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Lecture 7/9

Classification: logistic regression.
Some models for supervised learning

Course objectives

» Classification using logistic regression
» Performance metrics for classifiers
» Prediction with decision trees

» Prediction with neural networks
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Lecture outline

1 — Some general notions about classification
2 — Logistic regression [classification]

3 — Decision trees [regression + classification]
4 — Neural networks [regression + classification]
5 — Standard exercices (with solutions)

6 — Appendices
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Lecture outline

1 — Some general notions about classification
1.1 — Introduction
1.2 — Loss functions and associated optimal classifiers
1.3 — Performance metrics



Lecture outline

1 — Some general notions about classification
1.1 — Introduction



Mathematical framework and objectives

Notations
> (X1, Y1),y (X Vo) B PXY
» PX:Y: unknown distribution on X x
» YCRrP, Y={0,1,....,K—-1}

» unless stated otherwise: K = 2 (binary classification)
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Objectives

Construct a (good) prediction function h: x — {0, 1}.

Synonyms: classification function, or “classifier”.
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Mathematical framework and objectives

Notations
> (X1, Y1),y (X Vo) B PXY
» PX:Y: unknown distribution on X x
» YCRrP, Y={0,1,....,K—-1}

» unless stated otherwise: K = 2 (binary classification)

Objectives

Construct a (good) prediction function h: x — {0, 1}.
Synonyms: classification function, or “classifier”.

Objectives of this section
» introduction to the logistic regression method

» definition of relevant risk measures for classification
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Example with two explanatory variables (p = 2)

:3 -
* “Negative” label (0)
A
2¢ * “Positive” label (1)
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A taste of things to come: a possible classifier

4-
* “Negative” label (0)
* "Positive” label (1)

o * —Boundary between h=0and h=1
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Lecture outline

1 — Some general notions about classification

1.2 — Loss functions and associated optimal classifiers



Reminder: loss function and risk

Definition: risk (generalization error)

Given a loss function L: Y x Y — Ry and a prediction function
h: X — Y, the risk, or generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).
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Reminder: loss function and risk

Definition: risk (generalization error)

Given a loss function L: Y x Y — Ry and a prediction function
h: X — Y, the risk, or generalization error, is defined as :

R(h) = E(L(Y, h(X))),

where the expectation is with respect to (X, Y).

A This risk depends on the unknown distribution:

R(h) _// L(y, h(x)) P (dx, dy).
XxY
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Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h: X — ) from the
instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.
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Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h: X — ) from the
instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.
Definition: soft classifier

A soft classifier is a measurable function h: X — [0, 1] from the
instance space to [0, 1].
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Soft and hard classifiers

Consider a problem with two classes: Y = {0, 1}.

Definition: hard classifier

A hard classifier is a measurable function h: X — Y from the
instance space to the label space.

Remark: special case of a prediction function, cf. Lecture 6.

Definition: soft classifier

A soft classifier is a measurable function h: X — [0, 1] from the
instance space to [0, 1].

Given a soft classifier h: X — [0, 1], we can construct a family of hard
classifiers, of the form x +— 1(,)>s, for § € [0,1].
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Commonly used loss functions

Definition: 0/1 loss for hard classification

L:YxY — R,
(v,7) = Lly,7) =1,.

> R(h) =P (Y # h(X)) is the probability of misclassification.
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Commonly used loss functions

Definition: 0/1 loss for hard classification

L:YxY — R,
(v, ¥) = Ly, y) =1,4.

> R(h) =P (Y # h(X)) is the probability of misclassification.
Definition: Logarithmic loss for soft classification

L:Yx[0,1] - R,

(v,9) = L(y,y) = {: ::g)_ 7) :;i Z (1)
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Commonly used loss functions (cont'd)

5

0
1

y
y

Remark: for both loss functions,
> L(y,y) >0,

> L(y,y)=0s y=y.
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Optimal classification functions

Proposition

h: X — Y is optimal for the 0/1 loss iff, PX-ae,
> h(x)=1when P(Y =1|X=x)> 3,
> h(x)=0when P(Y =1|X=x)< 3.

with the notation P(A | X =x) =E(1a | X = x).

For instance, x — Lp(y_y|x=x)>1 is optimal.

Remark: a more general formula can be proved for an asymmetric loss
(L(0,1) # L(1,0)). See PHC's lecture notes.
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Optimal classification functions (cont'd)

Proposition

h: X — [0,1] is optimal for the logarithmic loss iff, PX-ae,

h(x) = P(Y=1| X =x).

i proof: exercise 1
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Optimal classification functions (cont'd)

Proposition

h: X — [0,1] is optimal for the logarithmic loss iff, PX-ae,

h(x) = P(Y=1| X =x).

Remark: since Y takes its values in {0, 1}, we have:
P(Y=1|X=x) = E(Y|X=x).

1= soft classification + logarithmic loss ~ regression.

