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Lecture 1/9

Introduction and point estimation methods

Course objectives

» Introduce statistical inference and illustrate its applications
» Establish the mathematical framework

» Present some commonly used estimation methods
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L ecture outline

1 — Introduction

2 — The mathematical framework of statistical inference
3 — Some (classical) methods for point estimation

4 — Standard exercises

5 — Appendices
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L ecture outline

1 — Introduction




One word, several meanings. ..

» One (or several) statistic(s): numerical indicators, often
simple, computed from data.

Examples : average, standard deviation, median, etc.. ..

» statistics: a mathematical discipline which has several
branches, including

- descriptive statistics,
w statistical inference (part 1 of this course),
m design of experiments,

wh statistical learning (part 2 of this course),
-~

Remark: a mathematical definition of the word “statistic” (first meaning) will
be given later.
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Historical example: the opinion survey case

Desired quantity: descriptive
statistic calculated for the
entire population,

example : mean age, age
distribution, opinion, etc.

sample
data observed for only a few
individuals

A descriptive statistic may be calculated on:
» the entire population — quantity of interest

» a sample — “approximate” value (to be defined)

To infer = to draw conclusions about a population
from data collected on a sample
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Exhaustive census is not statistical inference
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Source : Insee.

Descriptive statistics are useful to “explore” data sets

Goals: obtain numerical summaries (of small dimension)
and/or easily interpretable visualizations, etc.

Note: in France, for municipalities with more than 10,000 inhabitants, the systematic census has been

replaced since 2004 by random (but not IID) sampling of addresses. o/s6

Another example: estimation of a proportion

Context. Consider a box with W white balls and R red balls,
where W and R are unknown.

Goal. Estimate the proportion 6 = WLJFR of white balls.

Data (observations). We perform n draws with replacement
wm for the j-th draw, x; = 1 if the ball is white, 0 otherwise.

Steps to estimate 0

@ statistical modeling
x; realization of a RV X;, with X; id Ber(f),0<60 <1

® inference (here, estimation)
using the data x = (xq, ..., x,) and the statistical model.
w Consider § = L5~ . X (a possible descriptive statistic)

m |s it reasonable to use it as a “substitute’ for the unknown 6
?
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Relation between statistical inference and probability theory

Probability theory provides the foundation for statistical inference:

>

probability theory: a probability space is given;

» statistical inference: several probabilistic models are assumed

possible; we want to extract (from data) information from

data about the underlying probability measure.

lllustration on the “box” example:

Probability Inference
(W and R known) (W and R unknown)

e distribution of the number | e estimate 0:
of white balls after n draws; | e give an interval

ical . ..
tprlcc.:a e distribution of the num- | containing 0;
questions ber of draws to get the first | o decide whether 8 < 0.5
white ball or not.
. for finite n, impossible in gen-
type _Of certain possible in g
conclusions eral to answer with certainty
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Example of questions addressed, in various fields

>

>

Healthcare: identify biomarkers responsible for a disease
using data collected from cohorts.

Insurance: evaluate the risk of insolvency of an insurance
company.
Industry: control the quality of a production line from data

collected for only a few elements.

Opinion survey: predict the winner of an election from a
survey, quantify the uncertainty about the prediction.

Ecology: estimate the size of a population of animals using
partial observations (e.g., capture-mark-recapture).
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L ecture outline

2 — The mathematical framework of statistical inference

From data to random variables

Data (observations)
Let x € X denote the data to be analyzed. For instance:

@ a scalar quantity, measured on n objects/individuals:
o x = (x1,...,%), Xi€R, X =R"

® d scalar quantities, potentially of different natures, measured
on n objects/individuals:
mw x = (x1,...,%), xi€RY X =R"™9

© any dataset of a more complex nature
(times series, symbolic data, graphs, etc.).

The data is modeled, a priori, by a random variable (RV) X
w x is considered as a realization of X.
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Statistical model

The observation space (X, &)

It is the measurable space in which X takes its values.
Most of the time, we will use:

» X =R" with & = B(R")
» or, more generally, X = R"<9 with o7 = B (]R”Xd).

Statistical modeling
Let (2,.%#,P) be a probability space carrying:
» the observed random variable X,

» any other (unobserved) RV that we might need.

