¢y

CentraleSupélec

Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Gilles Fay, Ziad Kobeissi, Laurent Le Brusquet,
Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus' & Xujia Zhu

T Course coordinator

1/69

Lecture 3/9

Asymptotic distributions
and confidence intervals

Course objectives

» Take the asymptotic approach one step further,
introducing asymptotic distributions.

» Understand confidence intervals and learn how to construct
them (using asymptotic arguments if necessary)

2/69




L ecture outline

1 — Convergence rate and asymptotic distribution
2 — Confidence regions and confidence intervals
3 — Standard exercises (with solutions)

4 — Appendices
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Recap: Mathematical framework

In this section:

» \We consider a statistical model
(2.2, {PF,0c0}),

assumed (most of the time) to be parametric (© C RP).

> X1, Xo,... i Py, defined on a common (2, %, Py).

» We want to estimate a “quantity of interest”:
> either 6 itself (we assume in this case that © C RP),

» or, more generally, n = g(0) € RY.
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Probability refresher: the Central Limit Theorem (CLT)

Theorem
Let

» a sequence (X,)nen+ of [ID random vectors taking values
in R, with finite second order moments.

> 1 =FE(X;) and ¥ = var(X;) € RI*9,

Then : Vi (X — ) LN (0, %),

n—o00

— 1
with X, = = >_"_; X; the sample mean.
n

= The sample mean X, is said to be

» an asymptotically Gaussian estimator of p

: 1
» with convergence rate NG

5/69

Example: component reliability

Recall that
> X ' £(0), 0>0, and n=Ty(X1) =1
» i, = X, is obtained by ML and the method of moments.
w Direct application of the CLT: y/n ()_(,, — 77) LN (0,772).

n—o0

n=>5 ~ n=20 ~ n=100

( i N
N A(0,7%) | \

0.005 ’7%‘&‘/ 0.005
. n Al

Histograms of \/n ()_<,, — 1) obtained from 10000 realizations of X,

6/69




Convergence rate
Let 7, = 7n(X1, ..., Xs) be a consistent estimator of n = g().

Definition
If there exists a sequence (aj)nen+ of positive numbers such that:

» |lim a, = oo,
n—o0

A d
> a5 (n — 1) > Z,
n—-o00
» where Z is a non-degenerate® random variable (or vector),

N\ 1
then f), converges to 7 at the rate .-

* We say that Z is degenerate if:
» scalarcase: dc € R, Z =c¢ a.s,;

> vector case: Ja € R\ {0}, Ic e R, 377, a;Z¥ = ¢ as.
Remark. If Z has a second order moment, it can be shown that:

Z is non-degenerate iff its covariance matrix is invertible.
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Asymptotic normality

Let 7, = 7n(X1, ..., X,) be a consistant estimator of n = g(#).

Definition
If there exists

» a sequence (ap)nen+ of positive numbers s.t. lim a, = oo,
n—oQ0

» a symmetric positive-definite matrix X(6),
such that ;
an (fn —n) —— A(0,2(0)), (1)

n—o00

then we say that 7}, is asymptotically normal.

Vocabulary. ¥(0) is called the asymptotic covariance matrix
(asymptotic variance, in the scalar case).

Note: it can be proved that (1) with a, — +oc implies (weak)
consistency.
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L ecture outline

1 — Convergence rate and asymptotic distribution

1.2 — Theoretical tools

The continuous mapping theorem

Theorem (Mann-Wald)

Let
» h:R9 — RYI a measurable function,
» Y a random vector, taking values in R,

such that

h is continuous at the point Y, almost surely.

Then, for any sequence (Y,)nen+ of RV with values in R,

) YaY = h(Ya) S h(Y),
i) YooY = h(Y,) = h(Y)
Gi) YadY = hY))SnY).

Proof: see CIP for the case where h is continuous. General case: admit. 0/69




Example: component reliability (cont'd)

Recall that

> X; S £(0), 6>0, and n=Ty(X1) =1

» 7, = X, is obtained by ML and the method of moments.
Law of large numbers (strong and in L?):
— 12
A= X, = .

By the continuous mapping theorem:

therefore @, is strongly consistent for the estimation of 6.

