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Lecture 2/9

Point estimation

Course objectives

» Learn how to quantify the performance of an estimator
» Learn how to compare estimators

» Introduce the asymptotic approach
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L ecture outline

1 — Point estimation: definition and notations




Recap: mathematical framework

Data
» Formally, an element x in a set X.

> ex: X =R", R, {words}, some functional space, etc.

From data to random variables

» A priori point of view: before the data is actually collected.
» Modeling: RV X taking values in (X, <),
» but the distribution of X is unknown.

Statistical modeling
» X is assumed to be defined on (Q2, .7, P), with P ¢ #.
> & . aset of possible probability measures on (2, %)
» Formally, .7 = (&, o 335), with 2% = [PX P ¢ 2},

Canonical construction: Q =X, .F =&, X =Idy et & = 2%
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Recap: mathematical framework (cont'd)

Important

Since P € & is unknown, we need to design statistical procedures
that “work well” (in a sense to be specified) for any
distribution P € &2,

Parameterized family of probability distributions
» Usually, we write &2 = {Py, 6 € O}.
» 0: unknown parameter (scalar, vector, function...)

» In the following, we assume a parametric model: © C RP”.

Important case: d-variate (iid) n-sample (— n x d data table)

> X = X" with ¥ € R endowed with their Borel o-algebras,
> X = (Xy,...,X,) with X; © Py, and thus P5 = P$".
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Point estimation

Parameter of interest

» We are interested in parameter n = g(0),
where g : © — R ou R9,

» Its value is unknown, since 6 is unknown.

Informal definition: estimation

Guess (infer) the value of 1 based on a realization x of X.

Definition: estimator

We call estimator any statistic 7 = ¢(X) taking value in the
set N = g(©) of possible values for 7.

Remark: the word “estimator” can refer either to the RV 1j or to the

function . In practice, we identify the two and write (abusively) 7 = 7(X).
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Example 1 (reminder)

IID Gaussian n-sample: X = (X1, ... X,) with
> Xl,XQ,...,Xnifi\(jJV(/L,Uz)1
> 0= (p,0°),

> © =R x]0; +o0].

In this example, we assume that we want to estimate the mean p;
» heren=pand g: 0 = (,u,az) L,

» o2 is unknown too (nuisance parameter).
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Example 1 (cont'd)

Some possible estimators. . .
> =X, = %27:1 X; (method of moments / MLE),

» [io = o for a given g € R,
> iz = S0 + 5 Xn,
» [is = X, + c for a given ¢ # 0,
» 5 = med(Xy,...,Xp),
> .
Questions

» |s one of these estimators “better’ than the others?
» Can we find an “optimal” estimator?

» In what sense?
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Other examples

Example 1’
» Same statistical model as in Example 1, but
> g(0) = o”.

» In this case, i is seen as a nuisance parameter.

Example 1"

» Again the same statistical model, but

> g(0) =0 =(u,0°).
» Here, the parameter to be estimated is a vector.
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Other examples (cont'd)

Example 2
> X1, X5,..., X, IfI\CJI 8(9), le., fg(X) — e 0 ]lxzo,
> O =(0,4+00),

> g(0) =Ey(X1) =1/0.

Example 2
» Same statistical model, but

> g(0) =Py (X1 > xp) = e % for a given xg > 0.

Example 3 (optional)

» non-parametric statistics
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ecture outline

2 — Quadratic risk of an estimator




General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L: N x N — R.
» Reminder: N = g(©) is the set of all possible values for 7.

» Interpretation: we lose L(1,7) if we choose 7’ as our estimate
while 7 is the true value.

Risk
For a given loss function L, we define the risk Ry(#}) of the
estimator 7}, for the value 6 € © of the unknown parameter, by

Ro (1) = Eo (L (g(0),1)) -
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Quadratic risk

Quadratic risk

We call quadratic risk the risk associated with the loss function
L(n,n') = [ln — 1'%,

that is,
Ro (7) = Eq (Ilg(8) — 7lI°) -

Remarks
» Also called “mean square error” (MSE).