The probability P is not perfectly known: we consider a

» set & of probability distributions over (£2,.%) supposed to
contain the “true” probability measure.
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Statistical model (cont'd)

Distribution of the observations

Let PX denote the distribution of X when P € & is the underlying
probability measure.

m \We have a set ZX = {]P’K,IP) € @} of possible distributions.

Definition: Statistical model

Formally, we define a statistical model as the triplet

M= (1, o @X).

Remarks:
» We can construct several models (2, %, &, X) for a given .# .

» In particular, when we only care about the observed RV X, we can work
on the canonical model: Q =X, F = o, & = 2%, X = Idx.
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Statistical inference

Reminder: the data x € X is seen as a realization of X ~ PX,
for a certain (unknown) probability P € &2.

The goal of statistical inference

Goal: to construct procedures allowing to extract information about
PX from

» one realization of X,

> the knowledge of the set 27X of all possible distributions.

Important

Since the true probability IP is unknown, we must design statistical
procedures that are “applicable” to any probability P € Z.
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Family of distributions

The set & is represented by a parameterized family:

,@:{PQ,QGG}.

Parametric model
If © is finite-dimensional, the model is called parametric.
» the parameter vector 0 is often of small size.

» we will denote by p the number of parameters (© C RP).

Example. Family of Gaussian distributions on X = R
PX = {,/V(,u,az), peR, o?¢ R}

(In this example we consider only one scalar observation.)
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Sampling models

n-sample

It X = (Xi,...,X,) is such that:
» the X;'s are (mutually) independent,
» all the X;'s have the same distribution Py,

then the X;'s are called independent et identically distributed (iid)
and we say that X is an (iid) n-sample.

Distribution of an n-sample.

Consider the model that describes each of the X;'s individually:
> (X, o, {Py,0 € ©})

Then we have:
> (X, )= (X", o/®")  (product space),
> Vhc O, IP% =P§"  (product distribution).
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Example: component reliability

This application will be used as an illustration in several lectures.

Context

» We are interested in the reliability of components from a
production line.

» Reliability: measured by the lifetime of the components.

» Data (observations): a sample of n = 10 components, for
which the lifetime has been recorded : x = (x1, ..., xp).

Modeling

» Each x; is modeled by a scalar RV X;.
» The X;'s are assumed iid, with values in (X, <) = (R, B(R)).
> (X, &) =(R", B(R")).
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Example: component reliability

Modeling (cont'd): family of distributions

Typical* assumption for the lifetime of a component:

Xi ~ 8(9), 6 > 0.

Hence the statistical model:

(R", B(R"), {£(6)®",0 > 0}).

Reminder. The exponential distribution £(#) has the density:

fo(x) = 0 exp(—0x) L oo (X).

with respect to Lebesgue's measure

*

in the case of unpredictable failures, not related to the age of the component
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Example: component reliability

A few problems of (statistical) interest

>
>

estimate 0, or
estimate n = 1 =E(X;) (average lifetime)

m lectures 1 and 2

provide confidence intervals for 6 and 7

- |ecture 3

test the hypothesis n < 10, in order to assess the value of an
optional warranty extension

m |ecture 4 on hypothesis testing

estimate 6 given prior information on its value

(e.g., provided by the manufacturer of the production line)

m |ecture 5 on Bayesian estimation
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Example: component reliability (cont'd)

Data: a sample of size n = 10 [arbitrary unit]

0.5627 | 16.1121 | 5.4943 | 7.9374 | 1.2658
2.9885 | 8.6266 | 43.8877 | 2.1641 | 8.9138

Estimating 1 : a first estimator (see Lecture 2 for a definition)

n—-o00

"/ 1- ‘ a.s.
X =- g Xi —— Ep(X1) = SLLN).
n £ 9( 1) n ( )

> ﬁ(l) — X seems to be a “reasonable’ estimator of n.

Numerical application :  #(1) = 10.1960
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Notations / vocabulary

Notations. We will often use notations such as
» Ey(.) (expectation),
» varg(.) (variance ou covariance matrix),
> fy(.) (density), ...

to indicate that theses operators or functions depend on a
probability Py for a particular value of 6.

