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Lecture 4/9

Hypothesis testing

Course objectives

◮ make (binary) decisions through hypothesis testing,

◮ choose and construct a test,

◮ define and compute risks of error of the first and second kind.
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Lecture outline

1 – Examples and first definitions

2 – Parametric tests

3 – Goodness-of-fit testing: Pearson’s χ2 test

4 – Standard exercises (with solutions)

5 – Annexes
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Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ), θ > 0.

Problem

The manufacturer considers offering a one-year warranty. . .

➠ is it a good idea ?

Formalization

The manufacturer considers that it is a “good idea” if:

the return rate is lower than 10%

m
Pθ (X1 ≤ 1) = 1 − exp (−θ) < 0.1

m
θ < θ0 = − ln(0.9)



4/42

Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ), θ > 0.

Problem

The manufacturer considers offering a one-year warranty. . .

➠ is it a good idea ?

Formalization

The manufacturer considers that it is a “good idea” if:

the return rate is lower than 10%

m
Pθ (X1 ≤ 1) = 1 − exp (−θ) < 0.1

m
θ < θ0 = − ln(0.9)



5/42

Example: component reliability

Therefore, the manufacturer wants to know if θ < θ0 or θ ≥ θ0.

➠ hypothesis to be tested: H0 : θ ≥ θ0

(component quality is not sufficient)

Making (binary) decisions from data

We want to evaluate the “compatibility” between H0 and x :

◮ if a strong incompatiblity is detected,

➠ H0 is rejected (and the warranty proposed);

◮ otherwise, H0 is accepted.

Note the asymmetry between the two scenarios

(H0 = is retained by default)

Hypothesis tests make it possible to formalize this decision making.
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Another example / construction of a first test

Goal: test the mean parameter of a Gaussian distribution.

◮ X1, . . . ,Xn
iid∼ N (θ, σ2

0) (σ0 known; n = 10, σ0 = 2.5)

◮ hypothesis to be tested → H0 : θ = θ0 (fixed),

◮ alternative hypothesis → H1 : θ = θ1 (fixed, and θ0 < θ1).

Approach. Making a decision about H0 means estimating if it is

◮ either true ➠ δ = 0,

◮ or false ➠ δ = 1.

Constraint. We want δ to be such that, if θ = θ0 (H0 true),

Pθ0(δ = 1) = 5% (= α).

Intuitive construction of a test: δ = 1X̄>t

◮ where t is chosen such that Pθ0(δ = 1) = Pθ0(X̄ > t) = 5%.
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If H0 is true (θ = θ0): X̄ ∼ N

(

θ0,
σ2

0
n

)

, therefore

t = θ0 + q0.95
σ0√
n

where qr is the N (0, 1) quantile of order r .
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If H1 is true (θ = θ1): X̄ ∼ N

(

θ1,
σ2

0
n

)

, therefore

Pθ1(δ = 0) = Pθ1(X̄ ≤ t) = Φ
(

t−θ1

σ0/
√
n

)

where Φ is the cdf of the N (0, 1) distribution.
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18.8%
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How to formulate an hypothesis testing problem

Recall that we have a statistical model parameterized by θ :

P
X =

{

P
X

θ , θ ∈ Θ
}

.

Statistical hypothesis

A statistical hypothesis is represented by a subset of PX , and thus

by a subset of Θ.

Notation. Let Θj ⊂ Θ denote the subset representing Hj

➠ Hj : θ ∈ Θj

Parametric / non-parametric test

A testing problem is called parametric if Θ is finite-dimensional.



10/42

How to formulate an hypothesis testing problem (cont’d)

Null hypothesis

We call the null hypothesis the hypothesis H0 : θ ∈ Θ0

◮ that we “want to test”, and

◮ that will be retained “by default” unless it is clearly at odds

with the data.

Legal analogy: presumption of innoncence

Alternative hypothesis

We call alternative hypothesis the hypothesis H1 : θ ∈ Θ1

◮ that will be chosen if H0 is rejected.

◮ We assume that Θ1 ∩Θ0 = ∅.

Remark : we can assume wlog that Θ0 ∪Θ1 = Θ.
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Examples of parametric tests

Example 1. ➠ Exercice

◮ X1,X2, . . . ,Xn
iid∼ E(θ), with θ ∈ Θ = [0,+∞[,

◮ Θ0 = {θ ≥ θ0}; Θ1 = {θ < θ0} with θ0 > 0 a given threshold.