» Most commonly used notion of risk
(for the sake of simplicity, as we will see);

» in the rest of this lecture, we will consider this risk exclusively.
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Example 1 (reminder)

IID Gaussian n-sample: X = (Xi,...X,) with
> X1, X X S N (1, 02),
> 0= (n,0?%),

> © =R x]0; +o0].

In this example, we assume that we want to estimate the mean y;
» heren=pand g: 0 = (,u,a2) > L,

» o2 is unknown too (nuisance parameter).
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Example 1: risk of the estimator [i;

Consider the estimator

For all 6 = (i, 0?) € ©, we have the following result:

Quaderatic risk of the sample mean
Ro (A1) = Eqg ((ﬁl — M)2) = —.

Remark: the result holds as soon as the X;'s have finite second-order moments

(Gaussianity is not actually used)
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Example 1: risk of the estimator [i; (computation)

Notice that
]- n
= > Eo(Xi) = u
i=1

Therefore

Ro (fn) = varg (f) = — Var@ (Z )
2 :
2 Zvarg
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Bias of an estimator

Let 7} be an estimator of n = g(#) admitting a first-order moment,
for all 8 € ©.

Definition: bias / unbiased estimator

The bias of an estimator 7 at § € © is defined as

bg (7)) = Eo(1) — &(0).
We will say that 7, is an unbiased estimator (UE) if

bo(7) =0, V6 €O.

Example 1
» We have already seen that /i; = X, is an UE of L.
> More generally: i = a + X, is an UE of p if, and only if,
a=0et [=1.
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Bias-variance decomposition
Reminder: we still consider the quadratic risk.

Let 7} be an estimator 1 = g(f) admitting a second-order moment,
vV € ©

Proposition: Bias-variance decomposition (scalar case)

If the quantity of interest is scalar (n € R), we have:

Ry (1) = Eo (7 — g(6))?) = varg (9) + ba()°.

Remark: we can generalize to the vector case by summing over the

components:
Ro (1) = Eo (|17 — g(0)IIF) = tr (vare (1)) + [[ba (7)1,

where varg (7)) is the covariance matrix of 7. 17/00

Example 1: risk of some estimators

2

f1 = X Re(ﬁ1)=7+02
fl2 = po Ro(fi2) = 0% + (1 — po)

1 1- 1 o2 1
fs = = o + =X Ro(fiz) = - 2 + = (u—
fiz = Sho + 5 X 0(/13) R 4(u 110)
~ v ~ 02 2
fla = Xp+c Ro(fla) = — + ¢

2
fis = med(X1, ..., X») Re(fis) ~ 1.57 ‘% + 02 (n— +o0)
Exercise: Compute Ry(f1;), 2 <j <4

Remark: only the result for jis actually uses the Gaussianity assumption.
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Admissible estimators

Definition: order relation on the set of estimators

We will say that %’ is (weakly) preferable to 7 if
> V0 € ©, Ry(7') < Ro(7),

We will say that it is strictly preferable to # if, in addition,
> 30 €0, Ry() < Ro().

Remarks
» The relation “is preferable to" is a partial order on risk functions.

» In general there is no optimal estimator, i.e., no estimator that is preferable to
all the others (unless we restrict the class of estimators that is considered).

Admissibility
We will say that 7) is admissible if there is no estimator #’ that is
strictly preferable to it.
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Example 1 (cont'd)

— O'2 2
fir = X, R@(/fbl):? + 0
fi2 = o Ro(fi2) = 0% + (1 — o)

1 1- 1 o2 1
N3 = =0+ =X Ro(fiz) = - + = (u—
fis = Sp0 + 5 Xn o(/13) 1, T 4(u 10)
~ v ~ 02 2
fisg. = Xn+C RQ(LM):?‘FC

» [i1 is strictly preferable to fi4, therefore i4 is not admissible.

