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Lecture 7/9

Classification: logistic regression.
Some models for supervised learning

Course objectives

» Classification using logistic regression
» Performance metrics for classifiers
» Prediction with decision trees

» Prediction with neural networks
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L ecture outline

1 — Some general notions about classification
2 — Logistic regression [classification]

3 — Decision trees [regression + classification]
4 — Neural networks [regression + classification]
5 — Standard exercices (with solutions)

6 — Appendices
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1 — Some general notions about classification
1.1 — Introduction
1.2 — Loss functions and associated optimal classifiers
1.3 — Performance metrics
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1 — Some general notions about classification
1.1 — Introduction

Mathematical framework and objectives

Notations
> (X1, Y1), (X, Ya) B PXY
» PX.Y: unknown distribution on X x )
> X CRP, Y={0,1,....,K—1}

» unless stated otherwise: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h: x — {0, 1}.
Synonyms: classification function, or “classifier”.

Objectives of this section
» introduction to the logistic regression method

» definition of relevant risk measures for classification

4/77




Example with two explanatory variables (p = 2)

:3 =
* “Negative” label (0)
21 * “Positive” label (1)
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A taste of things to come: a possible classifier

4 -
* “Negative” label (0)
* "Positive” label (1) |

ol , * —Boundary between h=0 and h=1

A A A
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Lecture outline
1 — Some general notions about classification

1.2 — Loss functions and associated optimal classifiers

Reminder: loss function and risk

Definition: risk (generalization error)

Given a loss function L: )Y x Y — Ry and a prediction function
h:X — )Y, the risk, or generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).
A This risk depends on the unknown distribution:

R(h) = / /X s ) P . dy),
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Soft and hard classifiers

Consider a problem with two classes: ) = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h: X — ) from the
instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.

Definition: soft classifier

A soft classifier is a measurable function h: X — [0, 1] from the
instance space to [0, 1].

Given a soft classifier h: X — [0, 1], we can construct a family of hard
classifiers, of the form x — 1,(,)>4, for 6 € [0,1].
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Commonly used loss functions

Definition: 0/1 loss for hard classification
L:YxY — R,
v, 7) = Ly, y) =1,z
» R(h) =P (Y # h(X)) is the probability of misclassification.
Definition: Logarithmic loss for soft classification

L:Yx[0,1 — R,

(y,y) — L(y,)"/):{_ln(y) ify =1,

—In(l—y) ify=0.
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Commonly used loss functions (cont'd)

5

4 _y:1
&3
>
~ 2

Remark: for both loss functions,
> L(y,y) >0,

> L(y,y)=0& y=y.

0.8

0.9
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Optimal classification functions

Proposition

h: X — ) is optimal for the 0/1 loss iff, PX_ae,

> h(x)=1whenP(Y =1]X=x)> 1,
> h(x) =0when P(Y=1|X=x) < 3.

with the notation P(A | X =x) =E(1a | X = x).

For instance, x = Lp(y_1|x=x)>1 is optimal.

1
2

Remark: a more general formula can be proved for an asymmetric loss

(L(0,1) # L(1,0)). See PHC's lecture notes.
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Optimal classification functions (cont'd)

Proposition

h: X —[0,1] is optimal for the logarithmic loss iff, PX-ae,

h(x) = P(Y=1|X=x).

Remark: since Y takes its values in {0,1}, we have:
P(Y=1|X=x) = E(Y|X=x).

i soft classification + logarithmic loss ~ regression.

(Hence the name of the method that we are about to study!)
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1 — Some general notions about classification

1.3 — Performance metrics




Confusion matrix & associated definitions

Truth Truth
Negative (N) Positive (P)
Prediction True Negative False Negative
Negative (TN) (FN)
Prediction False Positive True Positive
Positive (FP) (TP)
True Positive Rate True Negative Rate
TP TP TN TN
.I_I:)l;? — — = f—
P TP + FN TR N TN + FP
(also called sensitivity) (also called specificity)
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Confusion matrix & associated definitions (cont'd)

Alternative terminology, from the field of signal processing:
» 1 — TPR is the miss rate (false negative rate)
» 1 — TNR is the false alarm rate (false positive rate)

Applications to soft classifiers

» Reminder: to any given soft classifier h, we can associate a
family of hard classifiers

hs : x — ]lh(x)257 d e [0, 1] .

