & associated definitions (cont’d)

Alternative terminology, from the field of signal processing:

◮ 1− TPR is the miss rate (false negative rate)

◮ 1− TNR is the false alarm rate (false positive rate)

Applications to soft classifiers

◮ Reminder: to any given soft classifier h, we can associate a

family of hard classifiers

hδ : x 7→ 1h(x)≥δ, δ ∈ [0, 1] .

◮ The value of δ impacts the TNR/TPR trade-off

◮ when δ ր, TNR ր, and TPR ց

15/77

ROC curve (Receiver Operating Characteristic)
◮ a tool for decision support (choice of δ)

◮ a tool useful for classifier comparison

◮ associated definition: AUC = Area Under the Curve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ = 0.1 δ = 0.5

δ = 0.9AUC = 0.98

True Negative Rate

T
ru

e
P
o
si
ti
ve

R
at

e

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

2.1 – A linear model for soft classification

2.2 – Training: selecting the coefficients

2.3 – Back to the introductory example

2.4 – Extensions

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

2.1 – A linear model for soft classification

2.2 – Training: selecting the coefficients

2.3 – Back to the introductory example

2.4 – Extensions

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

16/77

A linear model for soft classification

Consider a (binary) classification problem

◮ X ⊂ R
p, Y = {0, 1}.

Choose the logarithmic loss:

◮ the goal is to approximate the optimal soft classifier

h∗(x) = P (Y = 1 | X = x) .

Logistic regression consists in using classifiers of the form

h(x) = s
(

β0 + β⊤x
)

,

with β0 ∈ R, β ∈ R
p, and s(t) = et/(1 + et) the logistic function.

16/77

A linear model for soft classification

Consider a (binary) classification problem

◮ X ⊂ R
p, Y = {0, 1}.

Choose the logarithmic loss:

◮ the goal is to approximate the optimal soft classifier

h∗(x) = P (Y = 1 | X = x) .

Logistic regression consists in using classifiers of the form

h(x) = s
(

β0 + β⊤x
)

,

with β0 ∈ R, β ∈ R
p, and s(t) = et/(1 + et) the logistic function.

16/77

A linear model for soft classification

Consider a (binary) classification problem

◮ X ⊂ R
p, Y = {0, 1}.

Choose the logarithmic loss:

◮ the goal is to approximate the optimal soft classifier

h∗(x) = P (Y = 1 | X = x) .

Logistic regression consists in using classifiers of the form

h(x) = s
(

β0 + β⊤x
)

,

with β0 ∈ R, β ∈ R
p, and s(t) = et/(1 + et) the logistic function.

17/77

The logistic function

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

t = β0 + β⊤x

p
=

s(
t)

➠ defines a correspondence: β0 + β⊤x ∈ R←→ proba p ∈ (0, 1)

Also known as the sigmoid function.

18/77

A linear model for soft classification (cont’d)

Equivalently,

logit (h(x)) = β0 + β⊤x

with
logit : (0, 1) → R

p 7→ ln

(
p

1− p

)

the logit function.

Properties

◮ The logistic function s is a strictly increasing, C∞ bijection

from R to (0, 1).

◮ The logit function is the inverse function: it is strictly

increasing and C∞ from (0, 1) to R.

18/77

A linear model for soft classification (cont’d)

Equivalently,

logit (h(x)) = β0 + β⊤x

with
logit : (0, 1) → R

p 7→ ln

(
p

1− p

)

the logit function.

Properties

◮ The logistic function s is a strictly increasing, C∞ bijection

from R to (0, 1).

◮ The logit function is the inverse function: it is strictly

increasing and C∞ from (0, 1) to R.

19/77

The logit function

0 0.2 0.4 0.6 0.8 1

-5

0

5

p

logit function

logit(0.5) = 0

➠ defines a correspondence: proba p ∈ (0, 1)←→ β0 + β⊤x ∈ R

20/77

From soft to hard classification

Given a soft classifier of the form

h(x) = s
(

β0 + β⊤x
)

,

and a decision threshold δ ∈ [0, 1], we set:

hδ(x) = 1h(x)≥ δ.

☞ hδ separates the classes in X by an affine hyperplane:

hδ(x) = 1 ⇐⇒ β0 + β⊤x ≥ logit(δ)

For the 0/1 loss, the value δ = 1
2 is generally used.

20/77

From soft to hard classification

Given a soft classifier of the form

h(x) = s
(

β0 + β⊤x
)

,

and a decision threshold δ ∈ [0, 1], we set:

hδ(x) = 1h(x)≥ δ.

☞ hδ separates the classes in X by an affine hyperplane:

hδ(x) = 1 ⇐⇒ β0 + β⊤x ≥ logit(δ)

For the 0/1 loss, the value δ = 1
2 is generally used.

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

2.1 – A linear model for soft classification

2.2 – Training: selecting the coefficients

2.3 – Back to the introductory example

2.4 – Extensions

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

21/77

Minimization of the empirical risk

Simplification of notations: x →
(

1

x

)

and β →
(

β0

β

)

➠ h(x) =
exp

(
β⊤x

)

1 + exp (β⊤x)

The parameter β is selected using empirical risk minimization.:

β̂ = argminβ∈Rp+1

1

n

n∑

i=1

L (Yi , h(Xi)) ,

where L denotes the logarithmic loss.

21/77

Minimization of the empirical risk

Simplification of notations: x →
(

1

x

)

and β →
(

β0

β

)

➠ h(x) =
exp

(
β⊤x

)

1 + exp (β⊤x)

The parameter β is selected using empirical risk minimization.:

β̂ = argminβ∈Rp+1

1

n

n∑

i=1

L (Yi , h(Xi)) ,

where L denotes the logarithmic loss.

22/77

Minimization of the empirical risk (cont’d)

Equivalence between empirical risk minimization and MLE

∑n
i=1 L(yi , h(xi)) = − ln

(
∏n

i=1(h(xi))
yi (1− h(xi))

1−yi

︸ ︷︷ ︸

)

Interpretation: β̂ is the MLE of the parametric model

Yi |Xi
iid∼ Ber(h(Xi)), h(x) =

exp
(
β⊤x

)

1 + exp (β⊤x)
, β ∈ R

p+1.

