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Lecture 2/9
Point estimation

Course objectives

» Learn how to quantify the performance of an estimator
» Learn how to compare estimators

» Introduce the asymptotic approach
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Lecture outline

1 — Point estimation: definition and notations
2 — Quadratic risk of an estimator

3 — A lower bound on the quadratic risk

4 — Asymptotic properties

5 — Standard exercises

6 — Appendices

3/60



Lecture outline

1 — Point estimation: definition and notations



Recap: mathematical framework

Data
» Formally, an element x in a set X.

> ex: X = R" R4, {words}, some functional space, etc.
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Recap: mathematical framework

Data
» Formally, an element x in a set X.

> ex: X = R" R4, {words}, some functional space, etc.

From data to random variables
> A priori point of view: before the data is actually collected.
» Modeling: RV X taking values in (X, .2/),
» but the distribution of X is unknown.
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Recap: mathematical framework

Data
» Formally, an element x in a set X.

> ex: X = R" R4, {words}, some functional space, etc.

From data to random variables
> A priori point of view: before the data is actually collected.
» Modeling: RV X taking values in (X, .2),
» but the distribution of X is unknown.

Statistical modeling
» X is assumed to be defined on (Q,.%#,P), with P € 2.
> & : aset of possible probability measures on (Q2,.%)
» Formally, .7 = (&,%7 WK) with 2X = [PX P ¢ 2},

Canonical construction: Q =X, F = o/, X =1dx et & = 28
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Recap: mathematical framework (cont'd)

Important

Since P € & is unknown, we need to design statistical procedures
that “work well” (in a sense to be specified) for any
distribution P € &.
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Recap: mathematical framework (cont'd)

Important

Since P € & is unknown, we need to design statistical procedures
that “work well” (in a sense to be specified) for any
distribution P € &.

Parameterized family of probability distributions
» Usually, we write &2 = {Py, 0 € O}.
» 6. unknown parameter (scalar, vector, function...)

» In the following, we assume a parametric model: © C RP.
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Recap: mathematical framework (cont'd)

Important

Since P € & is unknown, we need to design statistical procedures
that “work well” (in a sense to be specified) for any
distribution P € &.

Parameterized family of probability distributions
» Usually, we write &2 = {Py, 0 € O}.
» 6. unknown parameter (scalar, vector, function...)

» In the following, we assume a parametric model: © C RP.

Important case: d-variate (iid) n-sample (— n x d data table)
> X = X", with X € RY, endowed with their Borel o-algebras,

> X = (Xi,..., X,) with X; *© Py, and thus PX = P$",
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Point estimation

Parameter of interest

» We are interested in parameter 1 = g(6),
where g : © — R ou R9.

» |ts value is unknown, since @ is unknown.

Informal definition: estimation

Guess (infer) the value of 1 based on a realization x of X.

6/60



Point estimation

Parameter of interest

» We are interested in parameter n = g(),
where g : © — R ou R9.

» |ts value is unknown, since @ is unknown.

Informal definition: estimation

Guess (infer) the value of 1 based on a realization x of X.

Definition: estimator

We call estimator any statistic 7} = ¢(X) taking value in the
set N = g(©) of possible values for 7.

Remark: the word “estimator’ can refer either to the RV 7 or to the

function ¢. In practice, we identify the two and write (abusively) 7 = 7(X).
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Example 1

[ID Gaussian n-sample: X = (X1, ... X,) with
> X1, Xo,..., X, Iflg z/l/(,u,az),
> 0= (u,0%),

» © =R x]0; +oa.

In this example, we assume that we want to estimate the mean y;
> heren=ypand g: 0= (p,0%) — p,

» o2 is unknown too (nuisance parameter).
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Example 1 (cont'd)

Some possible estimators. .
> = IS X (method of moments / MLE),
> [io = o for a given po € R,
> i3 = 30 + 3 Xn,
> [is = X, + c for a given ¢ # 0,
» s = med(Xi,...,X,),
> ...
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Example 1 (cont'd)

Some possible estimators. .
> i = IS X (method of moments / MLE),
> [io = o for a given pg € R,
> i3 = 30 + 3 Xn,
» fig = X, + ¢ for a given ¢ # 0,
» s = med(Xi,...,X,),
>

Questions
» Is one of these estimators “better’ than the others?
» Can we find an “optimal” estimator?

» |n what sense?
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Other examples

Example 1’
» Same statistical model as in Example 1, but
> g(6) = o

» In this case,  is seen as a nuisance parameter.

9/60



Other examples

Example 1’
» Same statistical model as in Example 1, but
> g(0) = o>

» In this case,  is seen as a nuisance parameter.

Example 1"
» Again the same statistical model, but
> g(0) =0 = (u,0?).