» It can be proved
» that fi1, [iz, and fi3 are pairwise incomparable,
» but that all three are admissible (proof out of scope)
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L ecture outline

3 — A lower bound on the quadratic risk

Context and motivation

We consider the class of unbiased estimators of g(6),

w for an UE, Ry(7) = varg(7).

Objective of this section: show that there exists a bound of the

form
varg(7) > vimin(0), Vo € O,

that holds for (nearly) all UE of g(6).

Application of such a bound?

@ Prove that a certain level of accuracy cannot be met by an
unbiased estimator.

@® Prove that a given UE is optimal (that is, it minimizes, within
the class of UEs, the risk Ry(7),V6 € ©).
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Regularity condition Cy and C4

Regularity condition Cj

Dominated model: there exists a (o-finite) measure v on (X, &),
and a family (fy) of probability density functions wrt v, such that

VAe o, Pyp(XeA)= /A fo(x) v(dx).

Regularity condition C;

The densities fy share a common support: IS € &,

Vo € ©, ]lf9>0 =1s v-ae.

» Consequently, it can be assumed that fy(x) >0 < x € S. 2260

Regularity condition C;: examples / counter-example

Consider an IID univariate n-sample:

X ~ fy(x erx,

(with a usual abuse of notation for the pdf’s).

Remark: if Cy holds for n =1 with § = &y,
then it also holds for all n > 2 with § = S7.

A few examples. ..
® .V (u,0?) with 02 > 0: C; holds with §; =
® £(0): C; holds with §; = [0, +00).
© Ups: C1 does not hold!
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Another regularity condition

We assume that Cy and C; hold.

Regularity condition Cy

@ O is an open subset of RP,
@ 0 — fy(x) is differentiable for v-almost all x,

@ and, at any 0 € ©, we have

/ Vofy(x) v(dx) = V, / () v(dx) = 0.
S S

In other words: V0 € ©, Vk < p,

Ofp(x) B
s 5@ v(dx) = 90, /S fa(x) v(dx) = 0.
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Score

Definition / property: score
Assume that Cgy, C1, Cs-i and Csy-ii hold and define, for all x € S

d1n fy(x)
001

So(x) = Vo (Infy(x)) =

d1n fp(x)
a0,

Then
@ We call score the random vector Sy = Sp(X).
@ Co-iii & VO € O, the score Sy is centered under Py.

Remarks:
» Well defined, since X € S Py-ps, VO € ©.
» The score vanishes at the MLE (recall that © C R” is assumed open).
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The score is centered (proof)

Notice that {
Vo (Infy) = — Vofy,
fo

and thus, for all 8 € ©,
B (S0) = | So(x) ) ()

_ / L Yuh(x) £ () v(dx)
S

Finally,

Eg(S9) =0 < /SVQfg(g) v(dx) =0 (Cq-iii). [

26/60

Example 2
Recall that X1, ..., X, © £(6) with § € © =10, +o00[.

We compute the likelihood, for any xq,...,x, > O:

L(0;x) = fo(x) = [ [ folxi) = 0" e 02,
i=1

then the log-likelihood:

InL(0;x) =Inf(x) = nln6 — 0 x;,

and, finally, the score:
n 1 _
SQ(K) = ;S@(X;) = n <5 — Xn) .
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Remark on condition Co-iii

Recall Co-iii: VO € ©,

/ Vafy(x) v(dx) = Vs / () v(dx) = 0,
S S

or, equivalently: Ey(Sp) = 0.

Two approaches are available to check this condition:
® Compute explicitely Eg(Sp) = [ Vofy(x) v(dx).

® Use a domination condition: show that V0 € ©, 37 C ©,
neighboorhood of 6y, and a v-integrable function g : X — R st

Ofy(x)
00,

VeV, Vx eS8, Vk <p, ‘ < g(x)
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Cramér-Rao inequality 1/2
Consider a statistical model where Cy-Cs hold,

and let 7j be an estimator of n = g(f) € R.

Definition: regular estimator

We will say that 7} is a regular estimator if
® Ey (7*) < 400, V8 € O,
® 0 — Ey (7)) is differentiable, with

VoEq (7) = /3 ) Vo () v(dx), V8 € O.