22/77

Minimization of the empirical risk (cont’d)

Equivalence between empirical risk minimization and MLE

∑n
i=1 L(yi , h(xi)) = − ln

(
∏n

i=1(h(xi))
yi (1− h(xi))

1−yi

︸ ︷︷ ︸

likelihood L(β;X ,Y)

)

Interpretation: β̂ is the MLE of the parametric model

Yi |Xi
iid∼ Ber(h(Xi)), h(x) =

exp
(
β⊤x

)

1 + exp (β⊤x)
, β ∈ R

p+1.

23/77

Log-likelihood

Log-likelihood (see PC)

ℓ(β) = lnL(β;X ,Y)

=
n∑

i=1

{

Yi β
⊤Xi − ln

(

1 + exp(β⊤Xi)
)}

Maximization of ℓ

Using a numerical optimization algorithm

➠ for instance, the Newton-Raphson algorithm

23/77

Log-likelihood

Log-likelihood (see PC)

ℓ(β) = lnL(β;X ,Y)

=
n∑

i=1

{

Yi β
⊤Xi − ln

(

1 + exp(β⊤Xi)
)}

Maximization of ℓ

Using a numerical optimization algorithm

➠ for instance, the Newton-Raphson algorithm

23/77

Log-likelihood

Log-likelihood (see PC)

ℓ(β) = lnL(β;X ,Y)

=
n∑

i=1

{

Yi β
⊤Xi − ln

(

1 + exp(β⊤Xi)
)}

Maximization of ℓ

Using a numerical optimization algorithm

➠ for instance, the Newton-Raphson algorithm

24/77

Reminder: Newton-Raphson algorithm in one dimension

Let φ : R→ R. We want β that satisfies φ(β) = 0

Newton-Raphson algorithm is iterative:

◮ initialization: β(0)

◮ iteration: β(k+1) = β(k) − φ(β(k))
φ′(β(k))

0 0.5 1 1.5
-1

-0.5

0

0.5

φ(β)

β(0) β(1) β(2)

β⋆

25/77

Maximization of ℓ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:

◮ φ→ ∇βℓ

◮ φ′ → ∇2
βℓ

The iteration follows:

β(k+1) = β(k) −
[

∇2
βℓ
(

β(k)
)]−1

∇βℓ
(

β(k)
)

Under the following conditions:

◮ ∇
2
βℓ (.) is Lipschitz continuous,

◮ ∇
2
βℓ

(

β(0)
)

is invertible

◮ h0 =
[

∇
2
βℓ

(

β(0)
)]−1

∇βℓ
(

β(0)
)

small enough†,

the algorithm converges to a point β⋆ such that ∇βℓ (β
⋆) = 0.

† cf. “Kantorovich theorem” on wikipedia for a more precise statement

25/77

Maximization of ℓ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:

◮ φ→ ∇βℓ

◮ φ′ → ∇2
βℓ

The iteration follows:

β(k+1) = β(k) −
[

∇2
βℓ
(

β(k)
)]−1

∇βℓ
(

β(k)
)

Under the following conditions:

◮ ∇
2
βℓ (.) is Lipschitz continuous,

◮ ∇
2
βℓ

(

β(0)
)

is invertible

◮ h0 =
[

∇
2
βℓ

(

β(0)
)]−1

∇βℓ
(

β(0)
)

small enough†,

the algorithm converges to a point β⋆ such that ∇βℓ (β
⋆) = 0.

† cf. “Kantorovich theorem” on wikipedia for a more precise statement

25/77

Maximization of ℓ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:

◮ φ→ ∇βℓ

◮ φ′ → ∇2
βℓ

The iteration follows:

β(k+1) = β(k) −
[

∇2
βℓ
(

β(k)
)]−1

∇βℓ
(

β(k)
)

Under the following conditions:

◮ ∇
2
βℓ (.) is Lipschitz continuous,

◮ ∇
2
βℓ

(

β(0)
)

is invertible

◮ h0 =
[

∇
2
βℓ

(

β(0)
)]−1

∇βℓ
(

β(0)
)

small enough†,

the algorithm converges to a point β⋆ such that ∇βℓ (β
⋆) = 0.

† cf. “Kantorovich theorem” on wikipedia for a more precise statement

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

2.1 – A linear model for soft classification

2.2 – Training: selecting the coefficients

2.3 – Back to the introductory example

2.4 – Extensions

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

26/77

LR performed on the example with 2 explanatory variables

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

“Negative” label
“Positive” label

x (1)

x
(2
)

Decision boundary for δ = 0.5
Wrong “Positive” pred.
Wrong “Negative” pred.

Prediction errors:

◮ “Negative” examples predicted as “Positive”

◮ “Positive” examples predicted as “Negative”

27/77

Influence of δ

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4
Negative
Positive

x (1)x (1)x (1)
x
(2
)

x
(2
)

x
(2
)

δ = 0.1 δ = 0.5 δ = 0.9

FP
FN

28/77

ROC curve (Receiver Operating Characteristic)
◮ a tool for decision support (choice of δ)

◮ a tool useful for classifier comparison

◮ associated definition: AUC = Area Under the Curve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ = 0.1 δ = 0.5

δ = 0.9AUC = 0.98

True Negative Rate

T
ru

e
P
o
si
ti
ve

R
at

e

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

2.1 – A linear model for soft classification

2.2 – Training: selecting the coefficients

2.3 – Back to the introductory example

2.4 – Extensions

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

29/77

Extension: large number of variables

How to handle the case where p is large

The log-likelihood is penalized:

◮ L1 : β̂ = argmaxβ
(
ℓ(β)− λ‖β‖2

)

◮ L2 : β̂ = argmaxβ (ℓ(β)− λ‖β‖1)

➠ see Lecture 8

p is “large” if p ≫ n, or even simply p ≈ n

30/77

Extension: more than two classes

Multiclass classification

Let {0, 1, . . . ,K − 1} be the set of labels (classes), K ≥ 3.