» Here, the parameter to be estimated is a vector.
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Other examples (cont'd)

Example 2
X0 Xor . Xy S E(0), e, fy(x) =0 e Lz,
> e = (07 +Oo)1

> g(0) = Ep(X1) = 1/0.
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Other examples (cont'd)

Example 2
X0 Xor . Xy S E(0), e, fy(x) =0 e Lz,
> O =(0,+00),

> g(0) =Eo(X1) =1/0.

Example 2’
» Same statistical model, but

> g(0) =Py (X1 > x0) = e~ for a given xg > 0.
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Other examples (cont'd)

Example 2
> Xy, Xor. o Xn S E(B), e, fy(x) =0 Lys,
> O =(0,+00),

> g(0) =Eo(X1) =1/0.

Example 2’
» Same statistical model, but

> g(0) =Py (X1 > x0) = e~ for a given xp > 0.

Example 3 (optional)

P non-parametric statistics
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Lecture outline

2 — Quadratic risk of an estimator



General concept of risk

Goal

Quantify the performance of an estimator
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General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L: N x N — R.
» Reminder: N = g(©) is the set of all possible values for 7.

» Interpretation: we lose L(7),7') if we choose 1 as our estimate
while 7 is the true value.
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General concept of risk

Goal

Quantify the performance of an estimator

Consider a loss function L: N x N — R.
» Reminder: N = g(©) is the set of all possible values for 7.

» Interpretation: we lose L(n,n’) if we choose 1 as our estimate
while 7 is the true value.

Risk
For a given loss function L, we define the risk Ry(7}) of the
estimator 7, for the value 6 € © of the unknown parameter, by

Ry (7) = Eq (L (g(0), 1)) -
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Quadratic risk

Quadratic risk

We call quadratic risk the risk associated with the loss function
L(n,n') = lln —'II?,

that is,
Ry (1) = Eq (|lg(0) — 11%) -
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Quadratic risk

Quadratic risk

We call quadratic risk the risk associated with the loss function
L(n,n') = lln —n'I1%,

that is,
Ry (1) = Eq (ll&(0) — 2l%) -

Remarks
» Also called “mean square error’ (MSE).

» Most commonly used notion of risk
(for the sake of simplicity, as we will see);

> in the rest of this lecture, we will consider this risk exclusively.
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Example 1 (reminder)

[ID Gaussian n-sample: X = (X1, ... X,) with
> X1, Xo,..., X, ifig./l/(,u,02),
> 0= (u,0%),

» © =R x]0; +oa.

In this example, we assume that we want to estimate the mean y;
> heren=ypand g: 0= (p,0%) — p,

» o2 is unknown too (nuisance parameter).
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Example 1: risk of the estimator iy

Consider the estimator
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Example 1: risk of the estimator iy

Consider the estimator

For all 6 = (u,02) € ©, we have the following result:

Quadratic risk of the sample mean
Ro (fi1) = Eq ((ﬁl - u)z) =—.

Remark: the result holds as soon as the X;'s have finite second-order moments

(Gaussianity is not actually used)
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Example 1: risk of the estimator fi; (computation)

Notice that
N
Eo(fn) = — > Eo(Xi) = p.
i=1
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Example 1: risk of the estimator fi; (computation)

Notice that
1 n
- L mx
N3

Therefore

Ro (1) = varg (1) = vare <Z X,-)
=1
2
= 22"”9
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Bias of an estimator

Let /) be an estimator of n = g(#) admitting a first-order moment,
for all 6 € ©.

Definition: bias / unbiased estimator

The bias of an estimator 7 at # € © is defined as
by (7)) = Eq(7) — &(6)-
We will say that 7j, is an unbiased estimator (UE) if

bo(A) =0, V€O,
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Bias of an estimator

Let /) be an estimator of n = g(#) admitting a first-order moment,
for all 6 € ©.

Definition: bias / unbiased estimator

The bias of an estimator 7 at # € © is defined as
ba(7) = Ee(7) — &(6)-

We will say that 7j, is an unbiased estimator (UE) if

bo(A) =0, V€O,

Example 1
» We have already seen that ji; = X, is an UE of .
> More generally: ji = o+ X, is an UE of  if, and only if,
a=0et g=1. v



Bias-variance decomposition
Reminder: we still consider the quadratic risk.

Let 7} be an estimator 7 = g(#) admitting a second-order moment,
Vo € ©

Proposition: Bias-variance decomposition (scalar case)

If the quantity of interest is scalar (n € R), we have:

Ry (1) = Eq (7 — &(6))?) = varg () + ba()*.
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Bias-variance decomposition
Reminder: we still consider the quadratic risk.

Let 7} be an estimator 7 = g(#) admitting a second-order moment,
Vo € ©

Proposition: Bias-variance decomposition (scalar case)

If the quantity of interest is scalar (n € R), we have:

Ry (1) = Eq (7 — g(0))?) = varg () + ba()*.

