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† Course coordinator
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Lecture 2/9

Point estimation

Course objectives

◮ Learn how to quantify the performance of an estimator

◮ Learn how to compare estimators

◮ Introduce the asymptotic approach



3/60

Lecture outline

1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Standard exercises

6 – Appendices
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Recap: mathematical framework

Data

◮ Formally, an element x in a set X .

◮ ex: X = R
n, Rn×d , {words}, some functional space, etc.

From data to random variables

◮ A priori point of view: before the data is actually collected.

◮ Modeling: RV X taking values in (X ,A ),

◮ but the distribution of X is unknown.

Statistical modeling

◮ X is assumed to be defined on (Ω,F ,P), with P ∈ P.

◮ P : a set of possible probability measures on (Ω,F )

◮ Formally, M =
(
X ,A ,PX

)
, with PX = {PX , P ∈ P}.

Canonical construction: Ω = X , F = A , X = IdX et P = P
X .
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Recap: mathematical framework (cont’d)

Important

Since P ∈ P is unknown, we need to design statistical procedures

that “work well” (in a sense to be specified) for any

distribution P ∈ P.

Parameterized family of probability distributions

◮ Usually, we write P = {Pθ, θ ∈ Θ}.

◮ θ: unknown parameter (scalar, vector, function. . . )

◮ In the following, we assume a parametric model: Θ ⊂ R
p.

Important case: d-variate (iid) n-sample (→ n × d data table)

◮ X = X n, with X ⊂ R
d , endowed with their Borel σ-algebras,

◮ X = (X1, . . . ,Xn) with Xi
iid
∼ Pθ, and thus P

X

θ = P
⊗n
θ .
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Point estimation

Parameter of interest

◮ We are interested in parameter η = g(θ),

where g : Θ 7→ R ou R
q.

◮ Its value is unknown, since θ is unknown.

Informal definition: estimation

Guess (infer) the value of η based on a realization x of X .

Definition: estimator

We call estimator any statistic η̂ = ϕ(X ) taking value in the

set N = g(Θ) of possible values for η.

Remark: the word “estimator” can refer either to the RV η̂ or to the

function ϕ. In practice, we identify the two and write (abusively) η̂ = η̂(X ).
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Example 1

IID Gaussian n-sample: X = (X1, . . .Xn) with

◮ X1,X2, . . . ,Xn
iid
∼ N (µ, σ2),

◮ θ =
(
µ, σ2

)
,

◮ Θ = R× ]0; +∞[.

In this example, we assume that we want to estimate the mean µ;

◮ here η = µ and g : θ =
(
µ, σ2

)
7→ µ,

◮ σ2 is unknown too (nuisance parameter).
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Example 1 (cont’d)

Some possible estimators. . .

◮ µ̂1 = X̄n = 1
n

∑n
i=1 Xi (method of moments / MLE),

◮ µ̂2 = µ0 for a given µ0 ∈ R,

◮ µ̂3 = 1
2µ0 +

1
2 X̄n,

◮ µ̂4 = X̄n + c for a given c 6= 0,

◮ µ̂5 = med(X1, . . . ,Xn),

◮ . . .

Questions

◮ Is one of these estimators “better” than the others?

◮ Can we find an “optimal” estimator?

◮ In what sense?



8/60

Example 1 (cont’d)
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Other examples

Example 1’

◮ Same statistical model as in Example 1, but

◮ g(θ) = σ2.

◮ In this case, µ is seen as a nuisance parameter.

Example 1”

◮ Again the same statistical model, but

◮ g(θ) = θ = (µ, σ2).

◮ Here, the parameter to be estimated is a vector.
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Other examples (cont’d)

Example 2

◮ X1,X2, . . . ,Xn
iid
∼ E(θ), i.e., fθ(x) = θ e−θx

1x≥0,

◮ Θ = (0,+∞),

◮ g(θ) = Eθ(X1) = 1/θ.

Example 2’

◮ Same statistical model, but

◮ g(θ) = Pθ (X1 > x0) = e−θx0 for a given x0 > 0.

Example 3 (optional)

◮ non-parametric statistics ➠ complement
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General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L : N × N → R.

◮ Reminder: N = g(Θ) is the set of all possible values for η.

◮ Interpretation: we lose L(η, η′) if we choose η′ as our estimate

while η is the true value.

Risk

For a given loss function L, we define the risk Rθ(η̂) of the

estimator η̂, for the value θ ∈ Θ of the unknown parameter, by

Rθ (η̂) = Eθ (L (g(θ), η̂)) .



11/60

General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L : N × N → R.