One class is chosen as the reference class and K − 1 binary logistic

regressions are performed (here class “0” was chosen):







ln
(

P(Y=1|X=x)
P(Y=0|X=x)

)

= β1,0 + β⊤
1 x

...

ln
(

P(Y=K−1|X=x)
P(Y=0|X=x)

)

= βK−1,0 + β⊤
K−1x

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

3.1 – Two introductory examples

3.2 – Recursive partitioning

3.3 – Prediction function

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

3.1 – Two introductory examples

3.2 – Recursive partitioning

3.3 – Prediction function

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

31/77

Binary classification: spam detection
Data collected over 4601 e-mails

◮ explanatory variables: relative freq. of 57 of the most used

words

◮ variable to be explained: label “Spam” or “Email”

➠ categorical variable (binary in this example)

Source: The Elements of Statistical Learning, Springer (for next slide also)

32/77

33/77

Regression tree: “Ozone” example

Simplified example (for the sake of visualization)

◮ predict variable 03 (quantitative variable)

◮ from variables MOCAGE and TEMP

Vocabulary. When the variable to be explained is

◮ quantitative → regression tree

◮ categorical → classification tree

33/77

Regression tree: “Ozone” example

Simplified example (for the sake of visualization)

◮ predict variable 03 (quantitative variable)

◮ from variables MOCAGE and TEMP

Vocabulary. When the variable to be explained is

◮ quantitative → regression tree

◮ categorical → classification tree

34/77

40 60 80 100 120 140 160 180 200 220 240

10

15

20

25

30

35

40

Z5Z8 Z9

Z10 Z11

Z12 Z13

1
=26.2

2
=114

3
=33.1

4
=85.8

6
=128

7
=209

T
E
M

P

MOCAGE

35/77

Regression tree: “Ozone” example

50

40

100

150

250

O
3

30

200

200

TEMP

250

150

MOCAGE

300

20 100

50

10 0

80

100

120

140

160

180

200

220

240

260

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

3.1 – Two introductory examples

3.2 – Recursive partitioning

3.3 – Prediction function

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

36/77

Recursive partitioning: general principle

Objectives

Construct a partition of X from the data (X ,Y).

Principle: iterative construction of a sequ. (Pm)m≥1 of partitions,

◮ Pm =
{
Z

(m)
1 , . . . ,Z

(m)
m

}
, where partition Pm contains m subsets.

Initialization: P1 = {X}.

Pm → Pm+1: split a subset Z
(m)
km

along one of the variables:

◮ Z̃1 = Z
(m)
km
∩
{
x such that x (jm) ≤ δm

}

◮ Z̃2 = Z
(m)
km
∩
{
x such that x (jm) > δm

}

(the index jm and the threshold δm still have to be specified)

36/77

Recursive partitioning: general principle

Objectives

Construct a partition of X from the data (X ,Y).

Principle: iterative construction of a sequ. (Pm)m≥1 of partitions,

◮ Pm =
{
Z

(m)
1 , . . . ,Z

(m)
m

}
, where partition Pm contains m subsets.

Initialization: P1 = {X}.

Pm → Pm+1: split a subset Z
(m)
km

along one of the variables:

◮ Z̃1 = Z
(m)
km
∩
{
x such that x (jm) ≤ δm

}

◮ Z̃2 = Z
(m)
km
∩
{
x such that x (jm) > δm

}

(the index jm and the threshold δm still have to be specified)

37/77

An example with p = 2

1○ subset Z
(m)
km

4○ subset Z̃1

4○ subset Z̃2

2○

3○

x (1)

x (2) Iteration Pm → Pm+1:

◮ 1○ subset Z
(m)
km
∈ Pm

◮ 2○ variable x (jm) (here jm = 2)

◮ 3○ threshold δm

◮ 4○ construction of Z̃1 and Z̃2

After splitting Z
(m)
km

, we get:

Pm+1 = Pm
⋃ {

Z̃1, Z̃2

}

\
{

Z
(m)
km

}

37/77

An example with p = 2

1○ subset Z
(m)
km

4○ subset Z̃1

4○ subset Z̃2

2○

3○

x (1)

x (2) Iteration Pm → Pm+1:

◮ 1○ subset Z
(m)
km
∈ Pm

◮ 2○ variable x (jm) (here jm = 2)

◮ 3○ threshold δm

◮ 4○ construction of Z̃1 and Z̃2

After splitting Z
(m)
km

, we get:

Pm+1 = Pm
⋃ {

Z̃1, Z̃2

}

\
{

Z
(m)
km

}

38/77

Choice of km, jm and δm

Let D(Z) be a measure of the heterogeneity of a subset Z .

Example (for a quantitative label y)

D (Z) =
∑

i∈Z

(yi − ȳZ)
2

where ȳZ is the empirical mean computed over Z .

km, jm and δm are jointly chosen in such a way that

D
(

Z
(m)
km

)

− D(Z̃1)− D(Z̃2) is as large as possible

➠ largest reduction of heterogeneity

(Recall that Z̃1 and Z̃2 are the subsets obtained by splitting Z
(m)
km

)

38/77

Choice of km, jm and δm

Let D(Z) be a measure of the heterogeneity of a subset Z .

Example (for a quantitative label y)

D (Z) =
∑

i∈Z

(yi − ȳZ)
2

where ȳZ is the empirical mean computed over Z .

km, jm and δm are jointly chosen in such a way that

D
(

Z
(m)
km

)

− D(Z̃1)− D(Z̃2) is as large as possible

➠ largest reduction of heterogeneity

(Recall that Z̃1 and Z̃2 are the subsets obtained by splitting Z
(m)
km

)

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

3.1 – Two introductory examples

3.2 – Recursive partitioning

3.3 – Prediction function

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

39/77

Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on

the elements of the partition:

hβ(x) =
m∑

k=1

βk1Z
(m)
k

(x).

Remark: for a given partition, this is a linear model with respect to

the m variables 1
Z

(m)
k

(x).

39/77

Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on

the elements of the partition:

hβ(x) =
m∑

k=1

βk1Z
(m)
k

(x).

Remark: for a given partition, this is a linear model with respect to

the m variables 1
Z

(m)
k

(x).