(Hence the name of the method that we are about to study!)
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Lecture outline

1 — Some general notions about classification

1.3 — Performance metrics



Confusion matrix & associated definitions

Truth Truth
Negative (N) Positive (P)
Prediction True Negative False Negative
Negative (TN) (FN)
Prediction False Positive True Positive
Positive (FP) (TP)
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Confusion matrix & associated definitions

Truth Truth
Negative (N) Positive (P)
Prediction True Negative False Negative
Negative (TN) (FN)
Prediction False Positive True Positive
Positive (FP) (TP)
True Positive Rate True Negative Rate
TP TP TN TN
TPR= — = ——— TNR= — = ——
P TP+ FN N TN + FP

(also called sensitivity) (also called specificity)
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Confusion matrix & associated definitions (cont'd)

Alternative terminology, from the field of signal processing:
» 1 — TPR is the miss rate (false negative rate)
» 1 — TNR is the false alarm rate (false positive rate)
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Confusion matrix & associated definitions (cont'd)

Alternative terminology, from the field of signal processing:
» 1 — TPR is the miss rate (false negative rate)
» 1 — TNR is the false alarm rate (false positive rate)

Applications to soft classifiers

» Reminder: to any given soft classifier h, we can associate a
family of hard classifiers

hs 1 x — ]lh(x)z& 0 € [O, ].] .

» The value of § impacts the TNR/TPR trade-off
» when 6 7, TNR /, and TPR
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ROC curve (Receiver Operating Characteristic)
» a tool for decision support (choice of §)

» a tool useful for classifier comparison
P associated definition: AUC = Area Under the Curve

. 0 = 0.5

1< -
§=0.1

o
™
:

AUC = 0.98 5=0.0

o
2}
\

o
~
:

True Positive Rate

o
)
:

0 0.2 0.4 0.6 0.8 1
True Negative Rate
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Lecture outline

2 — Logistic regression [classification]
2.1 — A linear model for soft classification
2.2 — Training: selecting the coefficients
2.3 — Back to the introductory example
2.4 — Extensions



Lecture outline

2 — Logistic regression [classification]
2.1 — A linear model for soft classification



A linear model for soft classification

Consider a (binary) classification problem
> X CRP, Y ={0,1}.
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A linear model for soft classification

Consider a (binary) classification problem
> X CRP, Y =1{0,1}.

Choose the logarithmic loss:

> the goal is to approximate the optimal soft classifier

h(x) = P(Y=1]| X = x).
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A linear model for soft classification

Consider a (binary) classification problem
> X CRP,Y=1{0,1}.

Choose the logarithmic loss:

> the goal is to approximate the optimal soft classifier

h(x) = P(Y=1]| X = x).

Logistic regression consists in using classifiers of the form
hx) = s (Bo+57x),
with 3y € R, 8 € RP, and s(t) = e'/(1 + €") the logistic function.

16/77



The logistic function
1

0.8

0.2

m defines a correspondence: By + 3 x € R <— proba p € (0,1)

Also known as the sigmoid function.
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A linear model for soft classification (cont'd)

Equivalently,
logit (h(x) = flo+ 5" x

with
logit: (0,1) — R

(%)

I

p

the logit function.
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A linear model for soft classification (cont'd)

Equivalently,
logit (h(x) = flo+ 5" x

with
logit: (0,1) — R

(%)

I

p

the logit function.

Properties

» The logistic function s is a strictly increasing, C° bijection
from R to (0,1).

» The logit function is the inverse function: it is strictly
increasing and C* from (0,1) to R.
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The logit function

5 —logit function
() L
logit(0.5) = 0
_5 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1

s defines a correspondence: proba p € (0,1) +— Bo+BTx€R
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From soft to hard classification

Given a soft classifier of the form
hx) = s (Bo+57x).
and a decision threshold ¢ € [0, 1], we set:

hs(x) = Lp>s-
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From soft to hard classification

Given a soft classifier of the form
hx) = s (Bo+87x)
and a decision threshold ¢ € [0, 1], we set:

hs(x) = L >s-

¥ hs separates the classes in X' by an affine hyperplane:
hs(x) =1 <= Bo+ B x > logit(s)

For the 0/1 loss, the value § = % is generally used.
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Lecture outline

2 — Logistic regression [classification]

2.2 — Training: selecting the coefficients



Minimization of the empirical risk

Simplification of notations: x — ( )1( ) and g — (

. _exp (5TX)
R e )

Bo
5

)



Minimization of the empirical risk

Simplification of notations: x — ( )1( ) and 8 — ( go >

. _exp (5TX)
)= 1+exp(BTx)

The parameter 3 is selected using empirical risk minimization.:

" _ 1 &
f = argmingcgps - EL(Y;, h(X:)),

where L denotes the logarithmic loss.

21/77



Minimization of the empirical risk (cont'd)

Equivalence between empirical risk minimization and MLE

Sy L h(x)) = =i TTZy (RGP (L = h(x)) )

g
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Minimization of the empirical risk (cont'd)

Equivalence between empirical risk minimization and MLE

S L h(x)) = =i TTZy (RGP (L = h(x)) )

likelihood £(8;X.Y)

Interpretation: [3 is the MLE of the parametric model

Yi|X; iid Ber(h(X;)), h(x) = j[ia}-(i;((F)ﬁ(ﬁT))()7

B e RPHL
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Log-likelihood

Log-likelihood (see PC)

4E) = Indlg s 1)
= S {Vi X~ (1+ew(87 X)) }

i=1



Log-likelihood

Log-likelihood (see PC)