◮ Reminder: N = g(Θ) is the set of all possible values for η.

◮ Interpretation: we lose L(η, η′) if we choose η′ as our estimate

while η is the true value.

Risk

For a given loss function L, we define the risk Rθ(η̂) of the

estimator η̂, for the value θ ∈ Θ of the unknown parameter, by

Rθ (η̂) = Eθ (L (g(θ), η̂)) .



11/60

General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L : N × N → R.

◮ Reminder: N = g(Θ) is the set of all possible values for η.

◮ Interpretation: we lose L(η, η′) if we choose η′ as our estimate

while η is the true value.

Risk

For a given loss function L, we define the risk Rθ(η̂) of the

estimator η̂, for the value θ ∈ Θ of the unknown parameter, by

Rθ (η̂) = Eθ (L (g(θ), η̂)) .



12/60

Quadratic risk

Quadratic risk

We call quadratic risk the risk associated with the loss function

L(η, η′) = ‖η − η′‖2,

that is,

Rθ (η̂) = Eθ

(
‖g(θ)− η̂‖2

)
.

Remarks

◮ Also called “mean square error” (MSE).

◮ Most commonly used notion of risk

(for the sake of simplicity, as we will see);

◮ in the rest of this lecture, we will consider this risk exclusively.
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Example 1 (reminder)

IID Gaussian n-sample: X = (X1, . . .Xn) with

◮ X1,X2, . . . ,Xn
iid
∼ N (µ, σ2),

◮ θ =
(
µ, σ2
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,
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Example 1: risk of the estimator µ̂1

Consider the estimator

µ̂1 = X̄n =
1

n

n∑

i=1

Xi .

For all θ =
(
µ, σ2

)
∈ Θ, we have the following result:

Quadratic risk of the sample mean

Rθ (µ̂1) = Eθ

(

(µ̂1 − µ)2
)

=
σ2

n
.

Remark: the result holds as soon as the Xi ’s have finite second-order moments

(Gaussianity is not actually used)
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Example 1: risk of the estimator µ̂1 (computation)

Notice that

Eθ(µ̂1) =
1

n

n∑

i=1

Eθ(Xi ) = µ.

Therefore

Rθ (µ̂1) = varθ (µ̂1) =
1

n2
varθ

(
n∑

i=1

Xi

)

=
1

n2

n∑

i=1

varθ (Xi ) =
σ2

n
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Bias of an estimator

Let η̂ be an estimator of η = g(θ) admitting a first-order moment,

for all θ ∈ Θ.

Definition: bias / unbiased estimator

The bias of an estimator η̂ at θ ∈ Θ is defined as

bθ(η̂) = Eθ(η̂)− g(θ).

We will say that η̂n is an unbiased estimator (UE) if

bθ(η̂) = 0, ∀θ ∈ Θ.

Example 1

◮ We have already seen that µ̂1 = X̄n is an UE of µ.

◮ More generally: µ̂ = α+ βX̄n is an UE of µ if, and only if,

α = 0 et β = 1.
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Bias-variance decomposition

Reminder: we still consider the quadratic risk.

Let η̂ be an estimator η = g(θ) admitting a second-order moment,

∀θ ∈ Θ

Proposition: Bias-variance decomposition (scalar case)

If the quantity of interest is scalar (η ∈ R), we have:

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)
= varθ (η̂) + bθ(η̂)

2.

➠ exercise 1

Remark: we can generalize to the vector case by summing over the

components:

Rθ (η̂) = Eθ

(

‖η̂ − g(θ)‖2) = tr (varθ (η̂)) + ‖bθ(η̂)‖
2
,

where varθ (η̂) is the covariance matrix of η̂.
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Example 1: risk of some estimators

µ̂1 = X̄n Rθ(µ̂1) =
σ2

n
+ 02

µ̂2 = µ0 Rθ(µ̂2) = 02 + (µ− µ0)
2

µ̂3 =
1

2
µ0 +

1

2
X̄n Rθ(µ̂3) =

1

4

σ2

n
+

1

4
(µ− µ0)

2

µ̂4 = X̄n + c Rθ(µ̂4) =
σ2

n
+ c2

µ̂5 = med(X1, . . . ,Xn) Rθ(µ̂5) ≈ 1.57
σ2

n
+ 02 (n → +∞)

Exercise: Compute Rθ(µ̂j), 2 ≤ j ≤ 4 ➠ exercise 1

Remark: only the result for µ̂5 actually uses the Gaussianity assumption.
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Admissible estimators

Definition: order relation on the set of estimators

We will say that η̂′ is (weakly) preferable to η̂ if

◮ ∀θ ∈ Θ, Rθ(η̂
′) ≤ Rθ(η̂),

We will say that it is strictly preferable to η̂ if, in addition,

◮ ∃θ ∈ Θ, Rθ(η̂
′) < Rθ(η̂).