40/77

Estimation of the coefficients

Principle: to estimate β(m) =
(

β
(m)
1 , . . . β

(m)
m

)

,

◮ choose a loss function L(y , hβ(x)),

◮ then minimize the empirical risk.

Simplification:

minβ R̂(hβ) = minβ
∑n

i=1 L(yi , hβ(xi))

= minβ
∑m

k=1

∑

i∈Z
(m)
k

L(yi , βk)

=
∑m

k=1 minβk

∑

i∈Z
(m)
k

L(yi , βk)

Consequence: ∀k , β̂(m)
k = argminβk

∑

i∈Z
(m)
k

L(yi , βk).

40/77

Estimation of the coefficients

Principle: to estimate β(m) =
(

β
(m)
1 , . . . β

(m)
m

)

,

◮ choose a loss function L(y , hβ(x)),

◮ then minimize the empirical risk.

Simplification:

minβ R̂(hβ) = minβ
∑n

i=1 L(yi , hβ(xi))

= minβ
∑m

k=1

∑

i∈Z
(m)
k

L(yi , βk)

=
∑m

k=1 minβk

∑

i∈Z
(m)
k

L(yi , βk)

Consequence: ∀k , β̂(m)
k = argminβk

∑

i∈Z
(m)
k

L(yi , βk).

40/77

Estimation of the coefficients

Principle: to estimate β(m) =
(

β
(m)
1 , . . . β

(m)
m

)

,

◮ choose a loss function L(y , hβ(x)),

◮ then minimize the empirical risk.

Simplification:

minβ R̂(hβ) = minβ
∑n

i=1 L(yi , hβ(xi))

= minβ
∑m

k=1

∑

i∈Z
(m)
k

L(yi , βk)

=
∑m

k=1 minβk

∑

i∈Z
(m)
k

L(yi , βk)

Consequence: ∀k , β̂(m)
k = argminβk

∑

i∈Z
(m)
k

L(yi , βk).

41/77

Two important special cases

Regression with the quadratic loss

β̂
(m)
k = argminβk

∑

i∈Z
(m)
k

(yi − βk)
2 = y

Z
(m)
k

Binary classification with the logarithmic loss

Soft classification:

β̂
(m)
k = argminβk∈[0,1]

∑

i∈Z
(m)
k

(−yi ln(βk)− (1− yi) ln(1− βk))

=
1

card
(

Z
(m)
k

) · card
(

i ∈ Z
(m)
k such that yi = 1

)

Hard classification: threshold at δ = 1
2 (cf. logistic regression).

41/77

Two important special cases

Regression with the quadratic loss

β̂
(m)
k = argminβk

∑

i∈Z
(m)
k

(yi − βk)
2 = y

Z
(m)
k

Binary classification with the logarithmic loss

Soft classification:

β̂
(m)
k = argminβk∈[0,1]

∑

i∈Z
(m)
k

(−yi ln(βk)− (1− yi) ln(1− βk))

=
1

card
(

Z
(m)
k

) · card
(

i ∈ Z
(m)
k such that yi = 1

)

Hard classification: threshold at δ = 1
2 (cf. logistic regression).

42/77

Choosing the size m of the partition

◮ m can either be given beforehand (∼ prior knowledge)

◮ or estimated by cross-validation.

“Ozone” example

◮ Regression of O3 with p = 7 explanatory variables

◮ m is chosen by leave-one-out cross-validation

0 10 15 20 25 30
26

27

28

29

30

31

32

33

cross-validation

m
m̂ = 5

√
M
S
E

42/77

Choosing the size m of the partition

◮ m can either be given beforehand (∼ prior knowledge)

◮ or estimated by cross-validation.

“Ozone” example

◮ Regression of O3 with p = 7 explanatory variables

◮ m is chosen by leave-one-out cross-validation

0 10 15 20 25 30
26

27

28

29

30

31

32

33

cross-validation

m
m̂ = 5

√
M
S
E

43/77

Regression tree: “Ozone” example

44/77

More trees. . .

Disadvantages of decision trees

◮ high sensitivity to the sample (x , y)

◮ piecewise constant prediction on each subset (by construct.)

(not satisfactory if the optimal prediction function is smooth)

Extensions

◮ aggregation of decisions tree models

➠ Random forests

◮ weighted sum of weak classifiers

➠ Boosting (AdaBoost)

44/77

More trees. . .

Disadvantages of decision trees

◮ high sensitivity to the sample (x , y)

◮ piecewise constant prediction on each subset (by construct.)

(not satisfactory if the optimal prediction function is smooth)

Extensions

◮ aggregation of decisions tree models

➠ Random forests

◮ weighted sum of weak classifiers

➠ Boosting (AdaBoost)

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

4.1 – Neurons

4.2 – Multi-layer perceptrons

4.3 – Example

4.4 – Other architectures

5 – Standard exercices (with solutions)

6 – Appendices

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

4.1 – Neurons

4.2 – Multi-layer perceptrons

4.3 – Example

4.4 – Other architectures

5 – Standard exercices (with solutions)

6 – Appendices

45/77

The (multipolar) biological neuron: axons, dendrites. . .

Image: Bruce Blaus, https://commons.wikimedia.org, CC BY 3.0

“A multipolar neuron is a type of neuron that possesses a single axon and many dendrites
(and dendritic branches), allowing for the integration of a great deal of information

from other neurons.” (https://fr.wikipedia.org/wiki/Neurone_multipolaire)

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://fr.wikipedia.org/wiki/Neurone_multipolaire

46/77

The artificial neuron

Definition: neuron (McCulloch and Pitts, 1943)†

In statistical learning, a neuron with p variables (inputs) is a

function, generally non-linear†, of the form

h(x) = ϕ (w x + b) , x ∈ R
p,

where

◮ ϕ is an increasing R→ R function;

◮ w ∈ R
1×p, and b ∈ R.

Vocabulary

◮ ϕ: activation function,

◮ w1, . . . , wp: weights,

◮ b: bias (nothing to do with the bias of an estimator).

† The original neuron of McCulloch & Pitts (1943) specifically used ϕ = sgn as an activation function.