» The value of § impacts the TNR/TPR trade-off
> when § *, TNR 7, and TPR \,
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ROC curve (Receiver Operating Characteristic)

» a tool for decision support (choice of 9)
» a tool useful for classifier comparison
» associated definition: AUC = Area Under the Curve

1k
0=01"s5=05
008"
= AUC = 0.98 5 =0.9
%
206/
8
o
© 0.4/
=
0.2r
0

0 0.2 0.4 0.6 0.8 1
True Negative Rate
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2 — Logistic regression [classification]
2.1 — A linear model for soft classification
2.2 — Training: selecting the coefficients
2.3 — Back to the introductory example
2.4 — Extensions




L ecture outline

2 — Logistic regression [classification]
2.1 — A linear model for soft classification

A linear model for soft classification

Consider a (binary) classification problem
> XY CRP, Y =1{0,1}.

Choose the logarithmic loss:

» the goal is to approximate the optimal soft classifier

P(x) = P(Y=1]| X =x).

Logistic regression consists in using classifiers of the form
h(x) = s (50 + 5Tx) ,

with 5o € R, 5 € RP, and s(t) = e'/(1 + €?) the logistic function.
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The logistic function

1

08

021

\
\
\
\
\
\
\
1 ‘ 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

t= 00+ 8" x

w defines a correspondence: By + 3" x € R +— proba p € (0,1)

Also known as the sigmoid function.
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A linear model for soft classification (cont'd)

Equivalently,
logit (h(x)) = Bo + 57 x

with
logit: (0,1) — R

p
p |(_)
1-p

the logit function.

Properties

» The logistic function s is a strictly increasing, C*° bijection
from R to (0, 1).

» The logit function is the inverse function: it is strictly
increasing and C*° from (0,1) to R.
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The logit function

—logit function

logit(0.5) = 0

m defines a correspondence: proba p € (0,1) «+— Bo+ 8 x € R
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From soft to hard classification

Given a soft classifier of the form
hx) = s (Bo+57x).
and a decision threshold § € [0, 1], we set:

hs(x) = Lpx)>s-

1= hs separates the classes in X' by an affine hyperplane:
hs(x) =1 <= Bo+ B"x > logit(s)

For the 0/1 loss, the value § = 3 is generally used.
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L ecture outline

2 — Logistic regression [classification]

2.2 — Training: selecting the coefficients

Minimization of the empirical risk

Simplification of notations: x — ( )1< ) and 8 — ( go )

exp (BTX)
1 +exp(B8'x)

- h(x)=

The parameter [ is selected using empirical risk minimization.:

, _ IS
B = argmingcpen — z; L(Yi, h(X:)),
1=

where L denotes the logarithmic loss.
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Minimization of the empirical risk (cont'd)

Equivalence between empirical risk minimization and MLE

S L(yi, h(x7)) = _|n< H,’.’Zl(h(x,-))yf(l—h(x,-))l—y,- )

- -

likelihood L(5;X,Y)

Interpretation: A is the MLE of the parametric model

exp (BTX)

YiIX; © Ber(h(X))),  h(x)= Py gt B c RPHL,
Log-likelihood
Log-likelihood (see PC)

(B) = |nn£(ﬁ;L Y)
= Z {Yi B'X; —1In (1 + exp(ﬁTX,-)>}

i=1

Maximization of /
Using a numerical optimization algorithm

m for instance, the Newton-Raphson algorithm
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Reminder: Newton-Raphson algorithm in one dimension

Let ¢ : R — R. We want §3 that satisfies ¢(3) =0
Newton-Raphson algorithm is iterative:

» initialization: 3(%)

> iteration: Bkt = k) ¢(8")

— 9(BW)
05
| L -
. L —3(B)
05 | =z
-1 ! \ |
0 0.5 1 15

24/77

Maximization of £ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:
> ¢ — Vgl
> ¢ — V3L

The iteration follows:

gt = g0 [v3¢ (50)] R, (5%9)

Under the following conditions:

> V3¢(.) is Lipschitz continuous,
> V2 (/5(0)) is invertible
-1
> ho = [V3£(8@)] " Vst (8) small enough',

the algorithm converges to a point 5* such that V¢ (8*) = 0.