Remarks

◮ The relation “is preferable to” is a partial order on risk functions.

◮ In general there is no optimal estimator, i.e., no estimator that is preferable to
all the others (unless we restrict the class of estimators that is considered).

Admissibility

We will say that η̂ is admissible if there is no estimator η̂′ that is

strictly preferable to it.
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Example 1 (cont’d)

µ̂1 = X̄n Rθ(µ̂1) =
σ2

n
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2
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σ2
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◮ µ̂1 is strictly preferable to µ̂4, therefore µ̂4 is not admissible.

◮ It can be proved
◮ that µ̂1, µ̂2, and µ̂3 are pairwise incomparable, ➠ exercise 1

◮ but that all three are admissible (proof out of scope)
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Example 1 (cont’d)
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Example 1 (cont’d)
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Context and motivation

We consider the class of unbiased estimators of g(θ),

➠ for an UE, Rθ(η̂) = varθ(η̂).

Objective of this section: show that there exists a bound of the

form

varθ(η̂) ≥ vmin(θ), ∀θ ∈ Θ,

that holds for (nearly) all UE of g(θ).

Application of such a bound?

1 Prove that a certain level of accuracy cannot be met by an

unbiased estimator.

2 Prove that a given UE is optimal (that is, it minimizes, within

the class of UEs, the risk Rθ(η̂), ∀θ ∈ Θ).
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Regularity condition C0 and C1

Regularity condition C0

Dominated model: there exists a (σ-finite) measure ν on (X ,A ),

and a family (fθ) of probability density functions wrt ν, such that

∀A ∈ A , Pθ (X ∈ A) =

∫

A

fθ(x) ν(dx).

Regularity condition C1

The densities fθ share a common support: ∃S ∈ A ,

∀θ ∈ Θ, 1fθ>0 = 1S ν-ae.

◮ Consequently, it can be assumed that fθ(x) > 0 ⇔ x ∈ S.
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Regularity condition C1: examples / counter-example

Consider an IID univariate n-sample:

X ∼ fθ(x) =

n∏

i=1

fθ(xi )

(with a usual abuse of notation for the pdf’s).

Remark: if C1 holds for n = 1 with S = S1,

then it also holds for all n ≥ 2 with S = Sn
1 .

A few examples. . .

1 N (µ, σ2) with σ2 > 0: C1 holds with S1 = R,

2 E(θ): C1 holds with S1 = [0,+∞).

3 U[0,θ]: C1 does not hold!
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Another regularity condition

We assume that C0 and C1 hold.

Regularity condition C2

i Θ is an open subset of Rp,

ii θ 7→ fθ(x) is differentiable for ν-almost all x ,

iii and, at any θ ∈ Θ, we have

∫

S
∇θfθ(x) ν(dx) = ∇θ

∫

S
fθ(x) ν(dx) = 0.

In other words: ∀θ ∈ Θ, ∀k ≤ p,

∫

S

∂fθ(x)

∂θk
ν(dx) =

∂

∂θk

∫

S
fθ(x) ν(dx) = 0.
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Score

Definition / property: score

Assume that C0, C1, C2-i and C2-ii hold and define, for all x ∈ S

Sθ(x) = ∇θ (ln fθ(x)) =







∂ ln fθ(x)
∂θ1
...

∂ ln fθ(x)
∂θp







.

Then

i We call score the random vector Sθ = Sθ(X ).

ii C2-iii ⇔ ∀θ ∈ Θ, the score Sθ is centered under Pθ.

Remarks:

◮ Well defined, since X ∈ S Pθ-ps, ∀θ ∈ Θ.

◮ The score vanishes at the MLE (recall that Θ ⊂ R
p is assumed open).
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The score is centered (proof)

Notice that

∇θ (ln fθ) =
1

fθ
∇θfθ,

and thus, for all θ ∈ Θ,

Eθ (Sθ) =

∫

S
Sθ(x) fθ(x) ν(dx)

=

∫

S

1

fθ(x)
∇θfθ(x) fθ(x) ν(dx)

=

∫

S
∇θfθ(x) ν(dx).

Finally,

Eθ (Sθ) = 0 ⇔

∫

S
∇θfθ(x) ν(dx) = 0 (C2-iii).
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Example 2

Recall that X1, . . . ,Xn
iid
∼ E(θ) with θ ∈ Θ = ]0,+∞[.