‡ We will see later a situation where a linear neuron (ϕ = Id) is used.

46/77

The artificial neuron

Definition: neuron (McCulloch and Pitts, 1943)†

In statistical learning, a neuron with p variables (inputs) is a

function, generally non-linear†, of the form

h(x) = ϕ (w x + b) , x ∈ R
p,

where

◮ ϕ is an increasing R→ R function;

◮ w ∈ R
1×p, and b ∈ R.

Vocabulary

◮ ϕ: activation function,

◮ w1, . . . , wp: weights,

◮ b: bias (nothing to do with the bias of an estimator).

† The original neuron of McCulloch & Pitts (1943) specifically used ϕ = sgn as an activation function.

‡ We will see later a situation where a linear neuron (ϕ = Id) is used.

47/77

The artificial neuron: illustration (p = 5)

Σ ϕ y

+1

x (1)

w1
x (2)

w2

x (3)
w3

x (4)

w4

x (5)

w5
b

48/77

Activation functions

Discontinuous activation functions (not recommended†):

◮ Heaviside function: ϕ(v) = 1v≥0, or

◮ sign function: ϕ(v) = sgn(v) = 1v>0 − 1v<0.

“S-shaped” functions, a.k.a. sigmoids:

◮ logistic‡ : ϕ(v) = 1
1+e−v = 1

2 + 1
2 tanh

(
v
2

)
, or

◮ tanh : ϕ(v) = tanh(v) = ev−e−v

ev+e−v .

The ReLU (Rectified Linear Unit) function:

◮ ϕ(v) = max(0, v).

† Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.

‡ The word “sigmoid” sometimes refers to this particular function.

48/77

Activation functions

Discontinuous activation functions (not recommended†):

◮ Heaviside function: ϕ(v) = 1v≥0, or

◮ sign function: ϕ(v) = sgn(v) = 1v>0 − 1v<0.

“S-shaped” functions, a.k.a. sigmoids:

◮ logistic‡ : ϕ(v) = 1
1+e−v = 1

2 + 1
2 tanh

(
v
2

)
, or

◮ tanh : ϕ(v) = tanh(v) = ev−e−v

ev+e−v .

The ReLU (Rectified Linear Unit) function:

◮ ϕ(v) = max(0, v).

† Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.

‡ The word “sigmoid” sometimes refers to this particular function.

49/77

Activation functions (cont’d)

Image: C. C. Aggarwal (2018). Neural networks and Deep Learning, Springer.

50/77

Remark: relation with logistic regression

Remark. With the logistic activation function (sigmoid),

y = ϕ(v) =
1

1 + e−v
⇔ v = ln

(
y

1− y

)

.

Since v = wx + b, we recover for h(x) the form of the logistic

regression predictor.

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

4.1 – Neurons

4.2 – Multi-layer perceptrons

4.3 – Example

4.4 – Other architectures

5 – Standard exercices (with solutions)

6 – Appendices

51/77

Multi-layer perceptron: definition

Let p, K be non-zero integers.

Definition: multi-layer perceptron† (MLP)

We call multi-layer perceptron with M + 1 layers, p variables (input)

and K responses (output), any function R
p → R

K of the form

h =
(

ϕ
M
◦ gM

)

◦ · · · ◦
(

ϕ
j
◦ gj
)

◦ · · · ◦
(

ϕ
1
◦ g1

)

,

where‡

◮ gk : Rmk−1 → R
mk is affine,

◮ ϕ
k
: Rmk → R

mk represents the action coordinate by

coordinate of an increasing function ϕk : R→ R.

◮ m0,m1, . . . ,mM : non-zero integers, m0 = p, mM = K .

† Rosenblatt’s original perceptron (1957) did not include hidden layers (M = 1). It was using the
activation function h(x) = sgn(x) as McCulloch and Pitts (1943), and weights wj ∈ {−1,+1,−∞}.

‡ there will be one exception this rule later (“softmax” layer)

52/77

Multi-layer perceptron: definition (cont’d)

Vocabulary: layers of variables

◮ z[0] = x : input layer,

◮ z[k] =
(
ϕ
k
◦ gk

)(
z[k−1]

)
, 1 ≤ k < M: hidden layers,

◮ z[M] = y =
(
ϕ
M
◦ gM

)(
z[M−1]

)
: output layer.

Remark. Let us write

gk
(
z[k−1]

)
= Wkz[k−1] + bk .

Then, for all j ∈ {1, . . . ,mk} we recognize a neuron:

z
(j)
[k] = ϕk

(

wk,j z[k−1] + b
(j)
k

)

,

where wk,j = e⊤j Wk is the j-th row of Wk .

➠ Vocabulary: weights, bias, activation function.

52/77

Multi-layer perceptron: definition (cont’d)

Vocabulary: layers of variables

◮ z[0] = x : input layer,

◮ z[k] =
(
ϕ
k
◦ gk

)(
z[k−1]

)
, 1 ≤ k < M: hidden layers,

◮ z[M] = y =
(
ϕ
M
◦ gM

)(
z[M−1]

)
: output layer.

Remark. Let us write

gk
(
z[k−1]

)
= Wkz[k−1] + bk .

Then, for all j ∈ {1, . . . ,mk} we recognize a neuron:

z
(j)
[k] = ϕk

(

wk,j z[k−1] + b
(j)
k

)

,

where wk,j = e⊤j Wk is the j-th row of Wk .

➠ Vocabulary: weights, bias, activation function.

53/77

Multi-layer perceptron: illustration
Example of a multi-layer perceptron with p = 3 inputs, K = 3 outputs,

and two hidden layers of sizes m1 = 5 and m2 = 4.

x(1)

x(2)

x(3)

z
(1)
[1]

z
(2)
[1]

z
(3)
[1]

z
(4)
[1]

z
(5)
[1]

z
(1)
[2]

z
(2)
[2]

z
(3)
[2]

z
(4)
[2]

y (1)

y (2)

y (3)

ϕ
1
◦ g1 ϕ

2
◦ g2

ϕ
3
◦ g3

m0 = p = 3

m1 = 5

m2 = 4

m3 = K = 3

Vocabulary: fully connected, feed-forward neural network

54/77

Output layer: activation function

The output layer must be adapted to the problem at hand. . .