Up) = |nnE(B;K,X)
= SV (1 exp(57X)) )
i=1

Maximization of ¢
Using a numerical optimization algorithm

w for instance, the Newton-Raphson algorithm
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Log-likelihood

Log-likelihood (see PC)

Up) = |“n5(ﬁ;K,X)
= SV (1 exp(57X)) )
i=1

Maximization of ¢
Using a numerical optimization algorithm

w for instance, the Newton-Raphson algorithm

23/77



Reminder: Newton-Raphson algorithm in one dimension

Let ¢ : R — R. We want §3 that satisfies ¢(5) = 0
Newton-Raphson algorithm is iterative:

> initialization: 5(%)

> iteration: AltD) — gl _ 40P

¢'(80)
051
(0) (1) 3(2)
ol B 8
‘ PRl = By
Rl —¢(B)
-0.5¢ 2
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Maximization of £ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:
> ¢5 — Vﬁf
> ¢ — V3L
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Maximization of £ using the Newton-Raphson method

Same algorithm but now in dimension p + 1, with:
> ¢5 — Vﬁf
> ¢ — V3L

The iteration follows:

B = g0 [V (5(@)}*1 vt (50
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Maximization of £ using the Newton-Raphson method
Same algorithm but now in dimension p + 1, with:
> ¢ — Vgl
> ¢ — V3L

The iteration follows:

B = g0 — [ (ﬁ(k))}‘l vt (5

Under the following conditions:
> V3((.) is Lipschitz continuous,

> VZBE ([5’(0)) is invertible

-1
> ho = [V%Z (/3(0))] Vsl (5(0)) small enough',
the algorithm converges to a point 8* such that Vgl (8*) =0

T cf. “Kantorovich theorem" on wikipedia for a more precise statement
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Lecture outline

2 — Logistic regression [classification]

2.3 — Back to the introductory example



LR performed on the example with 2 explanatory variables

4 -
A A v “Negative” label
3 JUIEN A “Positive” label
— Decision boundary for § = 0.5
21 wA® A& 1O Wrong “Positive” pred.
g . B O Wrong “Negative” pred.
1t
v A
0r o gv A
v ¥
v
-1k v N
-2 1 | | i
-2 -1 0 1 2 3 4 5

Prediction errors:
> “Negative” examples predicted as “Positive”

» “Positive” examples predicted as “Negative”
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Influence of ¢

§=0.1 §=0.5 , 5=09

\ Vv Negati
ViAal A Positive
FP

31 \& BFN

6]
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ROC curve (Receiver Operating Characteristic)
» a tool for decision support (choice of §)

» a tool useful for classifier comparison
P associated definition: AUC = Area Under the Curve

. 0 = 0.5

1< -
§=0.1

o
™
:

AUC = 0.98 5=0.0

o
2}
\

o
~
:

True Positive Rate

o
)
:

0 0.2 0.4 0.6 0.8 1
True Negative Rate
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Lecture outline

2 — Logistic regression [classification]

2.4 — Extensions



Extension: large number of variables

How to handle the case where p is large

The log-likelihood is penalized:
> Ly : B =argmaxs (4(8) — AlBI?)

A

> Ly : 3 =argmaxg (¢(8) — A||B]l1)

m see Lecture 8

p is “large” if p>> n, or even simply p = n
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Extension: more than two classes

Multiclass classification
Let {0,1,..., K — 1} be the set of labels (classes), K > 3.

One class is chosen as the reference class and K — 1 binary logistic
regressions are performed (here class “0" was chosen):

In @E\tiéiii%) = Bro+ B x

P(Y=K-1|X=x
In (W) = Br-10+Br_1x
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Lecture outline

3 — Decision trees [regression + classification]
3.1 — Two introductory examples
3.2 — Recursive partitioning
3.3 — Prediction function



Lecture outline

3 — Decision trees [regression + classification]
3.1 — Two introductory examples



Binary classification: spam detection
Data collected over 4601 e-mails
> explanatory variables: relative freq. of 57 of the most used
words
» variable to be explained: label “Spam” or “Email”
w categorical variable (binary in this example)
TABLE 1.1. Average percentage of words or characters in an email message

equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove
spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28

email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross—
validation) on the test data. Overall error rate is 9.3%.

Predicted

True email  spam
email | 57.3%  4.0%
spam 5.3%  33.4%

Source: The Elements of Statistical Learning, Springer (for next slide also) 3/



email
80/117

remove<0.06 ¥
remove>0.06 hp>0.405

spamn
911

ch!<0.191 george<(.15 CAPAVE<2.907
george>0. 15 CAPAVE>2.907

ema)il ma) n #il pan n
50786 ] 0 19111

george< 005 CAPAVEK?2.7505 1999<0.58
george>0.005 ' CAPAVE>2.7505 1999>0.58

= Jlll #il elnu\ n
80/65: 0/209 36/12 16/81
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Regression tree: “Ozone” example
Simplified example (for the sake of visualization)