We compute the likelihood, for any x1, . . . , xn ≥ 0:

L(θ; x) = fθ(x) =
n∏

i=1

fθ(xi ) = θn e−θ
∑

xi ,

then the log-likelihood:

lnL(θ; x) = ln fθ(x) = n ln θ − θ
∑

xi ,

and, finally, the score:

Sθ(X ) =
n∑

i=1

Sθ(Xi ) = n

(
1

θ
− X̄n

)

.
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Remark on condition C2-iii

Recall C2-iii: ∀θ ∈ Θ,
∫

S
∇θfθ(x) ν(dx) = ∇θ

∫

S
fθ(x) ν(dx) = 0,

or, equivalently: Eθ(Sθ) = 0.

Two approaches are available to check this condition:

1 Compute explicitely Eθ(Sθ) =
∫

S ∇θfθ(x) ν(dx).

2 Use a domination condition: show that ∀θ0 ∈ Θ, ∃V ⊂ Θ,

neighboorhood of θ0, and a ν-integrable function g : X → R st

∀θ ∈ V , ∀x ∈ S, ∀k ≤ p,

∣
∣
∣
∣

∂fθ(x)

∂θk

∣
∣
∣
∣
≤ g(x).
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Cramér-Rao inequality 1/2

Consider a statistical model where C0-C2 hold,

and let η̂ be an estimator of η = g(θ) ∈ R.

Definition: regular estimator

We will say that η̂ is a regular estimator if

1 Eθ

(
η̂2
)
< +∞, ∀θ ∈ Θ,

2 θ 7→ Eθ (η̂) is differentiable, with

∇θEθ (η̂) =

∫

S
η̂(x)∇θfθ(x) ν(dx), ∀θ ∈ Θ.

Remark: if η̂ is an unbiased regular estimator of g(θ), then

(∇g)(θ) =

∫

S

η̂(x)∇θfθ(x) ν(dx), ∀θ ∈ Θ.
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Cramér-Rao inequality 2/2

Theorem / definition: Cramér-Rao inequality

Consider a statistical model where C0-C2 hold, and assume that

the score Sθ admits second-order moments for all θ ∈ Θ.

Let varθ(Sθ) denote the covariance matrix of the score, which is

assumed invertible for all θ ∈ Θ.

Let η̂ be a regular unbiased estimator of g(θ). Then, ∀θ ∈ Θ,

Rθ (η̂) = varθ (η̂) ≥ ∇g(θ)⊤ varθ (Sθ)
−1 ∇g(θ).

An unbiased estimator is called efficient if this bound is met for

all θ.

➠ Proof
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Fisher information

We still assume that C0–C2 hold.

Definition: Fisher information

We call Fisher information of X the p × p matrix

I (θ) = varθ(Sθ) = Eθ

(

Sθ S
⊤
θ

)

which appears in the Cramér-Rao lower bound.

Proposition

Let In(θ) denote the Fisher information in an IID n-sample. Then

In(θ) = n I1(θ).

The CR inequality becomes: varθ(η̂) ≥
1
n
∇g(θ)⊤ I1(θ)

−1∇g(θ).
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Proof

Notice that the score is additive in an IID sample:

Sθ = ∇θ (ln fθ(x))

= ∇θ

[

ln

(
n∏

i=1

f X1
θ (Xi )

)]

=
n∑

i=1

∇θ

(

ln f X1
θ (Xi )

)

︸ ︷︷ ︸

Zi

.

Thus we have

varθ (Sθ) =
n∑

i=1

varθ (Zi ) = n varθ (Z1) = n I1(θ)

since Z1, . . . , Zn are IID, and distributed like the score in a sample

of size 1.
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Example 1: estimation of µ

Reminder: X1, . . . ,Xn
iid
∼ N (µ, σ2) and θ = (µ, σ2)

◮ µ̂n = X̄n is the MLE of µ,

◮ µ̂n is unbiased and Rθ(µ̂n) = varθ(µ̂n) =
σ2

n
.

The Fisher information matrix in this model is (see PC 2)

In(θ) = n

(
1
σ2 0

0 1
2σ4

)

.

Cramér-Rao inequality with g(θ) = µ: ∀µ̂′
n UE of µ,

Rθ(µ̂
′
n) = varθ(µ̂

′
n) ≥

σ2

n
,

therefore µ̂n = X̄n is efficient.
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Example 1’: estimation of σ2

Same statistical model, but we want to estimate g(θ) = σ2.