T ¢f. “Kantorovich theorem” on wikipedia for a more precise statement
25/77




L ecture outline

2 — Logistic regression [classification]

2.3 — Back to the introductory example

LR performed on the example with 2 explanatory variables

=05

4 -
TNl | v “Negative” label
3 I A "Positive” label
~ ;—Decision boundary for ¢
21 x4 & O Wrong “Positive” pred.
E:';< il v & ' A0 Wrong “Negative’ pred.
v A
0F ng Biiny
v 4
Vv
Rt o .
_2 | : [ | . ]
5 1 0 1 2 3 4 5

Prediction errors:

» “Negative’ examples predicted as “Positive”

» “Positive” examples predicted as “Negative”

26/77




Influence of ¢

(1) (1) (1)
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ROC curve (Receiver Operating Characteristic)

» a tool for decision support (choice of 9)
» a tool useful for classifier comparison
» associated definition: AUC = Area Under the Curve

1S
0=01"5-05
808 . AUC =0.98
T AN T M 5 — 09
m \\\
506
et N
(V)] \\
O Y
Q \\\
3 0.4/
F \\\
0.2+

0 L L L L L
0 0.2 0.4 0.6 0.8 1

True Negative Rate
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2 — Logistic regression [classification]

2.4 — Extensions

Extension: large number of variables

How to handle the case where p is large

The log-likelihood is penalized:
> Ly : 3 =argmaxg (£(8) — Al|B|1)

~n

> Ly : §=argmaxg (£(3) — Alll1)

m see Lecture 8

p is “large” if p > n, or even simply p~ n
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Extension: more than two classes

Multiclass classification
Let {0,1,...,K — 1} be the set of labels (classes), K > 3.

One class is chosen as the reference class and K — 1 binary logistic
regressions are performed (here class “0" was chosen):

n(Ftvoshe) = Pro+ Al

P(Y=K—1|X=x
| '”( (P(Y:O|X|:x) )> = Br-10+ Br_1x

30/77
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3 — Decision trees [regression + classification]
3.1 — Two introductory examples
3.2 — Recursive partitioning
3.3 — Prediction function
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3 — Decision trees [regression + classification]
3.1 — Two introductory examples

Binary classification: spam detection

Data collected over 4601 e-mails
» explanatory variables: relative freq. of 57 of the most used

words
» variable to be explained: label “Spam” or “Email”
w categorical variable (binary in this example)

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters

showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

spam
email

TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross—
validation) on the test data. Overall error rate is 9.3%.

Predicted

True email spam
email | 57.3%  4.0%
spam 5.3%  33.4%
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Source: The Elements of Statistical Learning, Springer (for next slide also)
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Regression tree: "Ozone” example
Simplified example (for the sake of visualization)

» predict variable 03 (quantitative variable)
» from variables MOCAGE and TEMP

MOCAGE < 113.65

OCAGE >= 113.65 TEMP < 33.1TATEMP >=33.1

MOCAGE < 85.85

OCAGE >= 85.85 MOCAGE < 128.45 OCAGE >= 12845 MOCAGE < 208.65 OCAGE >=208.65

77.3871 . . . 3 78

Vocabulary. When the variable to be explained is
» quantitative — regression tree

» categorical — classification tree
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L ecture outline

3 — Decision trees [regression + classification]

3.2 — Recursive partitioning

Recursive partitioning: general principle

Objectives

Construct a partition of X from the data (X, Y).

Principle: iterative construction of a sequ. (Pp,),,~, of partitions,

> Py = {Zl(m), . Z,(nm)}, where partition P,, contains m subsets.
Initialization: P; = {X'}.

Pm — Pma1: split a subset Z,g::) along one of the variables:
> 7, = Z,E,T) N {x such that xUm) < Om}
> 7, = Z,E,T) N {x such that xUm) > Om}

(the index jm, and the threshold 6, still have to be specified)
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An example with p = 2

(D) subset Z IE,T)

x(2) lteration P, = Pmt1:
I e » (D) subset Z,E:) € Pn
@ > (2) variable xUm) (here j,, = 2)
» (3) threshold ¢,
>
x(1)

After splitting Z,E:'), we get:
Pmy1 = Pm U {21722} \ {Z/E;n)}

37/77

Choice of kp,, jm and 0,
Let D(Z) be a measure of the heterogeneity of a subset Z.

Example (for a quantitative label y)

D(2)=> (vi—7z2)

ieZ

where y7 is the empirical mean computed over Z.