» predict variable 03 (quantitative variable)
» from variables MOCAGE and TEMP

TEMP < 26 2 ATEMP >=26.2
— ~

— ™~
7 S~
//// \\\
MOCAGE < 113.65 AMOCAGE >= 113.65 TEMP < 33 TATEMP >= 33.1
AN
/ N
e g
~
// \
MOCAGE < 85.85 IOCAGE >=85.85 1089789 MOCAGE < 1ZBWCAGE >=12845 MOCAGE < 208. SSNAOCAGE >=208.65
/ 0\ / / \
\ / \ / \
\ / N\ / \\
g . Y . Ky
77.3871 86.65574 99.5 148.6774 196.125 278
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Regression tree: “Ozone” example
Simplified example (for the sake of visualization)

» predict variable 03 (quantitative variable)
» from variables MOCAGE and TEMP

TEMP < 26 2 ATEMP >=26.2
7 T~
_ ~~_
" ~—
///// \\\\
MOCAGE < 113.65 AMOCAGE >= 11365 TEMP <33 DATEMP >=33.1
N
AN
e AN
e AN
~
// ~
MOCAGE < 85.85 AMOCAGE >= 85.85 1083780 MOCAGE < 1257%01«35 >=12845 MOCAGE < 208 eswocme >=20865
/ N\ / /
/ \ / \\
/ \ / N
g . Ny J .
775871 86.65574 o5 1488774 1961125 278

Vocabulary. When the variable to be explained is
P quantitative — regression tree

» categorical — classification tree
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6,=33.1

6,=26.2

TEMP

40 -

35

30

20 -

10

712

Z10

Z11

0.=209

Z8

Z9

66=128

Z5

‘ 6,=85

.8
I

62:1\14 1 1 1

Z1B

40

60 80

100

120 140 160 180
MOCAGE

200

220

240
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Lecture outline

3 — Decision trees [regression + classification]

3.2 — Recursive partitioning



Recursive partitioning: general principle

Objectives

Construct a partition of X’ from the data (X, Y).

Principle: iterative construction of a sequ. (Pn),,~; of partitions,

> P, = {Zl(m)7 - Z,(nm)}, where partition P, contains m subsets.
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Recursive partitioning: general principle

Objectives
Construct a partition of X’ from the data (X, Y).

Principle: iterative construction of a sequ. (Pn),,~; of partitions,

> Py = {Zl(m)7 ce Z,(nm)}, where partition P, contains m subsets.
Initialization: P; = {X'}.

Pm — Pm1: split a subset ZIS,T) along one of the variables:
> 7, = Z,E:) N {x such that xUm) < 6,,,}
> Z, = Z{™ 1 {x such that xUn) > 6,,}

(the index jm and the threshold d,, still have to be specified)
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An example with p = 2

(D) subset Z/E,T)
x(? @ subset 4 lteration Pr, = Pm1:
Q) e——— > (1) subset Z,E;") € Pm
> (2 variable xUm) (here j,, = 2)
» (3) threshold o,
» (@) construction of 71 and 7,

@) subset 75
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An example with p = 2

(D) subset Z/E,T)
x(? @ subset 4 lteration Pr, = Pm1:
Q) e——— > (1) subset Z,E;") € Pm
> (2 variable xUm) (here j,, = 2)
» (3) threshold o,
» (@) construction of 71 and 7,

@) subset 75

x(1)
After splitting Z,E,T), we get:

Pmt1 = Pm | {21,22} \ {Z;ES)}
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Choice of k,,, jm and d,,
Let D(Z) be a measure of the heterogeneity of a subset Z.

Example (for a quantitative label y)

D(Z) =Y (vi—y2)?
iez

where y7 is the empirical mean computed over Z.
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Choice of k,,, jm and d,,
Let D(Z) be a measure of the heterogeneity of a subset Z.

Example (for a quantitative label y)

D(2) =Y (vi - 72)?

ieZ

where y7 is the empirical mean computed over Z.

Km, jm and d,, are jointly chosen in such a way that
D (Z;E:)> - D(Zl) — D(fg) is as large as possible

m |argest reduction of heterogeneity

(Recall that 71 and Z, are the subsets obtained by splitting Zé:))
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Lecture outline

3 — Decision trees [regression + classification]

3.3 — Prediction function



Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on
the elements of the partition:

ha(x) = > Biel 7y (x)-
k=1
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Piecewise constant prediction function

Decision trees define a piecewise constant prediction fonction on
the elements of the partition:

ha(x) = > Biel 7oy (x)-
k=1

Remark: for a given partition, this is a linear model with respect to
the m variables ]lzém) (x).
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Estimation of the coefficients

Principle: to estimate (™ = (ﬁgm), e ,(nm)>,
» choose a loss function L(y, hz(x)),

» then minimize the empirical risk.

a0/77



Estimation of the coefficients

Principle: to estimate (™ = (5§m), . ,(nm)>,
» choose a loss function L(y, hz(x)),

» then minimize the empirical risk.

Simplification:

ming Z(hs) = ming 27_; L(yi, hs(x:))
= mlnﬁ kazl ZiGZ,Em) L(yiaﬁk)
= ZT:I minﬁk ZiEZlEm) L(yf7 /Bk)
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Estimation of the coefficients

Principle: to estimate (™ = (5§m), . ,(nm)>,
» choose a loss function L(y, hz(x)),

» then minimize the empirical risk.