It is then possible to show (see PC 2) that

◮ the MLE S2
n = 1

n

∑n
i=1

(
Xi − X̄n

)2
is biased;

◮ σ̂2
n = (S ′

n)
2 = 1

n−1

∑n
i=1

(
Xi − X̄n

)2
is an UE of σ2, with

variance

varθ
(
σ̂2
n

)
=

2σ4

n − 1
.

Conclusion: σ̂2
n is not an efficient estimator, since

varθ
(
σ̂2
n

)
>

2σ4

n
.

(Beware the misleading terminology: it can be proved, using Lehmann-Scheffé’s theorem, that σ̂
2
n is a

minimal variance UE for this problem, and therefore is optimal for the quadratic risk among all UE’s.)
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1 – Point estimation: definition and notations

2 – Quadratic risk of an estimator

3 – A lower bound on the quadratic risk

4 – Asymptotic properties

5 – Standard exercises

6 – Appendices
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Motivation / notations

Problem

It is sometimes (often !) difficult to obtain the exact properties of

statistical procedures.

(point estimators, but also CIs, tests, etc. (cf. next lectures))

Asymptotic approach(es) → approximate properties

◮ X1,X2, . . .
iid
∼ Pθ, defined on a common (Ω,F ,Pθ)

◮ Sequences of estimators: η̂n = η̂n(X1, . . . ,Xn)

◮ Properties of the estimators when n → ∞?

Remark: we have now not one but a sequence (Mn)n≥1 of statistical models

Mn =
(

X n
,A

⊗n
,
{

P
⊗n
θ

, θ ∈ Θ
})

,

that we instantiate on a common underlying probability space (Ω,F ).
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Probability refresher: convergence modes

Main convergence modes that are useful in statistics:

◮ almost sure convergence ,

◮ convergence in L2 (in mean square),

◮ convergence in probability,

◮ convergence in distribution.

Implications between convergence modes: ➠ Supplements

m.s.

proba

a.s.

distrib
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Consistency

Let (η̂n) denote a sequence of estimators of η = g(θ).

(weak) Consistency

We will say that η̂n is a consistent estimator of η = g(θ) if, ∀θ ∈ Θ,

η̂n
Pθ−−−→

n→∞
g(θ).

(with an obvious abuse of terminology)

Strong and mean-square consistency

We will say that η̂n is strongly consistent

(resp. consistent in the mean-square sense) if, ∀θ ∈ Θ,

η̂n
Pθ−a.s.
−−−−→
n→∞

g(θ)

(

resp., η̂n
L2(Pθ)
−−−−→
n→∞

g(θ)

)

.

Remark: the word “convergent” is sometimes used instead of “consistent”.
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Probability refresher: law of large numbers

Let (Xk)k≥1 be a sequence of real- or vector-valued RV.

Strong law of large numbers

If the Xk ’s are IID and have finite first-order moments, then

X̄n
a.s.

−−−→
n→∞

E(X1).

Law of large numbers in L
2

If the Xk ’s are IID and have finite second-order moments, then

X̄n
L2

−−−→
n→∞

E(X1).

Proof (scalar case): E

(

(

X̄n − E(X1)
)2
)

= varθ(X̄n) =
1
n
varθ(X1) → 0.
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Consistency: examples

A) IID n-sample with finite first-order moment

◮ i.e., Eθ(‖X1‖) < +∞, for all θ ∈ Θ.

◮ X̄n is a strongly consistent estimator of η = Eθ(X1).

◮ Nothing can be said about the quadratic risk without

additional assumptions.

B) IID n-sample with finite second-order moment

◮ i.e., Eθ(‖X1‖
2) < +∞, for all θ ∈ Θ.

◮ X̄n is strongly consistent and consistent in the mean-square

sense for η = Eθ(X1).
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Consistency: examples (cont’d)

0 50 100 150 200

0

5

10

15

n

X̄
n

Convergence of X̄n to the true mean

(for a Gamma n-sample with true mean µ = 1.5)
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Consistency: examples (cont’d)

C) IID n-sample (with any distribution)

◮ Let A ∈ A and η = g(θ) = Pθ (X1 ∈ A).

◮ Relative frequency: η̂n = 1
n
card {i ≤ n | Xi ∈ A}

◮ η̂n is a strongly and mean-square consistent estimator of η.

Application: histograms ➠ exercise 3

D) MLE of an n-sample distributed according to the uniform

distribution (see PC 1)

◮ X1, . . . ,Xn
iid
∼ U[0,θ]

◮ We estimate η = θ with η̂n = maxi≤n Xi .