Example 2. Same example, with :

◮ Θ0 = {θ0} (singleton) ; Θ1 = {θ 6= θ0},
◮ or Θ0 = {θ0}; Θ1 = {θ < θ0}.

Definitions: simple / composite hypotheses

An hypothesis Hj is called simple if Θj is a singleton.

Otherwise, it is called composite.
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Other examples of (non-parametric) tests

Goodness-of-fit tests for a distribution or family of distributions

◮ ➠ voir section 3

Other types of tests

◮ testing the independence of two variables

◮ testing the symmetry of a distribution

◮ . . .
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Test procedures

Definition: test (procedure)

A test is a statistic δ = δ(X ) with values in {0, 1}:

δ : X 7→ {0, 1},

x →
{

0 if H0 is accepted,

1 if it is rejected (in favour of H1).

Definition: critical region of a test

The critical region Rδ of a test δ is the region of rejection

Rδ = { x ∈ X such that δ(x) = 1 } .
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Quantifying the risks of error

Definition: risk (of error) of the first kind

We call the risk of the first kind, or risk of type I error, the

probability of rejecting H0 when it is true :

Pθ(δ = 1) = Eθ(δ), θ ∈ Θ0.

(△! This risk depends on the value of θ, for θ ∈ Θ0.)

Definition: risk (of error) of the second kind

We call the risk of the second kind, or risk of type II error, the

probability of accepting H0 when it is false :

Pθ(δ = 0) = 1 − Eθ(δ), θ ∈ Θ1.

(Note the asymmetry of terminology

→ more emphasis is put on H0.)
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Definition: power of a test

We define power as the probability to reject H0 when it is wrong:

Pθ(δ = 1) = Eθ(δ), θ ∈ Θ1.

Remark: equal to “1 - risk of type II error”.

Usual approach† for the construction of tests.

Let 0 < α < 1 be a level of risk. We will look for tests s.t.

◮ ∀θ ∈ Θ0, Pθ(δ = 1) ≤ α;

➠ control of the risk of type I errors.

The test δ is said to have level (at most) α.

◮ ∀θ ∈ Θ1, Pθ(δ = 1) “as large as possible”;

➠ capacity to reject H0 when it is false.

Typical values: α = 5%, 1%, 1‰. . . † a.k.a. Neyman’s
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Back to the introductory example

◮ type I error: blue area

◮ type II error: red area
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Probability density function of X̄ under H0 and H1
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Definition: size of a test

We say that δ has a level exactly α, or size α, if

sup
θ∈Θ0

Pθ (δ = 1) = α.

Definition: comparing two tests

Let δ and δ′ be two tests with a level (at most) α. We say that δ′

is uniformly more powerful than δ if

∀θ ∈ Θ1, Pθ

(
δ′ = 1

)
≥ Pθ (δ = 1) .

(Some authors require a strict inequality at one or all θ ∈ Θ1.)

Remarks :

◮ this is a partial order on power functions,

◮ whenever possible, we will look for the uniformly most powerful (UMP)

test at level α (i.e., a test with α, that is uniformly more powerful than

all other tests with level α).
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Likelihood ratio test

Assume two simple hypotheses : Θ0 = {θ0} et Θ1 = {θ1}.

Denote by L : (θ, x) 7→ L(θ, x) the likelihood function†.

Definition: likelihood ratio test

We call the likelihood ratio (LR) test the test

δLR =

{

1 if T LR > c ,

0 otherwise,

built using the likelihood ratio statistic:

T LR =
L(θ1,X )

L(θ0,X )
.

† It can be proved that the family
{

P
X

θ0
, P

X

θ1

}

is always dominated (Radon-Nikodym).
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Fundamental result

Let α ∈ (0, 1).

Theorem: Neyman-Pearson “lemma”

Assume that there exists⊛ a threshold c = cα such that

◮ the associated LR test δLR has a level exactly α

(i.e., has size α).

Then δLR is most powerful† at the level α:

◮ for any test δ̃ with a level (at most) α,

δLR is more powerful than δ̃.

➠ The LR test is optimal in this setting.

⊛ Always true if the cdf of TLR is continuous.