Simplification:

ming Z(hs) = ming 27_; L(yi, hs(x:))
= mlnﬁ kazl ZiGZ,Em) L(}/i,ﬁk)
= ZT:I minﬁk ZiEZlEm) L(yf7 /Bk)

Consequence: Vk, ‘3,(('") = arg ming, EIGZ("’) L(yi, Bk)-
k

a0/77



Two important special cases

Regression with the quadratic loss

"(m) . . L 2 I
B = argming, Z (vi—Bk)” = Y 7(m

iez{™
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Two important special cases
Regression with the quadratic loss

~ . 2 _
B,((m) = argming, Z i—Bk) = Y 7(m
iez{™

Binary classification with the logarithmic loss

Soft classification:
B = argming, o D (—yiln(Be) = (1= y) In(1 - B))
iez{™
_ ; . card (i S Z,Em) such that y; = 1)
card (Z,Sm)>

Hard classification: threshold at § = 3 (cf. logistic regression).
41/77



Choosing the size m of the partition

» m can either be given beforehand (~ prior knowledge)

» or estimated by cross-validation.

337

42/77



Choosing the size m of the partition

» m can either be given beforehand (~ prior knowledge)

» or estimated by cross-validation.

“Ozone” example
» Regression of O3 with p = 7 explanatory variables
» mis chosen by leave-one-out cross-validation
331
32t
31t
%
30t
S
29t
28t

271
26

‘—cross-validation

0 m=>5 10 15 20 25 30

42/77



Regression tree: “Ozone’ example

TEMPE < 26. EMPE >=26.2

MOCAGE < 113.65 OCAGE >= 113.65 JTEMPE >=33.1

MOCAGE < 128.45 IOCAGE >= 128.45 SRMH20 < 0.117721 RMH20 >=0.117721

81.98374

99.5 148.6774 166.25 243.3333

e

HF O Ww®adous wh e

if TEMPE<26.2 then node 2 elseif TEMPE>=26.2 then node 3 else 103.433

if MOCAGE<113.65 then node 4 elseif MOCAGE>=113.65 then node 5 else 88.1429
if TEMPE<33.1 then node 6 elseif TEMPE>=33.1 then node 7 else 153.673

fit = 81.9837

fit = 108.079

if MOCAGE<128.45 then node 8 elseif MOCAGE>=128.45 then node 9 else 138.59

if SRMH20<0.117721 then node 10 elseif SRMH20>=0.117721 then node 11 else 212.5

fit = 99.5

fit = 148.677
fit = 166.25
fit = 243.333
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More trees. . .

Disadvantages of decision trees
> high sensitivity to the sample (x, y)

> piecewise constant prediction on each subset (by construct.)
(not satisfactory if the optimal prediction function is smooth)
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More trees. . .

Disadvantages of decision trees
> high sensitivity to the sample (x, y)

> piecewise constant prediction on each subset (by construct.)
(not satisfactory if the optimal prediction function is smooth)

Extensions

P aggregation of decisions tree models
m Random forests

> weighted sum of weak classifiers
m Boosting (AdaBoost)

aa/77



Lecture outline

4 — Neural networks [regression + classification]
4.1 — Neurons
4.2 — Multi-layer perceptrons
4.3 — Example
4.4 — Other architectures



Lecture outline

4 — Neural networks [regression + classification]
4.1 — Neurons



The (multipolar) biological neuron:

Cell body

Telodendria

Synaptic terminals

Golgi apparatus
Endoplasmic

reticulum

Mitochondrion I\,\ Dendrite

VASS

\ Dendritic branches

Image: Bruce Blaus, https://commons.wikimedia.org, CC BY 3.0

“A multipolar neuron is a type of neuron that possesses a single axon and many dendrites
(and dendritic branches), allowing for the integration of a great deal of information

from other neurons.” (https://fr.wikipedia.org/wiki/Neurone_multipolaire)

axons, dendrites. . .
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The artificial neuron
Definition: neuron (McCulloch and Pitts, 1943)f
In statistical learning, a neuron with p variables (inputs) is a
function, generally non-linear!, of the form
h(x) =¢(wx+b), xe€RP,
where

» ¢ is an increasing R — R function;
> we RY™P and b eR.

T The original neuron of McCulloch & Pitts (1943) specifically used ¢ = sgn as an activation function.
¥ We will see later a situation where a linear neuron (¢ = 1d) is used. se/77



The artificial neuron
Definition: neuron (McCulloch and Pitts, 1943)f

In statistical learning, a neuron with p variables (inputs) is a
function, generally non-linear!, of the form

h(x) =¢(wx+b), xecRP,
where
» ¢ is an increasing R — R function;
> we RY™P and b eR.

Vocabulary
» : activation function,
> wi, ..., Wy weights,

» b: bias (nothing to do with the bias of an estimator).

T The original neuron of McCulloch & Pitts (1943) specifically used ¢ = sgn as an activation function.

. . . . . 26/77
¥ We will see later a situation where a linear neuron (¢ = 1d) is used. /



The artificial neuron: illustration (p = 5)




Activation functions

Discontinuous activation functions (not recommended?):
» Heaviside function: ¢(v) = 1,50, or

» sign function: ¢(v) =sgn(v) = Lys0 — Ly<o.

T Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.
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Activation functions

Discontinuous activation functions (not recommended?):
» Heaviside function: ¢(v) = 1,>0, or

» sign function: ¢(v) =sgn(v) = Lys0 — Ly<o.