◮ η̂n is consistent, both strongly and in the mean-square sense.

E) Maximum likelihood estimator ➠ complement
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Summary and preview

We have seen and will practice in PC 2:

◮ the quantitative assessment of an estimator’s performance

through risk computation,

◮ the comparison of estimators and a concept of optimality,

◮ the asymptotic analysis of estimators.

We will cover in Lecture 3:

◮ the concept of convergence rate of an estimator,

◮ the definition and construction of confidence intervals/regions.
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Exercise 1 (quadratic risk) ➠ solution

Let X1, . . . ,Xn
iid
∼ N (µ, σ2) with θ = (µ, σ2) ∈ Θ = R× R

+
∗ .

We want to estimate g(θ) = µ. We consider the estimators

µ̂1 = X̄n, µ̂2 = µ0, µ̂3 =
1

2
µ0 +

1

2
X̄n, µ̂4 = X̄n + c ,

where µ0 and c are given real numbers.

Questions

1 Prove the bias-variance decomposition formula in the scalar

case. ➠ back to slide 17

2 Compute the quadratic risk of each of these estimators

3 Prove that µ̂2 and µ̂3 are not comparable.

4 Prove that µ̂4 is not admissible. ➠ back to slide 20
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Exercise 2 (efficiency of an estimator) ➠ solution

Let X1, . . . ,Xn
iid
∼ Ber(θ) with θ ∈ Θ = ]0, 1[.

Recall that (see Exercises in Lecture 1):

◮ the log-likelihood of the n-sample is

lnL(θ; x) = ln fθ(x) = n ln(1 − θ)− ln

(
θ

1 − θ

) n∑

i=1

xi ,

◮ the MLE is θ̂n =
1

n

∑n
i=1 Xi .

Questions

1 Check that the model satisfies the hypotheses for

Cramér-Rao’s inequality, and compute Cramér-Rao’s bound.

2 Is the MLE θ̂n efficient?
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Exercise 3 (consistency of an histogram) ➠ solution

Consider: ➠ back to slide 41

◮ an n-sample X1, . . . ,Xn, with Xi in ]a, b] ⊂ R,

◮ a partition of ]a, b] in K adjacent classes Ak =]ak−1, ak ], for

k ∈ {1, . . . ,K}, with a0 = a, aK = b,

◮ the vector η ∈ R
K with η(k) = P (X1 ∈ Ak).

Histogram

Graphical representation of the empirical distribution of a random

variable using rectangles, where the bases are the intervals Ak and the

areas are proportional to the relative frequencies η̂
(k)
k of the classes:

η̂(k)n =
1

n
card {i ≤ n | Xi ∈ Ak} , 1 ≤ k ≤ K .

Question. Prove that η̂n =
(
η̂
(1)
n , . . . , η̂

(K)
n

)
is a strongly consistent

and mean-square consistent estimator of η.
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Exercise 4 (mean-square consistency) ➠ solution

Let η̂n denote an estimator of a scalar parameter η = g(θ) ∈ R,

indexed by the size n of the observed sample.

Question

Prove that η̂n is consistent in the mean-square sense if, and only if,

the following conditions are satisfied for all θ ∈ Θ:

i bθ (η̂n) → 0,

ii varθ (η̂n) → 0.
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Exercise solution 1 ➠ back to questions

➊ Bias-variance decomposition

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)
= varθ (η̂) + bθ(η̂)

2.

Proof

Rθ (η̂) = Eθ

(
(η̂ − g(θ))2

)

= Eθ

(
(η̂ − Eθ(η̂) + bθ(η̂))

2
)

= Eθ

(
(η̂ − Eθ(η̂))

2
)

︸ ︷︷ ︸

varθ(η̂)

+ bθ(η̂)
2 + 2 Eθ (η̂ − Eθ(η̂))

︸ ︷︷ ︸

=0

bθ(η̂)

= varθ (η̂) + bθ(η̂)
2.
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Exercise solution 1 ➠ back to questions

➋ Compute the biais and variance of each estimator, and then

conclude using the bias-variance decomposition.

expectation bias variance quadratic risk

X̄n µ 0 σ
2

n
σ

2

n

µ0 µ0 µ0 − µ 0 (µ0 − µ)2

1

2

(
µ0 + X̄n

)
1

2
(µ0 + µ) 1

2
(µ0 − µ) 1

4

σ
2

n
1

4

σ
2

n
+ 1

4
(µ0 − µ)

2

X̄n + c µ+ c c σ
2

n
σ

2

n
+ c2

Reminder: varθ(αX + β) = α2 varθ(X ).
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Exercise solution 1 ➠ back to questions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Draw the four risks for σ2 = 1, n = 10, µ0 = 1 and c = 0.5.
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Exercise solution 1 ➠ back to questions

➌ Let us compute the risk two well-chosen points.