Remark: if ) is an unbiased regular estimator of g(f), then

(Ve)(0) = /3 00 Vol () v(dx), VO <@,
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Cramér-Rao inequality 2/2

Theorem / definition: Cramér-Rao inequality

Consider a statistical model where Cy-Cs hold, and assume that
the score Sy admits second-order moments for all 6 € ©.

Let varyg(Sy) denote the covariance matrix of the score, which is
assumed invertible for all 6 € ©.

Let 7} be a regular unbiased estimator of g(6). Then, V0 € ©,

Ry (7) = varg (7)) > Vg(0)" varg (Sp)~ ' Vg(h).

An unbiased estimator is called efficient if this bound is met for
all 6.
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Fisher information

We still assume that Cy—Cs hold.

Definition: Fisher information

We call Fisher information of X the p x p matrix

1(8) = varg(S) = Eg (59 s/ )

which appears in the Cramér-Rao lower bound.

Proposition

Let /,(6) denote the Fisher information in an IID n-sample. Then

1,(0) = n h(6).

The CR inequality becomes: varg(f)) > + Vg(0)" h(0)"1Vg(0).
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Proof

Notice that the score is additive in an |ID sample:

So = Vg (Infy(x))

— Yy [In (H £ X)) ng (ln £X(x )
i=1 =1
Zi
Thus we have
varg (Sp) Zvarg = n varg (Z1) = nh(0)
i=1
since Z1, ..., Z, are |lID, and distributed like the score in a sample
of size 1. O
32/60
Example 1: estimation of
Reminder: Xi, ... X, S N (p,02) and 0 = (p, 02)

> [, =X, is the MLE of g,
> [, is unbiased and Ry(,) = varg(fin) = =

The Fisher information matrix in this model is (see PC 2)

Cramér-Rao inequality with g(0) = u: V!, UE of p,

therefore (i, = X, is efficient.
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Example 1': estimation of o2

Same statistical model, but we want to estimate g(8) = o2.

It is then possible to show (see PC 2) that
> the MLE S2 = 257 | (X — )?,,)2 is biased;

> 52 =(5')? = ﬁ S (Xi— X,,)2 is an UE of o2, with

variance .
varg (62) = 20
" n—1
Conclusion: &2 is not an efficient estimator, since
"2 20%
vary (Jn) > —.
n

(Beware the misleading terminology: it can be proved, using Lehmann-Scheffé's theorem, that 6',27 is a
minimal variance UE for this problem, and therefore is optimal for the quadratic risk among all UE’s.)
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| ecture outline

4 — Asymptotic properties




Motivation / notations

Problem

It is sometimes (often !) difficult to obtain the exact properties of
statistical procedures.

(point estimators, but also Cls, tests, etc. (cf. next lectures))

Asymptotic approach(es) — approximate properties

> X1, Xo,... K Py, defined on a common (,.%,Py)

» Sequences of estimators: 7, = 7,(X1, ..., Xp)
» Properties of the estimators when n — 00?
Remark: we have now not one but a sequence (.#y),-, of statistical models
My = (X", %" {PF", 0 € ©}),

that we instantiate on a common underlying probability space (£2,.%).
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Probability refresher: convergence modes

Main convergence modes that are useful in statistics:
» almost sure convergence ,
» convergence in L? (in mean square),
» convergence in probability,
>

convergence in distribution.

Implications between convergence modes:

proba
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Consistency

Let (7),) denote a sequence of estimators of n = g(6).

(weak) Consistency
We will say that 7}, is a consistent estimator of n = g(0) if, V0 € ©,

N ]P)9 0
fin ——— &(0).
N> with an obvious abuse of terminology)

Strong and mean-square consistency

We will say that 7j, is strongly consistent
(resp. consistent in the mean-square sense) if, VO € O,

~ Pg—as. . L2(Py)
fln ——— g(6) (reSP-, fin — g(9)> :

Remark: the word “convergent” is sometimes used instead of “consistent”.
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Probability refresher: law of large numbers

Let (Xk),~; be a sequence of real- or vector-valued RV.