“S-shaped” functions, a.k.a. sigmoids:

> logistict : op(v) = 1+i*v = % + %tanh (%), or
» tanh : p(v) = tanh(v) = %

The RelLU (Rectified Linear Unit) function:
> p(v) = max(0, v).

T Used in the oldest models, most notably the Rosenblatt’s perceptron (1957), but abandonned since
then because of their almost-everywhere zero gradient, which creates problems for optimization
procedures.

¥ The word “sigmoid” sometimes refers to this particular function.

a8/77



Activation functions (cont'd)

(a) Identity (b) Sign (c) Sigmoid
(d) Tanh (e) ReLU (f) Hard Tanh

Image: C. C. Aggarwal (2018). Neural networks and Deep Learning, Springer.

a9/77



Remark: relation with logistic regression

Remark. With the logistic activation function (sigmoid),

y =¢(v) L & v:|n<y>.

T1tev 1—y

Since v = wx + b, we recover for h(x) the form of the logistic
regression predictor.

50/77
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4 — Neural networks [regression + classification]

4.2 — Multi-layer perceptrons



Multi-layer perceptron: definition

Let p, K be non-zero integers.

Definition: multi-layer perceptron’ (MLP)

We call multi-layer perceptron with M + 1 layers, p variables (input)
and K responses (output), any function RP — R¥ of the form

h:(fMogM>o-~~o<£jogj)o~--o<flogl),

» gy : RM-1 — R™Mk is affine,

> ¢, : R™ — R™ represents the action coordinate by
coordinate of an increasing function ¢, : R — R.

» mg, my,..., my: non-zero integers, mp = p, my; = K.

T Rosenblatt's original perceptron (1957) did not include hidden layers (M = 1). It was using the
activation function h(x) = sgn(x) as McCulloch and Pitts (1943), and weights w; € {—1,+1, —co}.

¥ there will be one exception this rule later (“softmax” layer) s177



Multi-layer perceptron: definition (cont'd)

Vocabulary: layers of variables
> z[g) = x: input layer,
> zp = (fk o gk) (zjk-1]), 1 < k < M: hidden layers,
> zivy =y = (¢, © &m) (Zjm—1)): output layer.
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Multi-layer perceptron: definition (cont'd)

Vocabulary: layers of variables
> z[g) = x: input layer,
> zp = (fk o gk) (zk-1]), 1 < k < M: hidden layers,
> zivy =y = (¢, © &m) (Zjm—1)): output layer.

Remark. Let us write
8k (zk—1)) = Wizp—1) + b
Then, for all j € {1,..., mk} we recognize a neuron:
Z[(ﬁ = Yk (Wk,j Z-1 + b,((j)) ;
where wy j = ej—r Wi is the j-th row of W.

m \ocabulary: weights, bias, activation function.
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Multi-layer perceptron: illustration

Example of a multi-layer perceptron with p = 3 inputs, K = 3 outputs,
and two hidden layers of sizes m; =5 and mp = 4.

m; = 5

Vocabulary: fully connected, feed-forward neural network
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Output layer: activation function

The output layer must be adapted to the problem at hand. ..
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Output layer: activation function

The output layer must be adapted to the problem at hand. ..

Regression. ) C R, or more generally RX.
» Perceptron with K outputs
» Activation function: ), = Id.

> Thus the last transformation (p,, © gm) is linear (affine).
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Output layer: activation function

The output layer must be adapted to the problem at hand. ..

Regression. ) C R, or more generally RX.
» Perceptron with K outputs
» Activation function: oy = Id.

> Thus the last transformation (p,, o gm) is linear (affine).

Classification. K classes, J = [0,1]% (“soft” classification).
» Perceptron with K outputs, with my,_1 = my = K.

> Exception to the definition m the “softmax” layer:

Z

o e () ZZW]

M| — i’ ’
[ ] Zj?/:l exp (Z[({w)_l])

Remark: alternatively, for binary classification, we can use a single output (K = 1 instead of K = 2) with
the logistic function used as the activation function on the last layer. 54/77



Training: loss functions and regularization

The most commonly used loss functions' are

» regression: the quadratic loss
> L(y,7) = (y — 7)? for the single-output case,
> Ly.7)=ly - yII? if K> 1.

T for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Training: loss functions and regularization

The most commonly used loss functions' are

> regression: the quadratic loss
> L(y,7) = (y — 7)? for the single-output case,
> Ly.7)=ly - yII? if K> 1.
» (soft) classification: the logarithmic loss
» Forall je{1,...,K}, we have yU) € {0,1} and V) € [0, 1].
> Ly, §) ==, yPIn (70).

T for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Training: loss functions and regularization

The most commonly used loss functions' are

> regression: the quadratic loss
> L(y,7) = (y — 7)? for the single-output case,
> Ly.7)=ly - yII? if K> 1.
> (soft) classification: the logarithmic loss
» Forall je{1,...,K}, we have yU) € {0,1} and V) € [0, 1].
> Ly, 5) = -, yWin (70).

Nb parameters is high = regularize to avoid over-fitting
> penalization, for instance L} (LASSO) or L2 (ridge);
» other (not covered): early stopping, drop out. ..