† No need to specify “uniformly” since H1 is simple.
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Back to the Gaussian example

Likelihood ratio :

T LR =

1
(
√

2πσ0)
n exp

(

−
∑n

i=1(Xi−θ1)
2

2σ2
0

)

1
(
√

2πσ0)
n exp

(

−
∑n

i=1
(Xi−θ0)

2

2σ2
0

)

= exp

(

−n(θ2
1−θ2

0)
2σ2

0

)

exp
(
(θ1−θ0)

σ2
0

∑n
i=1 Xi

)

.

LR test at level α: since θ1 > θ0, we have

δLR = 1 ⇐⇒ T LR > cα ⇐⇒ T = X̄ > tα

➠ the test that was constructed in introduction is optimal.
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Test statistic and p-value

The result of a test can be expressed using the concept of p-value.

Definition: p-value

Let T be the test statistic of a test of the form δ = 1T>tα .

Definition. We call p-value the statistic

pval (x) = Pθ0 (T (X ) > T (x))

taking values in (0, 1). △! Function of the data!

Let F0 denote the cdf of T under H0. Then:

pval(x) = 1 − F0(T (x)).
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Interpretation of the p-value
Assume that F0 is continuous and strictly increasing:

∀α ∈ (0, 1), ∃!tα ∈ R, δ = 1T>tα has level exactly α

Proposition ➠ Proof

H0 is rejected at the level α ⇔ T > tα ⇔ pval < α.

tα is called the critical value for the test statistic T .

Interpretation: p-value = mesure of evidence against H0

p-value evidence against

pval < 0.01 very strong evidence

0.01 ≤ pval < 0.05 strong evidence

0.05 ≤ pval < 0.10 weak evidence

0.1 < pval no evidence
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Back to the Gaussian example, where T (X ) = X̄

0
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tα

α = 0.4

α = 0.05

α = 0.233

T (x)

T (x)

T (x) = tα

H0 accepted

H0 rejected

H0 accepted

(pval is the maximal level α at which H0 is accepted.)
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Examples of problems with composite hypotheses

Simple null / composite alternative

◮ Θ0 = {θ0} / Θ1 = {θ > θ0} (one-sided test),

◮ Θ0 = {θ0} / Θ1 = {θ 6= θ0} (two-sided test),

◮ . . .

Composite null / composite alternative

◮ Θ0 = {θ ≤ θ0} / Θ1 = {θ > θ0} (one-sided test),

◮ Θ0 = {µ = µ0} / Θ1 = {µ = µ1},
where θ = (µ, σ2) with unknown σ2 (nuisance parameter),

◮ Θ0 = {θ(1) = θ(2)} / Θ1 = {θ(1) 6= θ(2)},
where θ ∈ Θ = R

2 (egality of two parameters),

◮ . . .
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Differences with the case of simple hypotheses

◮ Test with a level (at most) α, when Θ0 is composite :

∀θ ∈ Θ0, Pθ (δ = 1) ≤ α ⇔ sup
θ∈Θ0

Pθ (δ = 1)

︸ ︷︷ ︸

size of the test

≤ α.

◮ If Θ1 is composite, the power is a function of θ ∈ Θ1 :

Θ1 → [0, 1]

θ 7→ Pθ (δ = 1) .

◮ p-value for a test of the form δ = 1T>tα :

pval = sup
θ∈Θ0

(1 − Fθ(T )) .

where Fθ is the cdf of T under Pθ.
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Back to the Gaussian example / testing the mean
◮ Simple hypothesis testing

H0 : θ = θ0/H1 : θ = θ1, with θ0 < θ1

◮ Reminder of the optimal test.

δ(X ) = 1 ⇐⇒ X̄ > tα, with tα = θ0 + q1−α
σ0√
n

Following the Neyman-Pearson lemma, δ is UMP among tests

of level α.

◮ Analysis of the test. δ is the same for any θ1 > θ0 (it only

depends on α and θ0); therefore δ is also UMP for a test of

the form:

H0 : θ = θ0/H1 : θ > θ0.

It can be proved that δ is also UMP for a test of the form:

H0 : θ ≤ θ0 / H1 : θ > θ0 ➠ exercise
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Context : X1,X2, . . .
iid∼ Pθ

When the distribution of Tn(X n) is hard to determine

➠ use of the limit distribution for n → ∞.

Example: component reliability

Rα,n = {xn such thatTn(xn) = x̄n > t̃α,n}.

with t̃α,n chosen in such a way that :

lim
n→∞

Pθ0 (Tn(X n) > t̃α,n) = α.