Definition: Statistic
A statistic is a random variable (often scalar- or vector-valued) that

can be computed from X alone*.

Example: the estimator #(1) = X is a statistic.

* Technically: can be written as a measurable function of X.
In particular, depends neither on other (unobserved) RVs nor on 6.
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Numerical assessment of the performance of ﬁ(l)

With numerical simulations, (almost) everything is possible!
» we choose a particular value of 7 (here, n, = 11.4), then

» we simulate on a computer a large number m of n-samples
(here, m = 10000).

0 Remarks
fin hist . . .
0.1+ f \\D s Ogr?z) » Qur estimates are, in this case,
'[ — pdf of 7j : ;
0.08! \ not very accurate.
006! I \ » Providing confidence intervals
would be very relevant here.
0.04 o
» In this simple example we can
0.02 HH compute the density of /()
0 analytically.
0 n=114 20 30 yrHealy
(1
ey
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ﬁ(Q) : another estimator

With a convergence argument similar to the one used earlier:

L nx2%"'s' Ey (X2) = = — o2
n 2 B () = g =20

1
therefore using H(?) = \/2— S, X? seems "reasonable” as well.
n

Numerical application 72 = 11.2228

Questions

» How can we compare two estimators ?
» Is there an estimator that is “better’ than all the others ?

» How to construct “good” estimators ?
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L ecture outline

3 — Some (classical) methods for point estimation
3.1 — The substitution method
3.2 — The method of moments
3.3 — Maximum likelihood estimation

Mathematical framework

In this section:

» we consider a statistical model
M = <i7%7 {Pgéa 0 € @}) )
most of the time assumed to be parametric (© C RP);

» when X is an |ID n-sample, we write
> X =(Xq,...,X,)
> X =X" with X =Ror X =R,
> P =P2";

> we want to estimate a “quantity of interest’:
» either 0 itself,

» or, more generally, n = g(0).
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L ecture outline

3 — Some (classical) methods for point estimation
3.1 — The substitution method

The substitution method

Assume that
» we already have an estimator 7) of n = g(0)

» and we want to estimate another quantity of interest 7/
that can be written as 1’ = h(n), with h a continuous function.

The substitution method

The substitution method consists in using

i" = h(7) as an estimator of 7’.
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Example: component reliability

Reminder: Xi,..., X, d £6), 6>0.

We are interested in the probability that a failure occurs before ty:
to
0

=1—exp(—0ty) =1 —exp <—@> :
n

Using (1) = X as an estimator of = %, we get

to
A/:l—e <—T>
n Xp X
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Empirical measure
Let Xi,..., X, < PX.
Recall the Dirac measure at x € X:

1 ifxeA,
VAE o, 0 (A)=4
0 otherwise.

Definition: empirical measure

The empirical measure is the (random) measure defined by:
]- n
P == o

Application: the empirical measure can be seen as an estimator
of PX1 w allows us to construct other estimators using the
substitution method.
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Example : estimator of the k-th order moment

Assume Xj € LX. Then
mi =E (Xlk) .y (IPXl)

is well defined, with & (1) = [, x*u(dx). By substitution:
1
le / k Zéx (dx) Zxk

Other examples:
» sample variance

» empirical cumultive distribution function
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3 — Some (classical) methods for point estimation

3.2 — The method of moments




The method of moments

Assume that
> X1, ... X, S P, with 6 c ©:;
» the model is parametric: ©® C RP,

» we want to estimate 0 itself

Consider the function

h: ©CRP — h(O)CRP,
Eg (X1)
0 —  h(0) = :
Eg (X7)

Remark: sometimes other moments can be used (not necessarily the first p).
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The method of moments (cont'd)

Assume h : © — h(©) injective, and thus bijective.

The method of moments

The method of moments consists in

> estimating the first p moments i, = 2 S XK k< p,

~n
» then applying h~! to construct an estimator of 6.
Hence moment-of-moments estimator : § = h=! (sfi1.,), where
1 S X
n =17
my.p = :

1 :
n Z?:l Xip

Remark: well defined only if m1., € h(©) Py-ps, pour tout 6.

Otherwise, minimization of some distance (generalized method of moments).
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Method of moments: examples

Example: component reliability
We have £y (X1) = 0! (exponential distribution), therefore
0=(Eo(X:))> and 6= (X)"".