Remark: we can generalize to the vector case by summing over the
components:

R (1) = Eo (1 — g(6)11) = tr (vare (1)) + [Ibe(7)],

where vary (1) is the covariance matrix of 7). 12/60



Example 1: risk of some estimators

ﬁlZXn
M2 = Mo
R 1
MS_EHO‘F
,[),42)_(”4-(5

Ro(fin) = —— + 07

Ro(fi2) = 0% + (1 — po)
102 1

Ro(fz) =~ + = (u—

0(f13) i, T2 (1 — o)
2

R o
Ro(fia) = s + ¢

2

fis = med(Xq, ..., Xn) Ro(fis) ~ 1.57 % + 02 (n— +00)

Exercise: Compute Ry(f1;), 2 <j <4

Remark: only the result for [is actually uses the Gaussianity assumption.
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Admissible estimators

Definition: order relation on the set of estimators

We will say that 7} is (weakly) preferable to 7 if
> V0 €O, Ry(7') < Ry(7),

We will say that it is strictly preferable to # if, in addition,
> 30 € ©, Ry(7') < Ro(h).

Remarks
» The relation “is preferable to" is a partial order on risk functions.

» In general there is no optimal estimator, i.e., no estimator that is preferable to
all the others (unless we restrict the class of estimators that is considered).
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Admissible estimators

Definition: order relation on the set of estimators

We will say that 7} is (weakly) preferable to 7 if
> V0 €O, Ry(7') < Ry(7),

We will say that it is strictly preferable to # if, in addition,
> 30 € ©, Ry(7') < Ro(h).

Remarks
» The relation “is preferable to" is a partial order on risk functions.

» In general there is no optimal estimator, i.e., no estimator that is preferable to
all the others (unless we restrict the class of estimators that is considered).

Admissibility
We will say that # is admissible if there is no estimator 7’ that is
strictly preferable to it.
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Example 1 (cont'd)

o1 1
Ro(fi3) = i T2 (1 — po)
2
~ g
Ro(fia) = s + 2
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Example 1 (cont'd)

ﬁlzXn
fi2 = pio

1 1_
Aot X
u3 2:“/0"‘2 n
,[14:)_(n+c

R o
Ro(fin) = —— + 0°

~ N2 2
Ro(fiz) = 07 + (1 — po)

R 102
Ro(fiz) =, - + 4 (1= ho)

2

R o

Ro(fia) = s + 2

» i1 is strictly preferable to fi4, therefore fi4 is not admissible.
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Example 1 (cont'd)

—_ 0'2 2
fi1 = X, Re(ﬁl):7 + 0
fl2 = o Ro(fiz) = 0% + (1 — pro)?

1 1 102
fiz — = X Ro(fi2) = — S,
fiz = Sho + 5 X 0(/13) i, (1 — po)
~ v, ~ o? 2
fig = Xp+c Re(/M):?‘f‘C

» i is strictly preferable to fi4, therefore fi4 is not admissible.

» It can be proved
» that fi1, fi2, and i3 are pairwise incomparable,
» but that all three are admissible (proof out of scope)
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Lecture outline

3 — A lower bound on the quadratic risk



Context and motivation

We consider the class of unbiased estimators of g(6),

I for an UE, Rg(ﬁ) = Var@(ﬁ)'
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Context and motivation

We consider the class of unbiased estimators of g(6),
w for an UE, Ry(7]) = varg(7).
Objective of this section: show that there exists a bound of the

form
varg() > Vmin(6), Vo € ©,

that holds for (nearly) all UE of g(#).
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Context and motivation

We consider the class of unbiased estimators of g(6),

w for an UE, R@(ﬁ) = Vare(ﬁ)'

Objective of this section: show that there exists a bound of the
form
varg() > Vmin(0), Vo € ©,

that holds for (nearly) all UE of g(#).

Application of such a bound?

@ Prove that a certain level of accuracy cannot be met by an
unbiased estimator.

@® Prove that a given UE is optimal (that is, it minimizes, within
the class of UEs, the risk Ry(7}), V0 € ©).
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Regularity condition Cy and C;

Regularity condition Cg

Dominated model: there exists a (o-finite) measure v on (X, &),
and a family (fy) of probability density functions wrt v, such that

VAc o/, Py(XeA)= /A fo(x) v(dx).
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Regularity condition Cy and C;

Regularity condition Cg

Dominated model: there exists a (o-finite) measure v on (X, &),
and a family (fy) of probability density functions wrt v, such that

VAc o/, Py(XeA)= / fo(x) v(dx).

A

Regularity condition C;

The densities fy share a common support: 3S € &7,

Vo € O, ]1f9>0 =1s v-ae.