By the CLT under H0 :
√
n
(

X̄n − 1
θ0

)
d−−−→

n→∞
N

(

0, 1
θ2
0

)

, therefore

t̃α,n =
1

θ0
+

1

θ0
√
n
q1−α

where qr is the N (0, 1) quantile of order r .
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Example: component reliability (cont’d)

10
2

10
4

1

θ0
= − 1

log(0.9)

tα,n (exact)

t̃α,n (asymptotique)

12

14

16

18

sample size n

tα,n and t̃α,n

computed for α = 0.05
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Goodness-of-fit test for a single distribution

Context: X1, X2, . . .
iid∼ P with unknown P (can be anything)

➠ θ = P, Θ = { probability distributions on (R,B(R)) }.

Statistical hypotheses to be tested

For a given probability P0, we consider the hypotheses:

H0 : P = P0

H1 : P 6= P0

Component reliability example:

◮ The component manufacturer knows, from past analyses, that the

component lifetimes should follow a E(θ0) distribution.

◮ In order to check that the production line is still properly working, he

wants to test if H0 : P = E(θ0) is still true.

➠ back to slide 12
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Pearson’s χ2 test statistic
Let (A1, . . . ,AK ) be a partition of P0’s support, and

◮ N = (N1, . . . ,NK ) with

Nk =
∑n

i=1 1Ak
(Xi ) → observed frequencies (counts),

◮ p = (p1, . . . , pK ) with

pk = P0 (X1 ∈ Ak) → npk = expected frequ. under H0.

Proposition

Under hypothesis H0, N follows a multinomial Multi(n, p)

distribution, and

Tn =
K∑

k=1

(Nk − npk)
2

npk

d−−−→
n→∞

χ2(K − 1).

(χ2 distribution with K − 1 degrees of freedom)

➠ Complement: the family of multinomial distributions

➠ Complement: the family of χ2 distributions
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Pearson’s chi-squared test (χ2)

Recall that we want to test H0 : P = P0 against H1 : P 6= P0.

Chi-square (χ2) goodness-of-fit test

Let 0 < α < 1 and let T denote Pearson’s statistic:

T =

K∑

k=1

(Nk − npk)
2

npk
.

The chi-squared (χ2) test is

δ = 1T>tα ,

where tα is the χ2(K − 1) quantile of order 1 − α.

△! In practice: choose A1, . . . ,AK such that npk ≥ 5, ∀k.
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The χ
2 test for goodness-of-fit: “component reliability”

0 3 6 9 12 15 18 24 30
0

5

10

15

20

25

Observed frequencies Nk

expected frequencies n pk

x

fr
eq

u
en

ci
es

class [0, 3[ [3, 6[ [6, 9[ [9, 12[ [12, 15[ [15, 18[ [18,∞[

Nk 19 23 12 4 9 7 19

n pk 25.90 19.2 14.2 10.5 7.8 5.8 11.6

T (X n) =
7∑

k=1

(Nk − n pk)
2

n pk

d−−−→
n→∞

χ2(7 − 1)



32/42

The χ
2 test for goodness-of-fit: “component reliability”

0 3 6 9 12 15 18 24 30
0

5

10

15

20

25

Observed frequencies Nk

expected frequencies n pk

x

fr
eq

u
en

ci
es

class [0, 3[ [3, 6[ [6, 9[ [9, 12[ [12, 15[ [15, 18[ [18,∞[

Nk 19 23 12 4 9 7 19

n pk 25.90 19.2 14.2 10.5 7.8 5.8 11.6

T (X n) =
7∑

k=1

(Nk − n pk)
2

n pk

d−−−→
n→∞

χ2(7 − 1)



32/42

The χ
2 test for goodness-of-fit: “component reliability”

0 3 6 9 12 15 18 24 30
0

5

10

15

20

25

Observed frequencies Nk

expected frequencies n pk

x

fr
eq

u
en

ci
es

class [0, 3[ [3, 6[ [6, 9[ [9, 12[ [12, 15[ [15, 18[ [18,∞[

Nk 19 23 12 4 9 7 19

n pk 25.90 19.2 14.2 10.5 7.8 5.8 11.6

T (X n) =
7∑

k=1

(Nk − n pk)
2

n pk

d−−−→
n→∞

χ2(7 − 1)



33/42

The χ
2 test for goodness-of-fit: “component reliability”

Numerical application. n = 100, T (xn) = 12.24

0 3 6 9 15 18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

replacements χ2(6) pdf

Numerical application

T (xn) = 12.24

pval = 0.057

T (xn)

= 12.24

α = 5%

tα

= 12.6

➠ at the 5% level, H0 is accepted
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More on goodness-of-fit testing. . .