Strong law of large numbers

If the X, 's are [ID and have finite first-order moments, then

Xn —> RE(Xy).

n—00

Law of large numbers in L2

If the X,'s are [ID and have finite second-order moments, then

X, -5 E(x).

n—0o0

Proof (scalar case): E (()_(n - ]E(Xl))z) = varg(Xy) = % varg(X1) — 0. O
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Consistency: examples

A) 1ID n-sample with finite first-order moment
> ie., Eo(||X1]]) < 400, forall 8 € ©.
> X, is a strongly consistent estimator of 7 = Eg(X1).

» Nothing can be said about the quadratic risk without
additional assumptions.

B) IID n-sample with finite second-order moment
> ie., Eg(]| X1]?) < +oo, for all § € ©.

» X, is strongly consistent and consistent in the mean-square
sense for n = Eg(X1).
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Consistency: examples (cont'd)

15

‘|

0 50 100
n

150 200

Convergence of X, to the true mean

(for a Gamma n-sample with true mean p = 1.5)
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Consistency: examples (cont'd)

C) 11D n-sample (with any distribution)
> Let Ac o/ and n = g(0) =Py (X1 € A).
> Relative frequency: 9, = % card {i < n| X; € A}
» 7, is a strongly and mean-square consistent estimator of 7.

Application: histograms

D) MLE of an n-sample distributed according to the uniform
distribution (see PC 1)

> X1, Xy Uo,0]

» We estimate n = 6 with 7, = max;<, Xi.

» 17j, is consistent, both strongly and in the mean-square sense.

E) Maximum likelihood estimator
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Summary and preview

We have seen and will practice in PC 2:

» the quantitative assessment of an estimator's performance
through risk computation,

» the comparison of estimators and a concept of optimality,

» the asymptotic analysis of estimators.

We will cover in Lecture 3:

» the concept of convergence rate of an estimator,

» the definition and construction of confidence intervals/regions.
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L ecture outline

5 — Standard exercises
5.1 — Questions
5.2 — Answers

ecture outline

5 — Standard exercises
5.1 — Questions




Exercise 1 (quadratic risk)

Let Xl,...,XnE\(jJV(/,L,Uz) with 0 = (u1,0%) € © =R x R}

We want to estimate g(6) = . We consider the estimators

,&1 — )_<I77 /,12 — MO? la3 — ,UO + )_<I77 //*\L4 — Xn + C7

1
2

N -

where 19 and ¢ are given real numbers.

Questions

@ Prove the bias-variance decomposition formula in the scalar
case.

® Compute the quadratic risk of each of these estimators
© Prove that i and i3 are not comparable.

O Prove that [i4 is not admissible.
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Exercise 2 (efficiency of an estimator)

Let X1, ..., X, < Ber(d) with 6 € © =0, 1].

Recall that (see Exercises in Lecture 1):

» the log-likelihood of the n-sample is
In £(6; x) = Infyg(x) = nin(1 — ) — In (T@) Zx,-,

A 1
» the MLE is 6, = - Dol 2.

Questions

@ Check that the model satisfies the hypotheses for
Cramér-Rao’s inequality, and compute Cramér-Rao’s bound.

@ Is the MLE 4, efficient?
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Exercise 3 (consistency of an histogram)

Consider:
» an n-sample Xi, ..., X,, with X; in ]a, b] C R,
» a partition of ]a, b] in K adjacent classes Ay =]ax_1, ax], for
ke{l,...,K}, with a9 = a, ax = b,
> the vector € RX with n(k) = P (X € Ay).

Histogram

Graphical representation of the empirical distribution of a random
variable using rectangles, where the bases are the intervals Ax and the
areas are proportional to the relative frequencies ﬁ,((k) of the classes:

1
Ak = Zcard{i<n|Xi € A}, 1<k<K.
n
Question. Prove that 1), = (77,(,1), .. ,ﬁf,K)) is a strongly consistent

and mean-square consistent estimator of 7.