Regression. Y ⊂ R, or more generally R
K .

◮ Perceptron with K outputs

◮ Activation function: ϕM = Id.

◮ Thus the last transformation (ϕ
M
◦ gM) is linear (affine).

Classification. K classes, Y = [0, 1]K (“soft” classification).

◮ Perceptron with K outputs, with mM−1 = mM = K .

◮ Exception to the definition ➠ the “softmax” layer:

z
(j)
[M] =

exp
(

z
(j)
[M−1]

)

∑p
j ′=1 exp

(

z
(j ′)
[M−1]

) ,
K∑

j=1

z
(j)
[M] = 1.

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer.

54/77

Output layer: activation function

The output layer must be adapted to the problem at hand. . .

Regression. Y ⊂ R, or more generally R
K .

◮ Perceptron with K outputs

◮ Activation function: ϕM = Id.

◮ Thus the last transformation (ϕ
M
◦ gM) is linear (affine).

Classification. K classes, Y = [0, 1]K (“soft” classification).

◮ Perceptron with K outputs, with mM−1 = mM = K .

◮ Exception to the definition ➠ the “softmax” layer:

z
(j)
[M] =

exp
(

z
(j)
[M−1]

)

∑p
j ′=1 exp

(

z
(j ′)
[M−1]

) ,
K∑

j=1

z
(j)
[M] = 1.

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer.

54/77

Output layer: activation function

The output layer must be adapted to the problem at hand. . .

Regression. Y ⊂ R, or more generally R
K .

◮ Perceptron with K outputs

◮ Activation function: ϕM = Id.

◮ Thus the last transformation (ϕ
M
◦ gM) is linear (affine).

Classification. K classes, Y = [0, 1]K (“soft” classification).

◮ Perceptron with K outputs, with mM−1 = mM = K .

◮ Exception to the definition ➠ the “softmax” layer:

z
(j)
[M] =

exp
(

z
(j)
[M−1]

)

∑p
j ′=1 exp

(

z
(j ′)
[M−1]

) ,
K∑

j=1

z
(j)
[M] = 1.

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer.

55/77

Training: loss functions and regularization

The most commonly used loss functions† are

◮ regression: the quadratic loss
◮ L(y , ỹ) = (y − ỹ)2 for the single-output case,

◮ L(y , ỹ) = ‖y − ỹ‖2 if K > 1.

◮ (soft) classification: the logarithmic loss
◮ For all j ∈ {1, . . . ,K}, we have y (j) ∈ {0, 1} and ỹ (j) ∈ [0, 1].

◮ L(y , ỹ) = −∑K

j=1
y (j) ln

(
ỹ (j)
)
.

Nb parameters is high ⇒ regularize to avoid over-fitting

◮ penalization, for instance L1 (LASSO) or L2 (ridge);

◮ other (not covered): early stopping, drop out. . .

† for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

55/77

Training: loss functions and regularization

The most commonly used loss functions† are

◮ regression: the quadratic loss
◮ L(y , ỹ) = (y − ỹ)2 for the single-output case,

◮ L(y , ỹ) = ‖y − ỹ‖2 if K > 1.

◮ (soft) classification: the logarithmic loss
◮ For all j ∈ {1, . . . ,K}, we have y (j) ∈ {0, 1} and ỹ (j) ∈ [0, 1].

◮ L(y , ỹ) = −∑K

j=1
y (j) ln

(
ỹ (j)
)
.

Nb parameters is high ⇒ regularize to avoid over-fitting

◮ penalization, for instance L1 (LASSO) or L2 (ridge);

◮ other (not covered): early stopping, drop out. . .

† for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

55/77

Training: loss functions and regularization

The most commonly used loss functions† are

◮ regression: the quadratic loss
◮ L(y , ỹ) = (y − ỹ)2 for the single-output case,

◮ L(y , ỹ) = ‖y − ỹ‖2 if K > 1.

◮ (soft) classification: the logarithmic loss
◮ For all j ∈ {1, . . . ,K}, we have y (j) ∈ {0, 1} and ỹ (j) ∈ [0, 1].

◮ L(y , ỹ) = −∑K

j=1
y (j) ln

(
ỹ (j)
)
.

Nb parameters is high ⇒ regularize to avoid over-fitting

◮ penalization, for instance L1 (LASSO) or L2 (ridge);

◮ other (not covered): early stopping, drop out. . .

† for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

56/77

Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)

R̂n(θ) =
1

n

n∑

i=1

L (Yi , hθ(Xi)) ,

where θ denotes the parameters of the model (weights, biases).

➠ Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

◮ computational burden when n is large: random “mini-batchs”

➠ stochastic gradient method (not covered);

◮ recursive computation of the gradient of a composition of fcts

➠ back-propagation method (not covered).

56/77

Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)

R̂n(θ) =
1

n

n∑

i=1

L (Yi , hθ(Xi)) ,

where θ denotes the parameters of the model (weights, biases).

➠ Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

◮ computational burden when n is large: random “mini-batchs”

➠ stochastic gradient method (not covered);

◮ recursive computation of the gradient of a composition of fcts

➠ back-propagation method (not covered).

56/77

Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)

R̂n(θ) =
1

n

n∑

i=1

L (Yi , hθ(Xi)) ,

where θ denotes the parameters of the model (weights, biases).

➠ Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

◮ computational burden when n is large: random “mini-batchs”

➠ stochastic gradient method (not covered);

◮ recursive computation of the gradient of a composition of fcts

➠ back-propagation method (not covered).