◮ Pearson’s χ2 test for a family of distributions
◮ extension of the test just presented to the case where some

parameters must be estimated under H0

➠ complement

◮ Kolmogorov-Smirnov test
◮ another test, based on the cumulative distribution function,
◮ without requiring the choice of a partition

➠ complement
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Exercise 1 (Testing a proportion) ➠ solution

In the context of a coin toss game, we want to test if the coin is

balanced.

Questions

i Propose a statistical experiment to test this hypothesis.

Specify the underlying statistical model, and define the null

and alternative hypotheses.

ii Propose a test at the asymptotic level α.
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Exercise 2 (Component reliability testing) ➠ solution

A manufacturer wishes to offer its customers a guarantee on light

bulbs. It is assumed that the lifetime of a bulb follows an

exponential distribution with parameter θ > 0.

Questions

Propose a UMP test for the following test:

H0 : Θ0 = {θ ≥ θ0} (bulb insufficiently reliable)

H1 : Θ1 = {θ < θ0} (bulb sufficiently reliable)

with a given threshold θ0 > 0.

➠ back to slide 11

➠ back to slide 26
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Solution of exercise 1 ➠ back to questions

i) n "coin toss" experiments are carried out, and the outcomes are

modeled as n independent, identically distributed random variables

X1, . . . ,Xn according to a Ber(θ) distribution.

We want to test if

H0 : θ =
1

2
, i.e., Θ0 =

{
1

2

}

(simple hypothesis),

vs.

H1 : θ 6= 1

2
therefore Θ1 =

]

0,
1

2

[

∪
]
1

2
, 1

[

(two-sided hypothesis).
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Solution of exercise 1 ➠ back to questions

ii) Let θ̂n = X̄n be the empirical mean of the sample. By direct

application of CLT, it follows that:

θ̂n − θ
√

θ(1 − θ)/n

d−−−→
n→∞

N (0, 1)

To construct a two-sided asymptotic test of level α, we place

ourselves under H0. We obtain the following convergence in

distribution:

2
√
n

(

θ̂n −
1

2

)

d−−−→
n→∞

N (0, 1).

We consider a critical region of the form: 2
√
n|θ̂n − 1

2 | > cα.

where cα is chosen so that the Type I error rate is equal to α.
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Solution of exercise 1 ➠ back to questions

ii) Let

lim
n→∞

P

(

2
√
n

∣
∣
∣
∣
θ̂n −

1

2

∣
∣
∣
∣
> cα

)

= α.

We deduce that cα = q1−α
2
, the (1 − α

2 )-th quantile of a standard

normal distribution N (0, 1).

We reject the null hypothesis H0 in favor of H1 at the level α when:

∣
∣
∣
∣
θ̂n −

1

2

∣
∣
∣
∣
> q1−α

2

1

2
√
n
.

Thus, the difference between θ̂n and 1/2 is considered significant at

the level α if it exceeds q1−α
2

1
2
√
n
.
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Solution of exercise 2 ➠ back to questions

Let X1, . . . , Xn
iid∼ E(θ)

H0 : Θ0 = {θ ≥ θ0} (component is not reliable enough)

H1 : Θ1 = {θ < θ0} (component is reliable enough)

By the Neyman-Pearson lemma, the LRT is UMP for

H0 : Θ0 = {θ0} / H1 : Θ1 = {θ1} , with θ1 < θ0

T LR(X ) =
θn1 exp (−θ1

∑n
i=1 Xi )

θn0 exp (−θ0
∑n

i=1 Xi )

=
(
θ1
θ0

)n

exp ((θ0 − θ1)
∑n

i=1 Xi )
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Solution of exercise 2 ➠ back to questions

We then define the critical region of this test at level α:

Rα =
{

x | T LR(x) > tLR
α

}

=
{
x | T (x) = x̄ > tα

}
.

Reminder : if θ = θ0, then θ0X̄ ∼ Γ(p = n, λ = n).

➠ tα,n = 1
θ0

q1−α

where qr is the Γ(p = n, λ = n) quantile of order r .

This test is also UMP for its composite version, indeed :

◮ the likelihood ratio test is the same for any θ1 < θ0,

◮ the function θ 7→ Pθ(δ = 1) is strictly ց.