45/60

Exercise 4 (mean-square consistency)

Let /), denote an estimator of a scalar parameter n = g(6) € R,
indexed by the size n of the observed sample.

Question

Prove that 7, is consistent in the mean-square sense if, and only if,
the following conditions are satisfied for all § € ©:

0 b0 (ﬁn) — 0,
® varg (7,) — 0.
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L ecture outline

5 — Standard exercises

5.2 — Answers

Exercise solution 1

© Bias-variance decomposition

Ry (1) = Eo (7 — g(6))?) = varg (9) + ba()°.

Ro () = Eq ((7 — g(6))?)
= Ey (7 — Eo(7) + ba(1))?)
=Ey ((h — Eg(ﬁ))z)/ + ba(7)? + 2 Eg (7 — Eo(7)) ba(D)
varg(7) =0

= varg (1) + bg (7).
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Exercise solution 1

® Compute the biais and variance of each estimator, and then

conclude using the bias-variance decomposition.

expectation | bias variance | quadratic risk
X, p 0 o o
1o 1o fo — [t 0 (1o — 11)?
= 2 2
2 (mo+Xa) | 3 (mo+m) | 3(o—p) [3% | 3Z+5 (no—n)
X, + ¢ w+c G "—: ”—: AL &
Reminder: varg(aX + 3) = a? varg(X).
48/60
Exercise solution 1
1 A
— [z
0.8 i3
—fiq
0.6
0.4
0.2
0 1 1 1 1 | 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
I

Draw the four risks for 62 =1, n =10, g = 1 and ¢ = 0.5.
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Exercise solution 1

® Let us compute the risk two well-chosen points.

For 6 = (u0,1) we have

A o I " o
Ry (fi2) = 0, Ry (fi3) = i therefore Ry (fi2) < Ry (fi3)-

For 0 = <,u0 + —=, 1) we have

Si-

R 1 R 1 A N
R9 (ILL2) = E7 R@ (,u3) = E, therefore R@ (/Jz) > R@ (,ug).

Therefore the estimators fio and /i3 are not comparable.
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Exercise solution 1

O We have:
( R o2 )
Ro(fa) = —+c
< 2
Ay o 9
| Ro(fn) = -

Therefore, V0 = (u,0°) € © =R x R}, Ry (fia) > Ry (f11)

Thus [i4 is not admissible.
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Exercise solution 2

@ Let us check that the model satisfies the regularity conditions C;
and Cs, and that Fisher's information does not vanish.

= (Cj: since © =]0, 1], the densities
fo(x) = §2i=1%i (1— 9)"—27:1 X
are all supported on S = {0,1}".

© (Cq: © =]0,1[ is an open subset of R, 6 — fy(x) is
differentiable on © for all x, and the score

d(In fy) n

(Xn —0)
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Exercise solution 2

is centered: Eg (Sy(X)) =

eaie)ﬁﬂxﬂ_@:ﬂ'

e Finally, we check that the Fisher information does not vanish:

n

n . _
1(0) = varg (Se(X)) = (9(1_9)) varg(Xy,) = 61— 0) > 0.

= The Cramér-Rao bound for 8 is

1)~ = %9(1 — ).
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Exercise solution 2

@ The estimator §, = 1 S°7_| X; is unbiased:
Eg(0n) = Eo(X1) =0,

and its variance is

var(9) = %var(Xl) _ =9 _ g1

n
Therefore it is efficient. ]

Remark: it is easy to check that @, is a regular estimator (see definition on
slide 29), since

® the density fy is differentiable with respect to 6,
O the integrals boil down to finite sums over {0,1}".
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Exercise solution 3

© Strong consistency

Reminder: 7, = n iff ﬁ,gk) 25 )| k.