For θ = (µ0, 1) we have

Rθ (µ̂2) = 0, Rθ (µ̂3) =
1

4n
, therefore Rθ (µ̂2) < Rθ (µ̂3) .

For θ =
(

µ0 +
1√
n
, 1
)

we have

Rθ (µ̂2) =
1

n
, Rθ (µ̂3) =

1

2n
, therefore Rθ (µ̂2) > Rθ (µ̂3) .

Therefore the estimators µ̂2 and µ̂3 are not comparable.
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Exercise solution 1 ➠ back to questions

➍ We have: 





Rθ (µ̂4) =
σ2

n
+ c2

Rθ (µ̂1) =
σ2

n

Therefore, ∀θ = (µ, σ2) ∈ Θ = R× R
+
∗ , Rθ (µ̂4) > Rθ (µ̂1)

Thus µ̂4 is not admissible.
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Exercise solution 2 ➠ back to questions

➊ Let us check that the model satisfies the regularity conditions C1

and C2, and that Fisher’s information does not vanish.

✏ C1: since Θ = ]0, 1[, the densities

fθ(x) = θ
∑n

i=1 xi (1 − θ)n−
∑n

i=1 xi

are all supported on S = {0, 1}n.

✏ C2: Θ = ]0, 1[ is an open subset of R, θ 7→ fθ(x) is

differentiable on Θ for all x , and the score

Sθ(X ) =
∂(ln fθ)

∂θ
(Xi ) =

n

θ(1 − θ)

(
X̄n − θ

)
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Exercise solution 2 ➠ back to questions

is centered: Eθ (Sθ(X )) =
n

θ(1 − θ)

(
Eθ(X̄n)− θ

)
= 0.

✏ Finally, we check that the Fisher information does not vanish:

I (θ) = varθ (Sθ(X )) =

(
n

θ(1 − θ)

)2

varθ(X̄n) =
n

θ(1 − θ)
> 0.

✏ The Cramér-Rao bound for θ is

I (θ)−1 =
1

n
θ(1 − θ).
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Exercise solution 2 ➠ back to questions

➋ The estimator θ̂n = 1
n

∑n
i=1 Xi is unbiased:

Eθ(θ̂n) = Eθ(X1) = θ,

and its variance is

var(θ̂) =
1

n
var(X1) =

θ(1 − θ)

n
= I (θ)−1.

Therefore it is efficient.

Remark: it is easy to check that θ̂n is a regular estimator (see definition on

slide 29), since

a the density fθ is differentiable with respect to θ,

b the integrals boil down to finite sums over {0, 1}n.
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Exercise solution 3 ➠ back to questions

➊ Strong consistency

Reminder: η̂n
as
−→ η iff η̂

(k)
n

as
−→ η(k), ∀k .

For all k ∈ {1, . . . ,K}, we have:

η̂
(k)
n =

1

n
card {i ≤ n | Xi ∈ Ak} =

1

n

n∑

i=1

Zi with Zi = 1Ak
(Xi ).

The strong law of large numbers, applied to (Zi )i≥1, then yields:

η̂
(k)
n =

1

n

n∑

i=1

Zi
a.s.

−−−→
n→∞

E(Z1) = η(k).

since Z1, Z2, . . .
iid
∼ Ber

(
η(k)

)
.
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Exercise solution 3 ➠ back to questions

➋ Mean-square consistency

E

(

‖η̂n − η‖2
)

=
K∑

k=1

E

((

η̂
(k)
n − η(k)

)2
)

with k fixed: η̂
(k)
n = Zn with Zi ∼ Ber(η(k)) of finite variance.

The law of large number in L2 gives:

Zn = η̂
(k)
n

L2

−−−→
n→∞

η(k), i.e. E

((

η̂
(k)
n − η(k)

)2
)

−−−→
n→∞

0

Hence E

(

‖η̂n − η‖2
)

−−−→
n→∞

0 et η̂n
L2

−−−→
n→∞

η



57/60

Exercise solution 3 ➠ back to questions

Histogram calculed for N = 100 and K = 20.

Note. The law used in the example has a density fX (x).
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Exercise solution 3 ➠ back to questions

Histogram calculated for N = 10000 and K = 20.
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Exercise solution 3 ➠ back to questions

Histogram calculated for N = 10000 and K = 8.
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Exercise solution 4 ➠ back to questions

Consider the bias-variance decomposition of the quadratic risk:

Eθ

(
(η̂ − g(θ))2

)
= varθ (η̂) + bθ(η̂)

2.