T for instance https://scikit-learn.org/stable/modules/neural_networks_supervised.html
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Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)
. 1 <
n(0) = — > L(Yi, hg(Xi)),
) = 3L m6)

where 6 denotes the parameters of the model (weights, biases).

w» Numerical methods are used to this end.

56/77



Training: numerical optimization
We want to minimize the empirical risk (possibly penalized)
. 1<
n(0) = — > L(Yi, hg(Xi)),
) = 3L m6)

where 6 denotes the parameters of the model (weights, biases).

w» Numerical methods are used to this end.
These methods use the gradient of the criterion. Two remarks:

» computational burden when n is large: random “mini-batchs”
w stochastic gradient method (not covered);
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Training: numerical optimization

We want to minimize the empirical risk (possibly penalized)
. 1 <
n(0) = — > L(Yi, hg(Xi)),
) = 3L m6)

where 6 denotes the parameters of the model (weights, biases).

w» Numerical methods are used to this end.

These methods use the gradient of the criterion. Two remarks:

» computational burden when n is large: random “mini-batchs”
w stochastic gradient method (not covered);

> recursive computation of the gradient of a composition of fcts
m back-propagation method (not covered).

56/77
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4.3 — Example



Example: MNIST

000 000060QapOOOCY (YOO
(1N Vv 72020 N7
Rd 2 AI I 22282122202 X
3333333152333 3333
g ¢Y 449 Y9 ¢¥54d4d 4\ ¢4
55855 SS5FS59s 55853549
6 G b blGbobbceédébtel
TI77777 0720 2%7 77
¥ 3 ¥ 8 ¢ PSR PTT I ST T B
?799999%992%499494499 9

70 000 images' of size 28 x 28 pixels (256 gray levels)
Problem: multi-class classification (10 classes);
training: 60 000 images / test: 10 000 images

Source: http://yann.lecun.com/exdb/mnist/ s7/77
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Example: MNIST

w see Jupyter / Python / Scikit-Learn notebook
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4.4 — Other architectures



Convolutional neural networks (CNNs)

Feature maps

.

Convolutions Subsampling Convolutions Subsampling  Fully connected

Schematic diagram of a typical CNN

Image: Aphex34, https://commons.wikimedia.org, CC BY-SA 4.0
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Lecture outline

5 — Standard exercices (with solutions)
5.1 — Questions



Exercise 1 (Optimal classifier with the logarithmic loss)

Question

Show the proposition stated on

h: X — [0,1] is optimal for the logarithmic loss iff, PX_ae,

h(x) = P(Y=1| X =x).
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Exercise 2 (Multi-class logistic regression)

When the number of classes K is > 3, the classification problem is
called Multiclass.

Let {0,1,...,K — 1} be the set of labels (classes), K > 3.

Binary logistic regression can be extended to multi-class
classification by

» selecting a reference class (here, “0")

» performing K — 1 binary logistic regressions:

P(Y=1|X=x
In (PEY:éIX:xg) = B0+ B] x

P(Y=K—-1|X=x
In (W) = Br-10+ Br_1X
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Exercise 2 (Multi-class logistic regression (cont'd))

To simplify notation, we'll assume that the matrix of explanatory
variables contains a constant vector and make the following change:

Bi < (Bk,0, Bk)

Questions

@ Give the expression of P(Y = k|X = x) from the vectors S,

@® Deduce from 1. that the choice of reference class is arbitrary
(it has no influence on the regression model),

© Express the log-likelihood
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Solution of exercise 1

The optimal classifier i* minimizes E (L(Y, h(X))), where the
expectation is taken over (X, Y).

By conditioning, we have:
E(x,v) (L(Y, h(X))) = Ex (Eyx(L(Y, h(X))|X)
Thus:
h* = argmin, E (L(Y, h(X)))
T

h*(x) = argmin,cy E(L(Y,t) | X =x) PX-pp.
(1)
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Solution of exercise 1

With the logarithmic loss:

J(t) = Eyx (LY, )X =x)
P(Y = 1|X = x)L(1,t) + P(Y = 0|X = x)L(0, t)
P(Y = 1|X = x)(L(1, t) — L(0, t)) + L(O, t)

P(Y =1|X =x)(—In(t) + In(1 —t)) — In(1 — ¢t)



Solution of exercise 1

The minimization of J(t) is achieved by examining the sign of the
derivative of J(t):

T'(t) = P(Y = 1|X = x) <_1 _ 11> Lot

t —t 1-—t
1

=P(Y = 1|X = x) (—t(ll_t)> 1oy
| <1IP>(Y:1|X=X)>

1t t

For P(Y = 1|X = x) €]0,1[, J'(t) is thus:
> strictly negative for t €]0,P(Y = 1|X = x)|,
» zeroat t =P(Y = 1|X = x),
> strictly positive for t €|P(Y = 1|X = x), 1],
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Solution of exercise 1

Conclusion: t = P(Y = 1|X = x) is the unique minimizer on [0, 1]
of the function J(t).

» P(Y =1|X =x) =0, J(t) is minimal at t =0,
> P(Y =1|X =x) =1, J(t) est minimal at t = 1.