For all k € {1,..., K}, we have:

~(k 1 : N i
772) = - card{i < n| X; € A} = " ;Zi with Zj = 14, (XG).
=

The strong law of large numbers, applied to (Z;);>1, then yields:
A(k) — k)
::E::: ‘2? n—00 HE:(v;Z?l ) 77

since 21, £, ... S Ber (n(k)).
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Exercise solution 3

® Mean-square consistency

E (Ilﬁn - 77||2> = ZK:E ((ﬁﬁk) - n("))Q)
k=1

with k fixed: ﬁf,k) = Z, with Z; ~ Ber(n(¥)) of finite variance.
The law of large number in L? gives:
_ 2
Z,= ﬁf,k) L—2> n(k), Le. E <<ﬁ,(7k) — n(k)) > — 0
n— 00 n—00

2
HenceE(Hﬁn—nHz) —— Oet 17, L—> n

n—0o0 n—o00
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Exercise solution 3
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Histogram calculed for N = 100 and K = 20.

Note. The law used in the example has a density fx(x). L




Exercise solution 3
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Exercise solution 3
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Histogram calculated for N = 10000 and K = 8.
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Exercise solution 4

Consider the bias-variance decomposition of the quadratic risk:

Eo (7 — g(8))?) = varg () + ba().

The two terms in the sum are positive, therefore

{vara (7) — O,

~ 2
Eo ((7 — g(#))°) = 0 y(7) — 0.

This proves the claimed equivalence. O
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6 — Appendices
6.1 — Reminders & supplements

Other examples, not treated in this course (nonparametric
statistics)

Example 3
> X X0, ... X, S P,
» @ = P, unknown distribution,
» O = {distributions on (R, B(R))},

» g(0) = F: cumulative distribution functions of the X;'s.

Example 4
> X1, Xo.... X, S p,,
» Py: probability density functions 6(x)
> © = {pdf on R, of class €2, with [6"(x)*dx < +oo}

> g(0)=20.




Proof of the Cramér-Rao inequality
Preliminary remark: since 7j is a regular UE of g(6),
g is differentiable.

Let 0 € ©, and set ¢ = covy (Sy, ) € RP. Then, Va € RP,
varg <ﬁ — aTSg) = varg (7]) — 2a' ¢+ a' varg (Sg)a > 0.
In particular, for a = vary (59)_1 c € RP, we get:
varg () — ¢ varg (Sg) "t c > 0.

Finally, since Sy is centered and 7 is a regular UE,

c =Ky (Sy) = /Sﬁ(g) : ﬁvefe(&) - fy(x) v(dx)

=LMgvmuwwg=Vﬁmm=vam 0

Probability refresher: convergence modes

& almost sure convergence :

T, 3T if P(T,—»T)=1

& convergence in L (in mean square):

T,—T if E(T,—T|*)—0
iff vj<p, TY L TO)
& convergence in probability:

T. 5T if Ve>0, P(|T,—T|>¢c)—0

& convergence in distribution:

T, ST if Vo E(p(Tn)—=E(p(T)),

with ¢ : RP — R continuous and bounded.




Consistency of the MLE

The MLE minizes the following criterion:

Va(8) = == In fo(X) = —= Z In f(X

Let 0 € ©, and set ¢ = covy (Sy, 7)) € RP. Then, VO € O,

Yn(0)— Z| 0, (X)) = /S In %((;)) f, (x) 1 (dx).

X ) n—>+oo

(assuming that Z; = ) has a first-order moment).

f(X)

Definition / property: Kullback-Leibler divergence
Diw (fo. |lfe) = [, In 0.6 (X)vi(dx) >0

fo (x)

Consistency of the MLE (cont'd)

Set An(6..0) = 3 Yoja In ey and A(B.,0) = D (]|

We have A, (0,,0) —=—"% A(6,,6) for all 6, and A(6,,6,) = 0.

n—-+400

Theorem: Consistency of the MLE
Assume that, for all 4, € ©,
@ suppco |An (0, 0) — A0, 0)] e g

n——+00

@ and, for all e > 0,

inf  A(6,,0) > 0.
96@, ||0—9*||2€

Then the MLE is (weakly) consistent.