» Consequently, it can be assumed that f5(x) >0 & x € S. 2260



Regularity condition C;: examples / counter-example

Consider an IID univariate n-sample:

n

X ~ fy(x) =[] folx)

i=1

(with a usual abuse of notation for the pdf's).

Remark: if Cy holds for n = 1 with S = Sy,
then it also holds for all n > 2 with S = S7.
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Regularity condition C;: examples / counter-example

Consider an IID univariate n-sample:

n

X~ fy(x) =[] folxi)

i=1

(with a usual abuse of notation for the pdf's).

Remark: if Cy holds for n = 1 with S = Sy,
then it also holds for all n > 2 with S = S7.

A few examples. ..
® .V (i, 02) with 02 > 0: C; holds with S; = R,
® £(0): Cq holds with §; = [0, +00).
© Ujpg): C1 does not hold!
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Another regularity condition

We assume that Cy and C; hold.

Regularity condition Cs

@® O is an open subset of R”,
@ 0 — fy(x) is differentiable for v-almost all x,
@ and, at any 6 € ©, we have

/V@fg )v(dx) = Ve/ fo(x) v(dx) = 0.
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Another regularity condition

We assume that Cy and C; hold.

Regularity condition Cs

@® O is an open subset of R”,
@ 0 — fy(x) is differentiable for v-almost all x,
@ and, at any 6 € ©, we have

/V@fg( v(dx) V@/fg v(dx) = 0.
S

In other words: VO € ©, Vk < p,

Ify(x) _ ()/ _
o0, v(dx) = a0, Sﬂ;(g)u(dﬁ)—o.




Score

Definition / property: score
Assume that Cp, Cq, Ca-i and Ca-ii hold and define, for all x € S
d1n fy(x)
001
So(x) = Vo (Infy(x)) = '

dln fp(x)
96,

Then
@ We call score the random vector Sy = Sg(X).
@ Cs-iii & VO € ©, the score Sy is centered under Py.

Remarks:
» Well defined, since X € S Py-ps, VO € O.
» The score vanishes at the MLE (recall that © C R” is assumed open).
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The score is centered (proof)

Notice that

1
= 7V9f9>

Vo (Infp) 7

and thus, for all 8 € ©,
0 (Sp) = /59 x) fp(x
= |75 o) ) v

= / Vofy(x) v(dx).
S
Finally,

By (S)) =0 < /SVQfg(x)u(dx)zo (Cosii). [



Example 2

Recall that X1, ..., X, S £(0) with § € © =10, +od].

We compute the likelihood, for any xi,...,x, > 0:

L(0; x) = fy(x) = Hfg(x, — e frxi
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Example 2

Recall that X1, ..., X, S £(0) with § € © =10, +od].

We compute the likelihood, for any xi,...,x, > 0:
L(0; x) = fy(x Hfg x;) = 0" e 2%

then the log-likelihood:

In£(6;x) =Infy(x) =ninb— 0 x,
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Example 2

Recall that X1, ..., X, S £(0) with § € © =10, +od].

We compute the likelihood, for any xi,...,x, > 0:

L(0; x) = fy(x Hfgx, )= 0" e 2%
i=1

then the log-likelihood:
In£(6;x) =Infy(x) =ninb— 0 x,

and, finally, the score:

27/60



Remark on condition Ca-iii
Recall Cs-iii: VO € ©,

[ ot vld) = Vo [ v = o
S S

or, equivalently: Ey(Sg) = 0.
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Remark on condition Ca-iii
Recall Cs-iii: VO € ©,

[ Tt vld) = Vo [ ) v(d) =

S S

or, equivalently: Ey(Sg) = 0.

Two approaches are available to check this condition:
@ Compute explicitely Ey(Sp) = fS Vofy(x) v(dx).

® Use a domination condition: show that V8y € ©, 3% C ©,
neighboorhood of g, and a v-integrable function g : X — R st

f
VeV, Vx €S, Yk < p, ’age(x)‘ < g(x).
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Cramér-Rao inequality 1/2

Consider a statistical model where Cy-C4 hold,
and let ) be an estimator of = g(0) € R.

Definition: regular estimator

We will say that 7 is a regular estimator if
® Ey (7%) < +oo, V0 € O,
@ 0 — Ey (7)) is differentiable, with

Vo (7) = /S () Vohy(x) v(dx), V€ O.

Remark: if 7} is an unbiased regular estimator of g(#), then

(Vg)(0) = /S A(x) Vofy(x) v(dx), VO e®.

20/60



Cramér-Rao inequality 2/2

Theorem / definition: Cramér-Rao inequality

Consider a statistical model where Cy-Cs hold, and assume that
the score Sy admits second-order moments for all 8 € ©.