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

4.1 – Neurons

4.2 – Multi-layer perceptrons

4.3 – Example

4.4 – Other architectures

5 – Standard exercices (with solutions)

6 – Appendices

57/77

Example: MNIST

70 000 images† of size 28 × 28 pixels (256 gray levels)

Problem: multi-class classification (10 classes);

training: 60 000 images / test: 10 000 images

Source: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

58/77

Example: MNIST

➠ see Jupyter / Python / Scikit-Learn notebook

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

4.1 – Neurons

4.2 – Multi-layer perceptrons

4.3 – Example

4.4 – Other architectures

5 – Standard exercices (with solutions)

6 – Appendices

59/77

Convolutional neural networks (CNNs)

Schematic diagram of a typical CNN

Image: Aphex34, https://commons.wikimedia.org, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

5.1 – Questions

5.2 – Solutions

6 – Appendices

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

5.1 – Questions

5.2 – Solutions

6 – Appendices

60/77

Exercise 1 (Optimal classifier with the logarithmic loss)

➠ solution

Question

Show the proposition stated on ➠ slide 12 :

h : X → [0, 1] is optimal for the logarithmic loss iff, PX -ae,

h(x) = P (Y = 1 | X = x) .

61/77

Exercise 2 (Multi-class logistic regression) ➠ solution

When the number of classes K is ≥ 3, the classification problem is

called Multiclass.

Let {0, 1, . . . ,K − 1} be the set of labels (classes), K ≥ 3.

Binary logistic regression can be extended to multi-class

classification by

◮ selecting a reference class (here, “0”)

◮ performing K − 1 binary logistic regressions:







ln
(

P(Y=1|X=x)
P(Y=0|X=x)

)

= β1,0 + β⊤
1 x

...

ln
(

P(Y=K−1|X=x)
P(Y=0|X=x)

)

= βK−1,0 + β⊤
K−1x

62/77

Exercise 2 (Multi-class logistic regression (cont’d)) ➠ solution

To simplify notation, we’ll assume that the matrix of explanatory

variables contains a constant vector and make the following change:

βk ← (βk,0, βk)

Questions

1 Give the expression of P(Y = k |X = x) from the vectors βk ,

2 Deduce from 1. that the choice of reference class is arbitrary

(it has no influence on the regression model),

3 Express the log-likelihood

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

5.1 – Questions

5.2 – Solutions

6 – Appendices

63/77

Solution of exercise 1 ➠ back to questions

The optimal classifier h⋆ minimizes E (L(Y , h(X))), where the

expectation is taken over (X ,Y).

By conditioning, we have:

E(X ,Y) (L(Y , h(X))) = EX

(
EY |X (L(Y , h(X))|X

)

Thus:

h⋆ = argminh E (L(Y , h(X)))

m
h⋆(x) = argmint∈Y E (L(Y , t) | X = x)

︸ ︷︷ ︸

J (t)

PX -pp.

64/77

Solution of exercise 1 ➠ back to questions

With the logarithmic loss:

J (t) = EY |X (L(Y , t)|X = x)

= P(Y = 1|X = x)L(1, t) + P(Y = 0|X = x)L(0, t)

= P(Y = 1|X = x)(L(1, t)− L(0, t)) + L(0, t)

= P(Y = 1|X = x)(− ln(t) + ln(1− t))− ln(1− t)

65/77

Solution of exercise 1 ➠ back to questions

The minimization of J (t) is achieved by examining the sign of the

derivative of J (t):

J ′(t) = P(Y = 1|X = x)

(

−1

t
− 1

1− t

)

+
1

1− t

= P(Y = 1|X = x)

(

− 1

t(1− t)

)

+
1

1− t

=
1

1− t

(

1− P(Y = 1|X = x)

t

)

For P(Y = 1|X = x) ∈]0, 1[, J ′(t) is thus:

◮ strictly negative for t ∈]0,P(Y = 1|X = x)[,

◮ zero at t = P(Y = 1|X = x),

◮ strictly positive for t ∈]P(Y = 1|X = x), 1[,

66/77

Solution of exercise 1 ➠ back to questions

Conclusion: t = P(Y = 1|X = x) is the unique minimizer on [0, 1]

of the function J (t).

When

◮ P(Y = 1|X = x) = 0, J (t) is minimal at t = 0,

◮ P(Y = 1|X = x) = 1, J (t) est minimal at t = 1.

We conclude that:

1 h⋆ : x 7→ P(Y = 1|X = x) is optimal,

2 h⋆(x) is the unique minimizer of the fonction

J : t 7→ EY |X (L(Y , t)|X = x).

67/77

Solution of exercise 1 ➠ back to questions

In converse : suppose that h optimal.

Let the function:

g(x) = EY /X (L,Y , h(X))/X = x)− EY /X (L,Y , h⋆(X))/X = x)

We have:

◮ EX (g(X)) =
∫

X g(x)dPX = 0 (otherwise, h would not be

optimal),

◮ ∀x , g(x) ≥ 0 by the optimality of h⋆.

Therefore, g = 0 PX − a.e., that is:

P(X ∈ F) = 0 avec F = {x ∈ X t.q. g(x) > 0}

68/77

Solution of exercise 1 ➠ back to questions

h⋆(x) is the unique minimizer of the function

J : t 7→ EY |X (L(Y , t)|X = x), we have:

F = {x ∈ X t.q. h(x) 6= h⋆(x)}

We conclude that h = h⋆ PX − a.e., establishing the desired

equivalence.

69/77

Solution of exercise 2 ➠ back to questions

➊ For all k ∈ {1, . . . ,K − 1}:

P(Y = k |X = x) = exp
(

β⊤
k x
)

P(Y = 0|X = x).

Following
K−1∑

k=0

P(Y = k |X = x) = 1, we have:







P(Y = k |X = x) =
exp

(
β⊤
k x
)

1 +
∑

k ′ 6=0 exp
(
β⊤
k ′x
) , k 6= 0

P(Y = 0|X = x) =
1

1 +
∑

k ′ 6=0 exp
(
β⊤
k ′x
)

(1)

70/77

Solution of exercise 2 ➠ back to questions

➋ Let k̃ 6= 0. Suppose that we select the class k̃ as the reference

and for k 6= k̃ the vector β̃k of the model is given by:

ln




P(Y = k |X = x)

P
(

Y = k̃ |X = x
)



 = β̃⊤
k x , k 6= k̃

Since

ln

(

P(Y=k|X=x)

P(Y=k̃|X=x)

)

= ln

(

P(Y=k|X=x)
P(Y=0|X=x)

P(Y=0|X=x)

P(Y=k̃|X=x)

)

= β⊤
k x − β⊤

k̃
x ,

we have: {
β̃k = βk − β

k̃
, k 6= 0, k 6= k̃

β̃0 = −β
k̃

(2)

71/77

Solution of exercise 2 ➠ back to questions

By using the results of Question ➊, we have that for k 6= k̃ :







P(Y = k |X = x) =
exp

(

β̃⊤
k x
)

1 +
∑

k ′ 6=k̃
exp

(

β̃⊤
k ′x
) , k 6= k̃

P(Y = 0|X = x) =
1

1 +
∑

k ′ 6=k̃
exp

(

β̃⊤
k ′x
)

By substituting β̃k in these equations using the relations (2), we

obtain the equations (1).