Another example: Gaussian n-sample = PC 1, Ex. 1.1
Xiyeooy Xp K N (u,0?), with 6 = (u,az) € R xR%.
Considering the first two moments, we have:
(ﬁ2>: %Z?:IX" > .
g % 27:1 Xi2 - (% 27:1 Xi)
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3 — Some (classical) methods for point estimation

3.3 — Maximum likelihood estimation




Likelihood function

Assume a dominated model: IP% admits a pdf fy wrt a measure v
on X, forall 8 € ©.

Definition: likelihood
We call likelihood the function:

L : @X& — R+
(0;x) — fi(x)

We call log-likelihood the function In L.

Remark. If Xq,..., X, i Py, then,

L‘(G;g):H;lfb(x,-), therefore InE(O;g):ijllnfg (x;) .

(usual abuse of notation: here fo = £;*)

31/56

Maximum likelihood estimation

Definition: MLE

If § is a maximizer of 8 — £ (0; X), then
f is a maximum likelihood estimator (MLE) of 6.

Remarks:

» Existence and uniqueness of the MLE: not guaranteed in
general.

> Equivalently, § is a maximizer of 8 — In £ (6; X).

» Assume © C RP. If L is of class C! wrt 6§ on int(©), a
necessary condition for an interior point 6 € int(©) to
maximize the likelihood is:

(Vo (In£))(9; X) = o0.

This is called the likelihood equation.
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MLE example: component reliability

For x1,...,xn > 0, we have £ (0; x) = [[_; 0 exp (—0x;), and thus
In £ (0; x) = nin(0) — QZX,-.
i=1

Stationarity condition (“likelihood equation”)

d(In L)
00

(9;5)20 = g—ZX,':O.

i=1

= If 37, x > 0, unique solution in © = R% at 6 = n (37, ) .

= |t is indeed a maximum of the likelihood function (cf. sign of the derivative).
. . . A o\ —1
w Since Y7 1 X; > 0 a.s., a unique MLE exists: § = (X) .

Remark: the same estimator was obtained by the method of moments.
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MLE example: Gaussian IID n-sample, 6 = (,u,c72>
Same approach as in the previous example.

@ First write the log-likelihood:

_n |n(02) _ DX — 1)

n
In L (6; x) = —Eln(27r) > 22 :

® Solving the likelihood equation yields:
é:(ﬂ ):@Z?le )
5° n Z?:1(Xi - ﬂ)z

© It can be proved that the maximum is indeed attained at this
point.
= PC1, Ex. 1.1

Remark: the same estimator was obtained by the method of moments.
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Summary and preview

We have seen and will practice in PC 1:

» the general framework of statistical inference,

» some classical methods for point estimtion.

We will cover in the next lecture:

» the quantitative assessment of an estimator's performance,
» the comparison of estimators,

» the asymptotic approach (n — o).
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4 — Standard exercises
4.1 — Questions
4.2 — Solutions




L ecture outline

4 — Standard exercises
4.1 — Questions

Exercise 1 (Bernoulli model)

Let Xi,...,X, be an n-sample of binary observations,
independent and identically distributed according to the
Bernoulli Ber(p) distribution, with p € [0, 1].

Questions
@ Specify a formal statistical model .Z = (i, o, 95)
corresponding to this description.
® Construct an estimator of p using the method of moments.

® Construct an estimator of p using the maximum likelihood
method.

® Compute the expectation and variance of X, = % Do 2%
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Exercise 2 (log-normal distribution)

A bit of context

The association between childhood leukemia and exposure to very
low-frequency magnetic fields (mainly due to electrical structures
and appliances) is statistically significant for residential exposure
averaged over 24 hours, with levels above 0.4, T.

Ny
Source : ANSES

Modeling assumption. For dwellings located less than 50 meters
from HV lines, residential exposure averaged over 24 hours follows
a lognormal distribution.
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Exercise 2 (log-normal distribution)

Let

> X = (X1,...,X,) : n-sample with a log-normal Z4"(u, o?)
distribution, where 02 > 0 is known.

» po : probability that a RV following the ZA4 (p, 02)
distribution exceeds the threshold sy = 0.4uT.