Summary. The test that we have built is UMP at the level α.
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Solution of exercise 2 ➠ back to questions

0 20 30
0

0.05

0.1

0.15

θ0 = − log(0.9)

Pθ0(X̄ > tα) = 5%

Γ (p = n, λ = nθ0)

pval = 0.47

x̄ = 10.15

tα

tα = 14.91

n = 10

x̄

Numerical application:

➠ at the 5% level, H0 is not rejected

➠ out of precaution, the manufacturer will not propose a warranty
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Proof

Note that tα is, by construction, such that

F0(tα) = 1 − α.

Thus we have

δ = 1 ⇔ T > tα

⇔ F0(T ) > F0(tα) = 1 − α

⇔ pval < α

➠ back to slide 22



Generalized likelihood ratio test

It enables the construciton of a test when Θ0 and/or Θ1 are/is

composites.

◮ Test statistic :

T (X ) =
supθ∈Θ1

L(θ;X )

supθ∈Θ0
L(θ;X )

.

◮ The test is not, in general, uniformly most powerful (UMP) at

level α.



The multinomial family of distributions

Parameters

◮ n integer, ≥ 1,

◮ K integer, ≥ 2 and p ∈ (R+
⋆ )

K
such that

∑K

k=1
pk = 1.

Let n1, . . . , nK entiers ≥ 0 such that
∑K

k=1
nk = n :

If N ∼ Multi(n, p), P (N1 = n1, . . . ,NK = nk) =
n!

n1! . . . nK !
p
n1
1

. . . pnKK

Moments

◮ expectation : Ep(N) = np

◮ covariance matrix : covp(Ni ,Nj) = n(piδij − pipj)

Marginal distributions

◮ Marginal distributions are binomial : Nj ∼ Bin(n, pj).

➠ back to slide 30



The χ
2 family of distributions

Parameters

◮ q integer, ≥ 1 : number of “degrees of freedom”.

Definition. If Y1, . . . ,Yq
iid∼ N (0, 1) then

T =
∑q

k=1 Y
2
k ∼ χ2(q)

The χ2 distribution is a special case of the Γ distribution :

χ2(q) = Γ

(

p =
q

2
, λ =

1

2

)

➠ The properties of the χ2 follow from those of the Γ distribution.

Expectation

◮ Eq(T ) = q

Variance

◮ varq(T ) = 2q

➠ back to slide 30



The χ
2 test with parameter estimation

Does the lifetime of a component follow an exponential

distribution?

➠ Null hypothesis H0: ∃θ > 0, P = Pθ = E(θ).

Two-step approach

1 Construction of a consistent estimator of θ → θ̂.

2 Test the goodness of fit to Pθ̂.

Details

p̂k = Pθ̂ (X1 ∈ Ak)

T (X n) =
K∑

k=1

(Nk − np̂k)
2

np̂k

d−−−→
n→∞

χ2(K − 1− q) with q = card(θ)

Rejection of H0 if T (xn) > t1−α (t1−α being the quantile of order

1 − α of a χ2(K − 1 − q) distribution).

➠ back to slide 34
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The Kolmogorov-Smirnov test
Goodness-of-fit test for a single distribution : H0 : P = P0.

Kolmogorov-Smirnov distance

The Kolmogorov-Smirnov distance is defined as

Dn = sup
x

∣
∣
∣F̂n(x)− F0(x)

∣
∣
∣ ,

with F0 the cdf of P0 and F̂n the empirical cdf: F̂n(x) =
1

n

∑n

i=1
1{Xi≤x}.

Kolmogorov-Smirnov test, with asymptotic level α

Under the null hypothesis H0, if F0 is continuous:

T (X n) =
√
nDn

d−−−→
n→∞

K,

where K is the Kolmogorov-Smirnov distribution.

➠ H0 is rejected if Tn > tα, with tα the (1 − α)-quantile of K.



The Kolmogorov-Smirnov test

“Component reliability example”: H0 : P = E(θ0) with θ0 = 0.1

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

F̂ (x)

F0(x)

Dn = supx |F̂ (x)− F0(x)|

n = 30

Dn = 0.13√
nDn = 0.71
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Numerical application



The Kolmogorov-Smirnov test
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Numerical application√
nDn = 0.71

pval = 0.69

T (xn)

= 0.71

α = 5%

tα

= 1.36

➠ at the 5% level, H0 is accepted ➠ back to slide 34
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