Let vary(Sp) denote the covariance matrix of the score, which is
assumed invertible for all § € ©.

30/60



Cramér-Rao inequality 2/2

Theorem / definition: Cramér-Rao inequality

Consider a statistical model where Cy-Cs hold, and assume that
the score Sy admits second-order moments for all 8 € ©.

Let vary(Sp) denote the covariance matrix of the score, which is
assumed invertible for all § € ©.

Let 7] be a regular unbiased estimator of g(#). Then, V8 € ©,
Ry (7) = varg (7)) > Vg(0)' varg (Sp) ™" Vg(8).

An unbiased estimator is called efficient if this bound is met for
all 9.
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Fisher information

We still assume that Cy—Cs hold.

Definition: Fisher information

We call Fisher information of X the p x p matrix
1(0) = varg(Sp) = Eq (59 ng)

which appears in the Cramér-Rao lower bound.

31/60



Fisher information

We still assume that Cy—Cs hold.

Definition: Fisher information

We call Fisher information of X the p x p matrix
1(0) = varg(Sp) = Eq (59 5;)
which appears in the Cramér-Rao lower bound.

Proposition

Let /,(0) denote the Fisher information in an IID n-sample. Then

1n(6) = n 1 (6).

The CR inequality becomes: varg() > % Vg(0)" 1(0)"1Vg(9).
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Proof

Notice that the score is additive in an IID sample:
Sp = Vg (Infy(x))

In (f[ fexl(Xi)>
i=1

_ Z Vo <In f(,Xl(x,-)) .
=1 ————

Z;

32/60



Proof

Notice that the score is additive in an IID sample:

So = Vg (Infh(x))

— VY, |In (H £ (X, ) ZW (|n £X(X )
i=1 =1 N——————
Z;
Thus we have
varg (Sg) Zvarg = nvarg(Z1) = nh(0)
since /1, ..., Z, are |lID, and distributed like the score in a sample

of size 1. O
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Example 1: estimation of
Reminder: Xi,..., X, i N (1, 0?) and 0 = (u, 0?)

» i, = X, is the MLE of s,
> fin is unbiased and Rp(fin) = varg(fin) = Z.

n

The Fisher information matrix in this model is (see PC 2)

Mm:n(% ?).

20%
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Example 1: estimation of
Reminder: Xi,..., X, id N (1, 0?) and 0 = (u, 0?)

» i, = X, is the MLE of p,
> fin is unbiased and Rp(fin) = varg(fin) = Z.

n

The Fisher information matrix in this model is (see PC 2)

Mm:n(% ?).

20%

Cramér-Rao inequality with g() = u: /i), UE of ,

therefore [i, = X,, is efficient.

33/60



Example 1" estimation of ¢

Same statistical model, but we want to estimate g(0) = o2.

It is then possible to show (see PC 2) that
> the MLE §2 = 137 (X; — X,)? is biased;
> 52 =(S))2= 00 (X — )_(,,)2 is an UE of 02, with

variance
204

varg (6’%) =7
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Example 1" estimation of ¢

Same statistical model, but we want to estimate g(0) = o2.

It is then possible to show (see PC 2) that
> the MLE S2 = 1%~ (X; - )_(,,)2 is biased;
> 62=(S))2=-L 30 (X; — X,)? is an UE of 02, with

n—1

variance
204

vary (6’2) =7

n

Conclusion: < is not an efficient estimator, since

2
n
4

varg (6%) > 2%.

(Beware the misleading terminology: it can be proved, using Lehmann-Scheffé's theorem, that (7,3 is a
minimal variance UE for this problem, and therefore is optimal for the quadratic risk among all UE's.)
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Lecture outline

4 — Asymptotic properties



Motivation / notations

Problem

It is sometimes (often !) difficult to obtain the exact properties of
statistical procedures.

(point estimators, but also Cls, tests, etc. (cf. next lectures))
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Motivation / notations

Problem

It is sometimes (often !) difficult to obtain the exact properties of
statistical procedures.

(point estimators, but also Cls, tests, etc. (cf. next lectures))

Asymptotic approach(es) — approximate properties

> X1, X,. .. g Py, defined on a common (2, .7, Py)
» Sequences of estimators: 7, = (X1, ..., Xn)

> Properties of the estimators when n — 00?

Remark: we have now not one but a sequence (.#,),~, of statistical models
My = (X", %" {PF", 0 € ©}),

that we instantiate on a common underlying probability space (2, .7).
35/60



Probability refresher: convergence modes

Main convergence modes that are useful in statistics:
» almost sure convergence ,
> convergence in L? (in mean square),
» convergence in probability,

> convergence in distribution.

Implications between convergence modes:

proba
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Consistency

Let (7)n) denote a sequence of estimators of n = g(6).