Questions

@ Construct an estimator of i using the maximum likelihood
method.

® Using the substitution method, derive an estimatoir of pg.

© Does the resulting estimator of pg converge almost surely? If
so, to what limit?
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Exercise 3 (sample variance)

Let Xi,...,X, be an n-sample of real-valued observations,
independent and identically distributed, with a finite second order
moment.

Let M denote the set of all probability measures on (R, B(R)) with
a finite second order moment.

Questions

@ Prove that var (X1) = ¢ (PX*), where ¢ is a function defined
on M, to be specified.

® Using the substitution method, derive from ¢ an estimator of
the variance.

© Study the convergence of the estimator when n — +o0.
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| ecture outline

4 — Standard exercises

4.2 — Solutions




Solution of exercise 1

O Statistical model .7 = (X, o/, %)

The “natural” (minimal) set to describe the values of a binary
variable is X = {0,1}.

- X = {0,1}" for an n-sample

On a finite or countable set, we use in general the discrete
o-algebra, i.e., the set of all subsets of X.

i % =P ({0, 1}”) =P ({07 1})@”

The distribution of an n-tuple (Xi, ..., X,) of independent RVs is
the product measure PX1 @ - .. @ PXn.
= X = {Bar(p)®", p € [0,1])

Remark: another possible choice would have been X = R", & = B(R").
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Solution of exercise 1

® Method of moments
If X ~ Ber(p), then E, (X) = p.

m The method of moments, applied to the first-order moment,
directly yields the estimator p, = = >, X; = X,.

® Maximum likelihood

First write the likelihood:

L(p; X) = Hp 1-p
zp"’(l—p) -

where N = Y7 . X; and 0° = 1,
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Solution of exercise 1

then the log-likelihood for p € (0,1):

{(p; X) = In(L(p; X))
= NlIn(p) + (n — N)In(1 — p).

The log-likelihood is differentiable on (0, 1), with derivative

ol N n—N
—(p; X) = — —
6)p(p ) P
n —
— X, —
p(1—p) (%o =p)

We have g—ﬁ(p;ﬁ) >0 iff p<N/n= X,,

S(pX) <0 iff p>N/n=X,
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Solution of exercise 1

If X, =0, the log-likelihood is strictly decreasing

m the likelihood is maximal at p = 0.

If X, = 1, the log-likelihood is strictly increasing

m the likelihood is maximal at p = 1.
If 0 < X, < 1, the log-likelihood is maximal at p = X,,.

Summary: p, = X, is the unique MLE.

Remark: the log-likelihood takes infinite values at p = 0 and/or p = 1, but the

likelihood itself is well defined and continuous on [0, 1].
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Solution of exercise 1
O Expectation and variance of X

Reminders

> E,(X1) = p and varp(X1) = p(1 — p).
» independence = decorrelation = var(}_, X;) = >, var(X).

Using that the X;'s are identically distributed:
_ 1 <
Ep (Xn) = — > EplXi] =p.
i=1

Using that the X;'s are IID:

varp(Xp) varp (ZX) =3 zn:varp (X;) = M
i=1
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Solution of exercise 2

©® Maximum likelihood
First write the log-likelihood:

2

U X) = ——|n(27r00 Zln (In(X,-)—,u) 1(Ri)"(5)'

202

The log-likelihood is differentiable, with derivative (for
X1y, Xn > 0):

]- n
Finally, 2 = = "In(X;) is indeed the MLE since:
n-

ol v
—(p; X) >0 for u < fi, ,—(u; X) <0 for pu> fi.
au(” ) p<fi au(“ ) p>fi

45/56




Solution of exercise 2

® First express the probability of exceeding sg as a function of u:

po = P(X >s9) with X ~ 24 (u,02)
= 1- FH,J(SO)

= 1- P (—'”(503_“) .

Then construct an estimator of pg by substitution, using fi:

I _ N\
iso = 1 - <1)() (:'—[1§55E1)“““££1:) .
o)
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Solution of exercise 2

O Let Z; = In(X;), i > 1. The random variables Z; are IID, and
admit a first order moment equal to p, since Z; ~ A (u, 0?).