Km, Jm and 0, are jointly chosen in such a way that
D (Z,E;")) — D(Zy) — D(Z,) is as large as possible

m |argest reduction of heterogeneity

(Recall that Z; and Z» are the subsets obtained by splitting Z,E:))
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L ecture outline

3 — Decision trees [regression + classification]

3.3 — Prediction function

Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on
the elements of the partition:

hs(x) = > Bicl g (x).
k=1

Remark: for a given partition, this is a linear model with respect to
the m variables ]lz’sm) (x).

39/77




Estimation of the coefficients

Principle: to estimate (™) = <5§m), . .5,(,,'”)),
» choose a loss function L(y, hz(x)),

» then minimize the empirical risk.

Simplification:

ming % (hg) = ming 37y L(yi, hs(xi))
- mm/B ZT:I Z,’GZIE’”) L(yivﬁk)
- Z:(nzl mian Z,'GZIE’") L(yl'a Bk)

Consequence: Vk, BA/(:") = arg ming, ZieZ,Em) L(yi, Bk)-
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Two important special cases

Regression with the quadratic loss

BA,((m) = argming, Z (vi — B)® = )_/Z,Em)

iez(™

Binary classification with the logarithmic loss

Soft classification:

B = argming oy Y (—yiIn(Bk) — (1 — yi) In(L — Bx))
iez{™

1 m
= - card (i € Z,E ) such that yi = 1)

card (Z,Em))

Hard classification: threshold at § = 1 (cf. logistic regression).
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Choosing the size m of the partition

» m can either be given beforehand (~ prior knowledge)

» or estimated by cross-validation.

“Ozone”’ example

» Regression of O3 with p = 7 explanatory variables

» m is chosen by leave-one-out cross-validation

337

32

31}
W
nNsor

=

—cross-validation

29+
28 -
27
26
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Regression tree: "Ozone” example

TEMPE < 26. EMPE >=26.2

MOCAGE < 113.65 OCAGE >=113.65 TEMPE < 33.1 2ATEMPE >=33.1

MOCAGE < 128.45 OCAGE >= 128.45 SRMH20 < 0.117721 RMH20 >=0.117721

81.98374

99.5 148.6774 166.25 243.3333

W O d oy W N

=
= o

if TEMPE<26.2 then node 2 elseif TEMPE>=26.2 then node 3 else 103.433

if MOCAGE<113.65 then node 4 elseif MOCAGE>=113.65 then node 5 else 88.1429

if TEMPE<33.1l then node 6 elseif TEMPE>=33.1 then node 7 else 153.673

fit = 81.9837

fit = 108.079

if MOCAGE<128.45 then node 8 elseif MOCAGE>=128.45 then node 9 else 138.59

if SRMH20<0.117721 then node 10 elseif SRMH20>=0.117721 then node 11 else 212.5

fit = 99.5
fit = 148.677
fit = 166.25
fit = 243.333
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More trees. . .

Disadvantages of decision trees
> high sensitivity to the sample (x, y)

> piecewise constant prediction on each subset (by construct.)
(not satisfactory if the optimal prediction function is smooth)

Extensions

» aggregation of decisions tree models
m Random forests

» weighted sum of weak classifiers
m Boosting (AdaBoost)
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lecture outline

4 — Neural networks [regression + classification]
4.1 — Neurons

The (multipolar) biological neuron: axons, dendrites. . .

Cell body

i
A T{A( Synaptic terminals

Golgi apparatus

Endoplasmic
reticulum
Mitochondrion \\ ™ Dendrite

/ \\\k Dendritic branches

Image: Bruce Blaus, https://commons.wikimedia.org, CC BY 3.0

“A multipolar neuron is a type of neuron that possesses a single axon and many dendrites
(and dendritic branches), allowing for the integration of a great deal of information

from other neurons.” (https://fr.wikipedia.org/wiki/Neurone_multipolaire)
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The artificial neuron

Definition: neuron (McCulloch and Pitts, 1943)1

In statistical learning, a neuron with p variables (inputs) is a
function, generally non-linear™, of the form

h(x)=¢(wx+b), xeRP,
where

»  is an increasing R — R function;
» weRYXP and b e R.

Vocabulary
» : activation function,
> wi, ..., wp weights,

» b: bias (nothing to do with the bias of an estimator).

T The original neuron of McCulloch & Pitts (1943) specifically used ¢ = sgn as an activation function.

¥ We will see later a situation where a linear neuron (¢ = Id) is used.