(weak) Consistency

We will say that 7}, is a consistent estimator of n = g(#) if, V6 € ©,

~ Py
fin —— g(9).
N=°with an obvious abuse of terminology)

37/60



Consistency

Let (7)n) denote a sequence of estimators of n = g(6).

(weak) Consistency

We will say that 7}, is a consistent estimator of n = g(#) if, V0 € ©,

o —2 g(6).
N=°with an obvious abuse of terminology)
Strong and mean-square consistency

We will say that 7, is strongly consistent
(resp. consistent in the mean-square sense) if, V6 € ©,

~ Pyp—as. L=(PPy)
T :;—oo> g(0) (reSp_, fin n(—9> ('9)>

Remark: the word “convergent” is sometimes used instead of “consistent”. arjo0



Probability refresher: law of large numbers

Let (Xk),>; be a sequence of real- or vector-valued RV.

Strong law of large numbers

If the X, 's are IID and have finite first-order moments, then

X, =2 E(X1).

n—o0
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Probability refresher: law of large numbers
Let (Xk),>; be a sequence of real- or vector-valued RV.

Strong law of large numbers

If the X, 's are IID and have finite first-order moments, then

X, =2 E(X).

n—oo

Law of large numbers in L2
If the X, 's are IID and have finite second-order moments, then

X, 5 E(x).

n—oo

Proof (scalar case): E (()_(,, — E(Xl))z) = varg(X,) = X varg(X1) — 0. O

n
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Consistency: examples

A) IID n-sample with finite first-order moment
> ie., Eg(||X1]]) < +oo, forall 6 € ©.
> X, is a strongly consistent estimator of 1 = Eq(X1).

» Nothing can be said about the quadratic risk without
additional assumptions.
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Consistency: examples

A) IID n-sample with finite first-order moment
> ie., Eg(||X1]]) < +oo, forall 6 € ©.
> X, is a strongly consistent estimator of 1 = Eq(X1).

» Nothing can be said about the quadratic risk without
additional assumptions.

B) IID n-sample with finite second-order moment
> ie., Eo(]| X1]]?) < +oc, for all 6 € ©.

» X, is strongly consistent and consistent in the mean-square
sense for n = Ey(X1).
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Consistency: examples (cont'd)

50 100 150 200
n

Convergence of X, to the true mean

(for a Gamma n-sample with true mean p = 1.5)
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Consistency: examples (cont'd)

C) lID n-sample (with any distribution)
> Let Ac &7 and np = g(0) = Py (X1 € A).
> Relative frequency: 1), = % card{i < n| X; € A}
» 1), is a strongly and mean-square consistent estimator of 7.

Application: histograms

41/60



Consistency: examples (cont'd)

C) lID n-sample (with any distribution)
> Let Ac &7 and np = g(0) = Py (X1 € A).
> Relative frequency: 1), = % card{i < n| X; € A}
» 1), is a strongly and mean-square consistent estimator of 7.

Application: histograms

D) MLE of an n-sample distributed according to the uniform

distribution (see PC 1)
> Xi,...,Xn e Uo,0)

» We estimate n = 6 with 7, = maxj<, Xj.

» #j, is consistent, both strongly and in the mean-square sense.
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Consistency: examples (cont'd)

C) lID n-sample (with any distribution)
> Let Ac &7 and np = g(0) = Py (X1 € A).
> Relative frequency: 1), = % card{i < n| X; € A}
» 1), is a strongly and mean-square consistent estimator of 7.

Application: histograms

D) MLE of an n-sample distributed according to the uniform
distribution (see PC 1)

> Xi,..., X, i U[oyg]

» We estimate n = 6 with 7, = maxj<, Xj.

» #j, is consistent, both strongly and in the mean-square sense.

E) Maximum likelihood estimator

41/60



Summary and preview

We have seen and will practice in PC 2:

> the quantitative assessment of an estimator's performance
through risk computation,

» the comparison of estimators and a concept of optimality,

> the asymptotic analysis of estimators.
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Summary and preview

We have seen and will practice in PC 2:

> the quantitative assessment of an estimator's performance
through risk computation,

» the comparison of estimators and a concept of optimality,

> the asymptotic analysis of estimators.

We will cover in Lecture 3:

> the concept of convergence rate of an estimator,

» the definition and construction of confidence intervals/regions.
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Lecture outline

5 — Standard exercises
5.1 — Questions
5.2 — Answers



Lecture outline

5 — Standard exercises
5.1 — Questions



Exercise 1 (quadratic risk)

Let X1, ..., Xy 'S A (1, 02) with 8 = (11, 02) € © = R x R

We want to estimate g(#) = p. We consider the estimators

N . . 1 1 N
fi1 = Xn, fio = o, M3:§Mo+§Xm fis = Xn +c,

where 19 and ¢ are given real numbers.