Summary: Changing the reference class alters the model’s

parameters (without changing the model itself).

72/77

Solution of exercise 2 ➠ back to questions

➌ To establish the connection with binary logistic regression, we

represent the observation yi ∈ {0, . . . ,K − 1} by the vector

zi ∈ {0, 1}K :

zi ,k =

{

1 if yi = k

0 otherwise

We also denote β the set of vectors β1, . . . , βK−1.

73/77

Solution of exercise 2 ➠ back to questions

We express the likelihood associated with the example (xi , yi):

P
Yi |Xi

β (yi |xi) =

K−1∏

k=0

P
Yi |Xi

β (k |xi)zi,k

= P
Yi |Xi

β (0|xi)1−zi,1−...zi,K−1

(
K−1∏

k=1

P
Yi |Xi

β (k |xi)zi,k
)

= P
Yi |Xi

β (0|xi)
K−1∏

k=1




P
Yi |Xi

β (k |xi)
P
Yi |Xi

β (0|xi)





zi,k

74/77

Solution of exercise 2 ➠ back to questions

Using :

◮ the (K − 1) regression models:

P
Yi |Xi

β (k |xi)
P
Yi |Xi

β (0|xi)
= exp(β⊤

k xi)
zi,k ,

◮ the second equation of (1):

P(Y = 0|X = x) =
1

1 +
∑K−1

k ′=1 exp
(
β⊤
k ′x
) ,

the log-likelihood is expressed as:

ℓ(β) =
K−1∑

k=1

n∑

i=1

zi ,kβ
⊤
k xi − ln

(

1 +
K−1∑

k ′=1

exp
(

β⊤
k ′xi

)
)

Lecture outline

1 – Some general notions about classification

2 – Logistic regression [classification]

3 – Decision trees [regression + classification]

4 – Neural networks [regression + classification]

5 – Standard exercices (with solutions)

6 – Appendices

75/77

Generalized linear models

Definition

The GLM contains all statistical models such that

◮ Y |X follows a distribution from an exponential family:

f Y |X (y |x) = C (η)h(y) exp (ηy) with η = η(x).

◮ g (Eβ(Y |X = x)) = β0 + β⊤x .

Vocabulary. The function g is called the link function.†

Example. Bernoulli distributions form an exponential family.

f (y) = θy (1− θ)1−y

= (1− θ) exp

(

ln

(
θ

1− θ

)

y

)

➠ η = ln

(
θ

1− θ

)

† Let N denote the set of admissible value for η: g is often chosen to be a bijection from N to R.

75/77

Generalized linear models

Definition

The GLM contains all statistical models such that

◮ Y |X follows a distribution from an exponential family:

f Y |X (y |x) = C (η)h(y) exp (ηy) with η = η(x).

◮ g (Eβ(Y |X = x)) = β0 + β⊤x .

Vocabulary. The function g is called the link function.†

Example. Bernoulli distributions form an exponential family.

f (y) = θy (1− θ)1−y

= (1− θ) exp

(

ln

(
θ

1− θ

)

y

)

➠ η = ln

(
θ

1− θ

)

† Let N denote the set of admissible value for η: g is often chosen to be a bijection from N to R.

76/77

Remark: generalized linear models (GLM)

The logistic regression model has the form

◮ Y |X ∼ Ber (Eβ(Y |X)),

◮ g (Eβ(Y |X)) = β0 + β⊤X , with g = logit.

➠ special case of the generalized linear model (GLM)

(g is called link function) ➠ complement

Remark: we have already met another GLM model

◮ Y |X ∼ N
(
Eβ(Y |X), σ2

)

◮ g (Eβ(Y |X)) = β0 + β⊤X with g = Id

76/77

Remark: generalized linear models (GLM)

The logistic regression model has the form

◮ Y |X ∼ Ber (Eβ(Y |X)),

◮ g (Eβ(Y |X)) = β0 + β⊤X , with g = logit.

➠ special case of the generalized linear model (GLM)

(g is called link function) ➠ complement

Remark: we have already met another GLM model

◮ Y |X ∼ N
(
Eβ(Y |X), σ2

)

◮ g (Eβ(Y |X)) = β0 + β⊤X with g = Id

77/77

Example: Yi |Xi
iid∼ Poisson(θi), with ln θi = β0 + β1Xi

Poisson distributions form an exponential family:

f (y) = exp(−θ) θ
y

y !

=
1

y !
exp(−θ) exp(ln(θ)y) ➠ η = ln(θ)

0 0.5 1 1.5 2
0

5

10

15

20

25

x

y

true model

least squares

GLM/Poisson

	1 – Some general notions about classification
	1.1 – Introduction
	1.2 – Loss functions and associated optimal classifiers
	1.3 – Performance metrics

	2 – Logistic regression [classification]
	2.1 – A linear model for soft classification
	2.2 – Training: selecting the coefficients
	2.3 – Back to the introductory example
	2.4 – Extensions

	3 – Decision trees [regression + classification]
	3.1 – Two introductory examples
	3.2 – Recursive partitioning
	3.3 – Prediction function

	4 – Neural networks [regression + classification]
	4.1 – Neurons
	4.2 – Multi-layer perceptrons
	4.3 – Example
	4.4 – Other architectures

	5 – Standard exercices (with solutions)
	5.1 – Questions
	5.2 – Solutions

	6 – Appendices