46/77

The artificial neuron: illustration (p = 5)

wi
%,
w3

x(3) Y Y
Wy

Ws,

(o
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Activation functions

Discontinuous activation functions (not recommended?):
» Heaviside function: ¢(v) = 1,>0, or

» sign function: ¢(v) =sgn(v) = 1,50 — 1,<o.

“S-shaped” functions, a.k.a. sigmoids:

> logistict : p(v) = 1+i—v = 2+ Ztanh (%), or
» tanh : ¢(v) = tanh(v) = %

The RelLU (Rectified Linear Unit) function:
> o(v) = max(0, v).

T Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.

¥ The word “sigmoid’ sometimes refers to this particular function.

48/77

Activation functions (cont'd)

a) Identit b) Sign ¢) Sigmoid
(a) y g g
(d) Tanh (e) ReLU (f) Hard Tanh

Image: C. C. Aggarwal (2018). Neural networks and Deep Learning, Springer.
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Remark: relation with logistic regression

Remark. With the logistic activation function (sigmoid),

ymp) = & v:|n(L).

T ltev 1—y

Since v = wx + b, we recover for h(x) the form of the logistic
regression predictor.

50/77
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4 — Neural networks [regression + classification]

4.2 — Multi-layer perceptrons




Multi-layer perceptron: definition

Let p, K be non-zero integers.

Definition: multi-layer perceptron’ (MLP)

We call multi-layer perceptron with M + 1 layers, p variables (input)
and K responses (output), any function RP — RK of the form

h = (fMOgM> 0-+-0 (fjogj> 0-++0 <f1og1)7
where?
> gy RM-1 — RMk js affine,

> ¢, : R™ — R™k represents the action coordinate by
coordinate of an increasing function ¢, : R — R.

» mg, m1, ..., mpy: non-zero integers, mg = p, my = K.

T Rosenblatt's original perceptron (1957) did not include hidden layers (M = 1). It was using the
activation function h(x) = sgn(x) as McCulloch and Pitts (1943), and weights w; € {—1,+1, —oo}.

¥ there will be one exception this rule later (“softmax’ layer)
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Multi-layer perceptron: definition (cont'd)

Vocabulary: layers of variables
> z|g) = x: input layer,
> 71 = (¢, © &) (21k-17), 1 < k < M: hidden layers,

> zivp =y = (¢, © 8m) (Zim-1)): output layer.
Remark. Let us write
8k (zjk—1)) = Whzp—1) + bx.
Then, for all j € {1,..., mx} we recognize a neuron:
Z[(;{] = Pk (Wk,j Zk—1] + b;(f)) :
where wy ; = ejT W is the j-th row of W.

m \ocabulary: weights, bias, activation function.
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Multi-layer perceptron: illustration

Example of a multi-layer perceptron with p = 3 inputs, K = 3 outputs,
and two hidden layers of sizes m; =5 and m, = 4.

Vocabulary: fully connected, feed-forward neural network
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Output layer: activation function

The output layer must be adapted to the problem at hand. ..

Regression. ) C R, or more generally R¥.
» Perceptron with K outputs
» Activation function: ¢y, = Id.

> Thus the last transformation (¢,, o gm) is linear (affine).

Classification. K classes, Y = [0, 1] (“soft” classification).
» Perceptron with K outputs, with my,_1 = my = K.

» Exception to the definition ™ the “softmax” layer:

() K
Z(J) = =P <Z[M_1.],) 9 Z(J) :1
0 e (y)

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer. 54/77




Training: loss functions and regularization

The most commonly used loss functions' are

» regression: the quadratic loss
> L(y,7) = (y — ¥)? for the single-output case,
> L(y,y) = lly - yII? if K> 1.
» (soft) classification: the logarithmic loss
> Forallj€{1,...,K}, we have yU) € {0,1} and yU) € [0, 1].
> L(y,7) = Z , Yy in (y1).

Nb parameters is high = regularize to avoid over-fitting
» penalization, for instance L1 (LASSO) or L2 (ridge);
» other (not covered): early stopping, drop out. ..

T for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)

n(0) = ZL(Ww(X))

where 0 denotes the parameters of the model (weights, biases).

> Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

» computational burden when n is large: random “mini-batchs”
m stochastic gradient method (not covered);

» recursive computation of the gradient of a composition of fcts
m back-propagation method (not covered).
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4 — Neural networks [regression + classification]

4.3 — Example

Example: MNIST

0000006 Qop0OoOCY (0 OO0
A T R U TR S TV R R U Y B SV A |
2d 2AIIP2IFrEA21L2DIA2A
3333333353338 3333
H¥ #4449 Y9 ¢ 5d4q 4 \ &4y
5558535 SS s5FE5s 58554579
b &G 6 6 G &Lobbce 6t el
T7777r 0720002 %F7 77
¥y 3 ¢t v 8 ¢ P &8 P TT T L 8
?199999%949%4994499 9

70 000 images' of size 28 x 28 pixels (256 gray levels)

Problem: multi-class classification (10 classes);
training: 60 000 images / test: 10 000 images

Source: http://yann.lecun.com/exdb/mnist/




Example: MNIST

m see Jupyter / Python / Scikit-Learn notebook
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4 — Neural networks [regression + classification]

4.4 — Other architectures




Convolutional neural networks (CNNs)

Feature maps

______ -
*,_ Output
“»

Convolutions Subsampling Convolutions Subsampling Fully connected

Schematic diagram of a typical CNN

Image: Aphex34, https://commons.wikimedia.org, CC BY-SA 4.0
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5 — Standard exercices (with solutions)
5.1 — Questions
5.2 = Solutions
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5 — Standard exercices (with solutions)
5.1 — Questions

Exercise 1 (Optimal classifier with the logarithmic loss)

Question

Show the proposition stated on

h: X — [0,1] is optimal for the logarithmic loss iff, PX-ae,

h(x) = P(Y=1|X=x).
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Exercise 2 (Multi-class logistic regression)

When the number of classes K is > 3, the classification problem is
called Multiclass.

Let {0,1,...,K — 1} be the set of labels (classes), K > 3.

Binary logistic regression can be extended to multi-class
classification by

» selecting a reference class (here, “0")

» performing K — 1 binary logistic regressions:

( =1|X=x
n(Fysonsg) = Brotbix

P(Y=K—-1|X=x
\ '”( (P(Y:0|X|:x))) = PBr-10+ Br_1x
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Exercise 2 (Multi-class logistic regression (cont'd))

To simplify notation, we'll assume that the matrix of explanatory
variables contains a constant vector and make the following change:

Bi + (B0, Bk)

Questions

@ Give the expression of P(Y = k|X = x) from the vectors f,

® Deduce from 1. that the choice of reference class is arbitrary
(it has no influence on the regression model),

© Express the log-likelihood
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5 — Standard exercices (with solutions)

5.2 — Solutions

Solution of exercise 1

The optimal classifier i* minimizes E (L(Y, h(X))), where the
expectation is taken over (X, Y).

By conditioning, we have:

Ex,v) (L(Y, h(X))) = Ex (Eyix(L(Y, h(X))|X)
Thus:
h* = argmin, E (L(Y, h(X)))
)

h*(x) = argmin,cy E(L(Y,t) | X =x) PX-pp.
7 (1)
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Solution of exercise 1

With the logarithmic loss:

J(t) = Eyx(L(Y,t)[X =x)

P(Y = 1|X = x)L(1,t) + P(Y = 0|X = x)L(0, )
P(Y = 11X = x)(L(1, t) — L(0, t)) + L(0, £)

= P(Y =1|X = x)(=In(t) + In(1 — t)) — In(1 — ¢)

Solution of exercise 1

The minimization of 7(t) is achieved by examining the sign of the
derivative of J(t):

J'(t) =P(Y = 1|X = x) (_%_L) +1L
—P(Y = 1|X = x) (_t(ll_t)) +1%t
1 (1_P(Y:1|X:x))

T 1-t (

For P(Y = 1|X = x) €]0, 1], J'(t) is thus:
> strictly negative for t €]0,P(Y = 1|X = x)],
» zeroat t =P(Y = 1|X = x),
> strictly positive for t €|P(Y = 1|X = x), 1],




Solution of exercise 1

Conclusion: t = P(Y = 1|X = x) is the unique minimizer on [0, 1]
of the function J(t).

When
> P(Y =1|X = x) =0, J(t) is minimal at t = 0,
> P(Y =1|X =x) =1, J(t) est minimal at t = 1.

We conclude that:
® h:x— P(Y =1|X = x) is optimal,

@® h*(x) is the unique minimizer of the fonction
j Tt ]EY|X (L(Y, t)lX = X).
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Solution of exercise 1

In converse : suppose that h optimal.
Let the function:

g(X) - IE:Y/X(L7 Y, h(X))/X - X) - I['EY/X(L7 Y, h*(X))/X - X)

We have:

> Ex(g(X)) = [, g(x)dPX =0 (otherwise, h would not be
optimal),
> Vx, g(x) > 0 by the optimality of h*.