Questions
@ Prove the bias-variance decomposition formula in the scalar
case.
® Compute the quadratic risk of each of these estimators
© Prove that [ip and i3 are not comparable.

O Prove that [i4 is not admissible.
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Exercise 2 (efficiency of an estimator)

Let X1,..., X, S Ber(6) with § € © =10, 1[.

Recall that (see Exercises in Lecture 1):

> the log-likelihood of the n-sample is
InL(6; x) =Infy(x) =nin(1 —0) — | 0 z”:
nL(0;x) =Infy(x) =nln i i:1x,,

A 1
» the MLE is §, = = 7 ; Xi.
n

Questions

@ Check that the model satisfies the hypotheses for
Cramér-Rao's inequality, and compute Cramér-Rao’s bound.

@ |s the MLE 8, efficient?
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Exercise 3 (consistency of an histogram)

Consider:
» an n-sample Xi,..., X, with X; in ]a, b] C R,
» a partition of ]a, b] in K adjacent classes Ay =]ak_1, ax], for
ke{l,...,K}, with ag = a, ax = b,
> the vector € RK with n(*) = P (X; € A).

Histogram

Graphical representation of the empirical distribution of a random
variable using rectangles, where the bases are the intervals Ax and the
areas are proportional to the relative frequencies ﬁ,((k) of the classes:

1
ﬁf,k):fcard{ign|X,-€Ak}, 1<k<K.
n
Question. Prove that 7, = (ﬁf,l), o ,ﬁgK)) is a strongly consistent

and mean-square consistent estimator of 7.
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Exercise 4 (mean-square consistency)

Let 7, denote an estimator of a scalar parameter n = g(0) € R,
indexed by the size n of the observed sample.

Question

Prove that 7}, is consistent in the mean-square sense if, and only if,
the following conditions are satisfied for all 6 € ©:

(i) b@ (ﬁn) — 0,
@ vary (7jn) — 0.
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Lecture outline

5 — Standard exercises

5.2 — Answers



Exercise solution 1

O Bias-variance decomposition

Ro (1)) = Eo (71 — g())?) = varg (7)) + by(1))*.




Exercise solution 1

® Compute the biais and variance of each estimator, and then

conclude using the bias-variance decomposition.

expectation | bias variance | quadratic risk
— 2 2
X, ’ 0 z |2
o o Mo — 0 (o — p)?
_ 2 2 2
3 (o+Xn) | 5 (mo+p) |3(mo—p)| 3% | 5% +4 (no—n)
X, + ¢ w+c c "—: "—: +c2

Reminder: varg(aX + ) = a? varg(X).
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Exercise solution 1

—
— 2
0.8 A
w3
— /i
0.6
0.4r
0.21
0 1 1 1 1 | 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

I

Draw the four risks for 62 = 1, n = 10, o =1and ¢ =0.5.
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Exercise solution 1

©® Let us compute the risk two well-chosen points.

For 0 = (po,1) we have

N N 1 N N
Ry (,u,g) =0, Ry (M3) = —, therefore Ry (,uz) < Ry (M3) .

1 X 1 . X
Ry (,ug) = ;, Ry (/L3) = Z, therefore Ry (,uz) > Ry (M3) .

Therefore the estimators [i, and [i3 are not comparable.
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Exercise solution 1

O We have:
A~ 02 2
Ro (fia) = — 1 é
2
~ g
Ro (Ml) = o

Therefore, V0 = (1, 02%) € © = R x R}, Ry (fia) > Ry (1)

Thus [i4 is not admissible.
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Exercise solution 2

O Let us check that the model satisfies the regularity conditions C;
and Cs, and that Fisher's information does not vanish.

= Cj: since © = |0, 1], the densities
fo(x) = 6Xi=1%i (1 — g)"—Xica %
are all supported on S = {0,1}".

= Cg: © =1]0,1[ is an open subset of R, 0 — fy(x) is
differentiable on © for all x, and the score
d(In fy) n

So(X) = 20 (Xi) =
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Exercise solution 2

is centered: Eg (Sp(X)) = 91 —0) (Eg(Xn) — 6) = 0.

= Finally, we check that the Fisher information does not vanish:

n

2
n —
/(0) = vary (59(&)) = (9(1_0)> varg(Xn) = m > 0.
= The Cramér-Rao bound for 8 is

10 = %9(1 —0).

53/60



Exercise solution 2

® The estimator 0, = %Z,’-’:l X; is unbiased:
Eo(A,) = Eo(X1) = 0,

and its variance is

o(1 - 0)

var(0) = %var(Xl) = = 1(6)L.

O]

Therefore it is efficient.