We conclude that:
® h*: x— P(Y =1|X = x) is optimal,
@® h*(x) is the unique minimizer of the fonction
J it Eyx (L(Y, £)[X = x).
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Solution of exercise 1

In converse : suppose that h optimal.
Let the function:

g(X) = IE’Y/X([-v i h(X))/X = X) - IE’Y/X([-v 1 h*(X))/X - X)

We have:

> Ex(g(X)) = [, g(x)dPX = 0 (otherwise, h would not be
optimal),
> Vx, g(x) > 0 by the optimality of h*.

Therefore, g =0 PX — a.e., that is:

P(X € F) =0 avec F = {x € X t.q. g(x) > 0}
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Solution of exercise 1

h*(x) is the unique minimizer of the function
J it Eyix (LY, t)|X = x), we have:

F={xe X tq. h(x)# h*(x)}

We conclude that h = h* PX — a.e., establishing the desired
equivalence.
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Solution of exercise 2

O Forall ke {l,...,K—1}:

P(Y = k|X = x) = exp (5&) P(Y = 0|X = x).

K—1
Following Z P(Y = k|X = x) =1, we have:
k=0
-
P(Y = k|X = x) = P (B x) K #0
1+ Zk’;éoleXp (Berx) (1)
P(Y =0[X =x) =

L+ Yz eP (Bex)
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Solution of exercise 2

@ Let k £ 0. Suppose that we select the class k as the reference
and for k # k the vector 5x of the model is given by:

n [ P =KX =x) 4 _ Glx, k#k
P (Y — kX = x)
Since
In [ POY=kX=x) — in [ BO=KIX=x) P(Y=0|X=x)
P(Y=k|X=x) P(Y=0[X=x) p(Y=k|X=x)
- /BZX - ﬁ;’;rxv
we have: . -
{@k = /Bk_ﬁkak#oak#k (2)
Bo = —B;
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Solution of exercise 2

By using the results of Question @, we have that for k # k

P(Y =klX=x) = 7P (BZX) k # k
1+ 30 g exp <B,Ix) ,
1

P(Y=0X=x) = —
1+ Zk,#; exp (B;x)

By substituting (3 in these equations using the relations (2), we
obtain the equations (1).

Summary: Changing the reference class alters the model’s
parameters (without changing the model itself).
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Solution of exercise 2

® To establish the connection with binary logistic regression, we
represent the observation y; € {0, ..., K — 1} by the vector
z € {0,1}K:

{1 if yi = k
Zi k =

0 otherwise

We also denote 3 the set of vectors 51, ..., Bk—_1.
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Solution of exercise 2

We express the likelihood associated with the example (x;, y;):

K-1
Yi X; Yil| X; i
Pyl = TT Pa"(klxi)=»
k=0
K-1
— PgilXi(0|X,')172"‘17"'z"’K71 <H Pgil)(i(k’X,')z’.’k)
k=1

K*l Y|X(k‘ I) Zi"k

_ Y|X
(0]x, :)kli[l P;'X(le,-)
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Solution of exercise 2

Using :

» the (K — 1) regression models:

Yi| X
Py (k|x)

" = exp(B} x;)7,
Y| Xi
Py (0]x;)

» the second equation of (1):

1
1 ‘I‘ Zk’ 1 exp (B/—(F/X) ’

P(Y = 0|X = x) =

the log-likelihood is expressed as:

n

K-1 K-1
= Z Zz,-’kﬁka; —In (1 + Z exp (ﬁ,IX,-)>
k=1 i=1 K'=1
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Generalized linear models

Definition
The GLM contains all statistical models such that
» Y|X follows a distribution from an exponential family:

FYX(y|x) = C(n)h(y)exp (ny) with 5 = n(x).

> g (Es(Y|X = x)) = fo+ 5 x.

Vocabulary. The function g is called the link function.f

T Let N denote the set of admissible value for n: g is often chosen to be a bijection from N to R. 78/77



Generalized linear models

Definition
The GLM contains all statistical models such that
» Y|X follows a distribution from an exponential family:
FYX(ylx) = C(n)h(y)exp (ny) with n = n(x).

> g(Eg(Y|X =x)) =B+ Bx.

Vocabulary. The function g is called the link function.?
Example. Bernoulli distributions form an exponential family.

fly) = ¢ (1-0)"

= (1—0)exp <|n <&>y> ™7 = In (&)

T Let N denote the set of admissible value for n: g is often chosen to be a bijection from N to R.
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Remark: generalized linear models (GLM)

The logistic regression model has the form
> Y|X ~ Ber (Eg(Y|X)),
> g (Es(Y[X))=Bo+B"X, with g = logit.

w special case of the generalized linear model (GLM)
(g is called link function)
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Remark: generalized linear models (GLM)

The logistic regression model has the form
> Y|X ~ Ber (Eg(Y|X)),
> g (Es(Y[X))=Bo+B"X, with g = logit.

w special case of the generalized linear model (GLM)
(g is called link function)

Remark: we have already met another GLM model

> Y|X ~ A (Eg(Y]X), 02)
> g(Es(Y|X)) = B0+ B X with g =1d
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Example: Y;|X; i Poisson(6;), with In0; = By + 51 X;

Poisson distributions form an exponential family:
(24
f(y) = exp(—0) M

= }%exp(—e) exp(In(0)y) w7 = In(6)

25r 4
— true model .9
o0t least squares
— GLM/Poisson .
151
>
10+
5 |-
0 |
0 0.5
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