The two terms in the sum are positive, therefore

Eθ

(
(η̂ − g(θ))2

)
→ 0 ⇔

{

varθ (η̂) → 0,

bθ(η̂) → 0.

This proves the claimed equivalence.
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Other examples, not treated in this course (nonparametric

statistics)

Example 3

◮ X1,X2, . . . ,Xn
iid
∼ P,

◮ θ = P, unknown distribution,

◮ Θ = {distributions on (R,B(R))},

◮ g(θ) = F : cumulative distribution functions of the Xi ’s.

Example 4

◮ X1,X2, . . . ,Xn
iid
∼ Pθ,

◮ Pθ: probability density functions θ(x)

◮ Θ =
{
pdf on R, of class C 2, with

∫
θ′′(x)2 dx < +∞

}

◮ g(θ) = θ.

➠ back to slide 10



Proof of the Cramér-Rao inequality
Preliminary remark: since η̂ is a regular UE of g(θ),

g is differentiable.

Let θ ∈ Θ, and set c = covθ (Sθ, η̂) ∈ R
p. Then, ∀a ∈ R

p,

varθ

(

η̂ − a⊤Sθ
)

= varθ (η̂)− 2a⊤c + a⊤ varθ (Sθ) a ≥ 0.

In particular, for a = varθ (Sθ)
−1

c ∈ R
p, we get:

varθ (η̂)− c⊤ varθ (Sθ)
−1 c ≥ 0.

Finally, since Sθ is centered and η̂ is a regular UE,

c = Eθ (η̂Sθ) =

∫

S
η̂(x) ·

1

fθ(x)
∇θfθ(x) · fθ(x) ν(dx)

=

∫

S
η̂(x)∇θfθ(x) ν(dx) = ∇θEθ (η̂) = ∇g(θ).

➠ back to slide 30



Probability refresher: convergence modes
✐ almost sure convergence :

Tn
as
−→ T if P (Tn → T ) = 1

✐ convergence in L2 (in mean square):

Tn
L2

−→ T if E
(
‖Tn − T‖2

)
→ 0

iff ∀j ≤ p, T
(j)
n

L2

−→ T (j)

✐ convergence in probability:

Tn
P
−→ T if ∀ε > 0, P (‖Tn − T‖ ≥ ε) → 0

✐ convergence in distribution:

Tn
d
−→ T if ∀ϕ, E (ϕ(Tn)) → E (ϕ(T )) ,

with ϕ : Rp → R continuous and bounded. ➠ back to slide 36



Consistency of the MLE

The MLE minizes the following criterion:

γn(θ) = −
1

n
ln fθ(X ) = −

1

n

n∑

k=1

ln fθ(Xi ).

Let θ ∈ Θ, and set c = covθ (Sθ, η̂) ∈ R
p. Then, ∀θ ∈ Θ,

γn(θ)−γn(θ⋆) =
1

n

n∑

k=1

ln
fθ⋆(Xi )

fθ(Xi )

as
−−−−→
n→+∞

∫

S1

ln
fθ⋆(x)

fθ(x)
fθ⋆(x) ν1(dx).

(assuming that Zi =
fθ⋆ (Xi )

fθ(Xi )
has a first-order moment).

Definition / property: Kullback-Leibler divergence

DKL (fθ⋆ ||fθ) =
∫

S1
ln

fθ⋆ (x)

fθ(x)
fθ⋆(x) ν1(dx) ≥ 0



Consistency of the MLE (cont’d)

Set ∆n(θ⋆, θ) =
1
n

∑n
k=1 ln

fθ⋆ (Xi )
fθ(Xi )

and ∆(θ⋆, θ) = DKL (fθ⋆ ||fθ).

We have ∆n(θ⋆, θ)
Pθ⋆

−ps
−−−−→
n→+∞

∆(θ⋆, θ) for all θ, and ∆(θ⋆, θ⋆) = 0.

Theorem: Consistency of the MLE

Assume that, for all θ⋆ ∈ Θ,

i supθ∈Θ |∆n(θ⋆, θ)−∆(θ⋆, θ)|
Pθ⋆−−−−→

n→+∞
0

ii and, for all ǫ > 0,

inf
θ∈Θ, ‖θ−θ⋆‖≥ǫ

∆(θ⋆, θ) > 0.

Then the MLE is (weakly) consistent.

➠ back to slide 41
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