Remark: it is easy to check that 8, is a regular estimator (see definition on
slide 29), since

® the density fy is differentiable with respect to 0,
@ the integrals boil down to finite sums over {0,1}".
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Exercise solution 3

O Strong consistency
Reminder: 7, = n iff ﬁf,k) nk) vk,
For all k € {1,..., K}, we have:

190 L adli<n| XeAd = 2372 with Z = 14 (X
An - car {i <n| X €A} niz;, with Z; = 14,(X;).

The strong law of large numbers, applied to (Z;)i>1, then yields:

ZZ —5 E E(Z) = n®

since /1, 2o, ... iid Ber( (k)).
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Exercise solution 3

® Mean-square consistency

E (Jit, - nl®) = ZE (389 -n)")

with k fixed: ﬁﬁ,k) = Z, with Z; ~ Ber(n(¥)) of finite variance.

The law of large number in L? gives:

n—oo n—o0

_ 2
Z,=a% L, R e E((ﬁﬁk) —77(“) ) — o0

2
HenceE(Hﬁn—nH2> — Oet 1) SN n

n—o0
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Exercise solution 3

0.18

0.16| 0.35

0.14 0.3

0.12 0.25

0.1 0.2

0.08
0.15
0.06
0.1
0.04

0.02 0.05

0
2 0 2 4 6 8

Histogram calculed for N = 100 and K = 20.

Note. The law used in the example has a density fx(x). HRE



Exercise solution 3

0.18" W‘
0.16
0.14
0.12

0.1
0.08
0.06
0.04 -

0.02

Histogram calculated for N = 10000 and K = 20.

10.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

58/60



Exercise solution 3

0.45
0.4
0.35
0.3

0.25¢

0.2
0.15
0.1
0.05

L ),

10.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

-2 0 2 4 6 8

Histogram calculated for N = 10000 and K = 8.

i back to questions
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Exercise solution 4

Consider the bias-variance decomposition of the quadratic risk:
Eo (7 — £(0))?) = varg () + bo(7)*.

The two terms in the sum are positive, therefore

{varg (7)) — 0,

A~ 2
Eq (7~ £(0))) — 0 ) o o

This proves the claimed equivalence. Ol
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Other examples, not treated in this course (nonparametric
statistics)

Example 3
> X, X0, .., Xy P,
» 6 = P, unknown distribution,
» © = {distributions on (R, B(R))},

» g(0) = F: cumulative distribution functions of the X;'s.

Example 4
> X1, X0, .. Xy S Py,
» Py: probability density functions 6(x)
> © = {pdf on R, of class €2, with [§"(x)?dx < o0}

> g(0)=6.



Proof of the Cramér-Rao inequality
Preliminary remark: since 7 is a regular UE of g(0),
g is differentiable.

Let # € ©, and set ¢ = covy (Sy, 7}) € RP. Then, Va € RP,
varg( —a 59) = vary (1) )—2a c+a' varg (Sg)a > 0.
In particular, for a = varg (Sg) ™! ¢ € RP, we get:
varg () — ¢ varg (Sp) 1 c > 0.
Finally, since Sy is centered and 7 is a regular UE,
¢ =Eo(150) = (109 - 575 V() - 609 1(d

- /S i(x) Vofy(x) v(dx) = VoEq (7)) = Vg(0). U



Probability refresher: convergence modes

& almost sure convergence :

as

T, — T if P(T,—T)=1
& convergence in L? (in mean square):

5T #f E(T,-TI?) =0

i vi<p TYL 70
& convergence in probability:

T, 5T if Ve>0, P(|T,—T|>¢)—0

& convergence in distribution:

. ST if Ve, E(o(Th) = E(e(T)),

with ¢ : RP — R continuous and bounded.



Consistency of the MLE

The MLE minizes the following criterion:

wn(e)z—flnfe =——Z|nfe

Let 0 € ©, and set ¢ = covy (Sy, 7}) € RP. Then, V0 € O,

LIS R s [0
wO)-ul0) = 1 s S [ n ) nldn(ao

n——+o0o fg(x)

(assuming that Z; = f‘;e*((;")) has a first-order moment).

Definition / property: Kullback-Leibler divergence

D (fo. |Ifo) = [s, In 25} fo. (x) 11 (dx) > 0



Consistency of the MLE (cont'd)

Set An(0,0) = 2 Yon_; In 284 and A(60,,0) = Dio (f.]1f)-

Py, —ps
) ——
n—-+00

We have A, (6,0 A(0,,0) for all 8, and A(b,,0,) = 0.

Theorem: Consistency of the MLE
Assume that, for all 4, € ©,
P,
(i ) SUPgco |An(0*, 9) — A(Q*, 6)| m 0
@ and, for all e > 0,

inf A(6,,6) > 0.
0O, ||0—04|>€

Then the MLE is (weakly) consistent.
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