Therefore, g = 0 PX — a.e., that is:

P(X € F) =0avec F ={x € X tq. g(x) > 0}
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Solution of exercise 1

h*(x) is the unique minimizer of the function
J :t= Eyx (L(Y, t)|X = x), we have:

F={xeXtq. h(x)#h(x)}

We conclude that h = h* PX — a.e., establishing the desired
equivalence.
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Solution of exercise 2

@ Forall ke {l,...,K -1}

HY:MX:qum%@&ny:mX:@.

K-1
Following Z P(Y = k|X = x) = 1, we have:
k=0
( exp (B, x)

P(Y = kX =x) =

k0
1+ Zk,;éolexp (Bix) 7 (1)

P(Y =0|X =x) =

14+ 30 z0exp (Bx)
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Solution of exercise 2

@ Let k # 0. Suppose that we select the class k as the reference
and for k # k the vector ) of the model is given by:

In - = (ix, k+#k
P(Y:MX:x>
Since
in [ POY=kX=x) _ 1 [ BOY=kiX=x) P(Y=0|X=x)
P(Y=k|X=x) P(Y=0[X=x) P(Y=k|X=x)
- BI—J—X _ B;}l—xa
we have: _ _
{@k — 6k_ﬁ/}7k7£07k#k (2)
Bo = —B¢
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Solution of exercise 2

By using the results of Question @, we have that for k # k :

( exp (B;X) 3
P(Y = k|X =x) = k4 k
< 1+ Zk,#,} exp (B;X>
1
P(Y =0|X = x) = _
i 1+ Zk,?é,; exp (ﬁ;x>

By substituting S in these equations using the relations (2), we
obtain the equations (1).

Summary: Changing the reference class alters the model’s
parameters (without changing the model itself).
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Solution of exercise 2

® To establish the connection with binary logistic regression, we
represent the observation y; € {0,..., K — 1} by the vector

Zi € {O, 1}K:
1 if Yi = k
Zik = :
0 otherwise
We also denote (3 the set of vectors 31,..., Bk_1.
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Solution of exercise 2

We express the likelihood associated with the example (x;, v;):

K—-1
PYN(yilx) = T PyYi(kix)s+
k=0
K-1
_ Plgi|xi(O‘Xl_)l—z,-,l—...z,-,K_l (H P;ixi(k|Xi)Zi’k>
v =Ly
PYI 0 T 0 (K|x)

:<‘®

k:l Pyi(01x)
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Solution of exercise 2

Using :

» the (K — 1) regression models:

ny
Y = (k|XI) _ exp(ﬁ;in)zi’k,
"(0]x:)

» the second equation of (1):

1
1+ Y1 e (Bx)

P(Y = 0|X = x) =

the log-likelihood is expressed as:

n

K-1 K-1
S = (1 LY e (@Ex,-))
k=1 i k'=1

1
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6 — Appendices




Generalized linear models

Definition
The GLM contains all statistical models such that

» Y|X follows a distribution from an exponential family:
FYX(y[x) = C(n)h(y) exp (ny)  with n = n(x).
> g (Es(YIX = x)) = fo + B
Vocabulary. The function g is called the link function.T

Example. Bernoulli distributions form an exponential family.

fly) = ¢ (1-6)"

= (1—6)exp ('n <&>y) = = In <&>

T Let N denote the set of admissible value for n: g is often chosen to be a bijection from N to R. 75/77

Remark: generalized linear models (GLM)

The logistic regression model has the form
> Y|X ~ Ber (Eg(Y|X)),
> g (Es(Y|X)) =580+ B"'X, with g=Ilogit.

m special case of the generalized linear model (GLM)
(g is called link function)

Remark: we have already met another GLM model
> Y|X ~ . (Es(Y|X), 0?)
> g (Eg(Y|X)) = 5o+ "X with g =1d
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Example: Y;|X; i Poisson(#;), with In0; = By + B1.X;

Poisson distributions form an exponential family:

Y
f(y) = exp(—0) —
y:
1
= Fexp(—9) exp(In(@)y) > n = In(6)
25 [ °
— true model o
20 - least squares
— GLM/Poisson X
151
>,
10
5 L
0 | - (]
0 0.5
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