Thus, by the strong law of large numbers:

n—-o00

1 . as
po= =S In(X) == E(Z)=p
n;:ln() (Z1) =

Hence, using the continuity of h: u+— 1 — ®g <

In(s0) —M)'

o

po = h() —— h(p) = po.

Remark. Almost-sure convergence towards the parameter of
interest is called strong consistency (see next lecture).
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Solution of exercise 3

O Using the Huygens-Konig and transfer theorems, we have:
var(X;) = E (X2) —E(X)? = %(le)

where, for all u € M,

G(u) = /Xx2,u(dx)— (/Xxu(dX))Q-

® We use the substitution principle, with the empirical distribution
as an estimator of PXt:

R 1 &
]EDj:EL — ;;- :gi;;; 65)(}.
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Solution of exercise 3
We find the estimator
N N 2
52 = / X% PX1(dx) — ( / xpifl(dx)>
X X
T
= | ni | |

which is called the sample variance.

® Applying the strong law of large numbers to the sequences (X;)
and (Xiz), which are 1ID RVs with a first order moment, we find

_ 1 <
X = E(X), ;zx,? = B(X?),
i=1
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Solution of exercise 3

and therefore
S22 var(Xy).

n

Remarks: on the other hand, we don't have convergence in L2 in
general, since the X?'s do not necessarily have a second order
moment (for this, the X;'s would need to have a moment of order
four).

50/56

| ecture outline

5 — Appendices
5.1 — Some useful parameterized families of distributions
5.2 — Reminders & complements




L ecture outline

5 — Appendices
5.1 — Some useful parameterized families of distributions

The gamma family of distributions

A random variable X follows the '(p, \) distribution, with parameters
p>0and A > 0, if it has the pdf

f(x) = % xP71 exp(—Ax) 1g+ (x).
Moments Particular cases
> mean : Ep(X) =% > EN)=T(p=1,))
> variance : varg(X) = % > T(p=2,2=2)=x*n)

Properties

> Let a> 0. If X ~T(p,A), then aX ~ T (p, 2).

» If X and Y are independent, with X ~ T (p,\) and Y ~ (g, ),
then X + Y ~T(p+ g, ).
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The log-normal distribution 24 (1, 0%)
Definition
X ~ LN (,02), with 1 € R and 2 > 0, if it admits the density

exp <_M) T (%),

202

1
foo(x)=
o (X) ox /2w
Properties

2
» mean: E, ,(X) =exp <u—|— %)

> variance : var, ,(X) = (exp (62) — 1) exp (2u + 0°)

» cumulative distribution function: F, , = ® (W) , Where @ is
the cumulative distribution function of the .4#7(0, 1) distribution.

> X ~ LN (u,02) iff In(X) ~ A (u,0?).
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Density of the ZA4 (i, 0°) distribution

1.5 a 2r
—00 = —u = -1
—o=1.5 —u =20
7= 15) R=

0.5
0.5
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L ecture outline

5 — Appendices

5.2 — Reminders & complements

Reminder: Probability density function wrt a measure
Let v denote a positive masure on (X, o7).

Definition: probability density function

The distribution PX of a RV X taking values in (X, /) admits a density
with respect to v if there exists f : X — R, @/-measurable and positive,

st
VAc o/, P(XecA) =PXA) = /f(g)v(dg).
A

w f is the probability density function of PX with respect to v.
m |t satisfies [ fdy = 1.

In this course, we will consider the following cases:
» “continuous” RV: reference measure v = Lebesgue's measure,

» discrete RV: reference measures v = counting measure.
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Complement: the empirical cumulative distribution function

Let x € R. The cumulative distribution function (cdf) of Xj at x is

X

F(x)=PX (X1 < x) = %, (IP’X1> with % (u) = /_ 1(dx).

Hence, by substitution, the empirical cdf (ECDF):

. 1 —
F(X) = ; Z]I{XISX}'
i=1

For an IID n-sample Xi,..., X, lID, with cumulative distribution
function F, it can be proved (Glivenko-Cantelli theorem) that
Fn, — F uniformly on R, almost surely.
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Complement: the empirical cumulative distribution function
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Figure — ECDF for Xi, ..., X, "5 .#(0,1) and n = 20.
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