Remark: it can be shown that QAn is also consistent the L2 sense.
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Slutsky's theorem

Theorem
Let

» (X,)nen+ a sequence of random vectors that converges in
distribution to a RV X:

Xy, — X,

n—o00
» (Y,)nen+ a sequence of random vectors that converges in
distribution (therefore in probability) to a constant c:
d

Yo ——¢,
n—00

Then
(Xn, Yn) —— (X, ©).

n—o0

d T P -
Remark: Y, —— ¢ implies Y, —— ¢ (constant limit).
n— o0

n—oco 11/69




Example: component reliability (cont'd)

Recall that (CLT) /n (X, —1n) LN (0,7?).

n—o00

Since X,, —=— 7 (constant), we have by Slutsky's theorem:
n—o0

(Va (X =), X)) —=— (Z,n) with Z ~ .4 (0,7%).

n—00

Therefore, by the continuous mapping theorem,

ﬁ(f(,,_—n) <, L),

n n—o0 77

since (z,y) — Z is continuous at any point where y # 0.

Remark. This result will be used to construct an asymptotic Cl.
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Linearization method (“delta method"”)

“Delta theorem” (scalar case)

Let (Yn)nen+ be a sequence of RV with values in R, s.t.

Jn(Y,—m) —4 Z,

n—00

with Y a random variable, taking values in R, and m € R.
Then, for any h: R — R that is differentiable at m,

Vi (h(Yy) = h(m)) —— K(m)Z,

n—o0

Intuition: h(y) — h(m) ~ h(m)(y — m).
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Linearization method (“delta method"”)

“Delta theorem” (vectorial case)

Let (Y,)nen+ be a sequence of RV with values in RY, s.t.
Vn(Yy—m) —4 Z,
n—o00
with Y a RV taking values in RY and m € RY.

Then, for any h: R? — RY that is differentiable at m,

Vi (h(Yy) = h(m)) —— (Dh)(m) Z,

n—o0

with (Dh)(m) the Jcobian matrix of h at m:

(Dh)(m) = ((&5h7)(m))

1<i<q, 1<j<d

14/69

Delta theorem in the Gaussian case

Scalar case.
If /n(Y,—m) —2— (0, 62), then

n—0o0

Va(h(Ya) — h(m)) —— 4 (0, (H(m))?s?).

n—o00

Vector case
If /n(Y,—m) —4— #(0, ¥), then

n—o0

Vi (h(Ya) = h(m)) == (0, (Dh)(m) = (Dh)(m)")

n—o00




Example: component reliability (cont'd)

We already saw that:

» 0, =1/X, is a consistent estimator of 6,

> /n (X, )—>,/V(077)where77 3

n—o0

Using the delta method with h(n) = %

Vn (% - 9) < ¥ (0, Uk (h’(n))z),

n n—o0

W) =-% = va(B-0) = . (0,6%).

n—00
Conclusion: @, is asymptotically Gaussian,
and its convergence rate is —-

NGE
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Asymptotic comparison of (scalar) estimators (1/2)

With asymptotic variances.
Exemple of use with “component reliability” for n = Egy(X1).

1) For i) = X, we have (CLT): \/n (ﬁ(l) — 77) _)L) N (0,772>.

2) For ®) =\ /57 | X2 (see lecture #1) ?

> Since E (X?) =2n? and E (X{) = 24n*, we have (CLT):

ﬁ(% ix,? _ 2n2) — s 4 (0,207%).

n— 00

> Hence, using the delta method with h(z) = |/ 3z,

(17 =0) 2o (047),
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Asymptotic comparison of (scalar) estimators

In summary:

Vo (i® =n) = 7 (0,7),

n—00

ﬁ(ﬁ(2)—n) 4y (072n2>-

n—o0

We observe that
» the two estimators are asymptotically normal,
» have the same convergence rate,

» but the asymptotic variance of A(1) is smaller.

m We say that #(1) is asymptotically preferable to #(?).

(2/2)

18/69
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1 — Convergence rate and asymptotic distribution

1.3 — Asymptotic efficiency




Asymptotic efficiency

Recall the Cramér-Rao lower bound (scalar parameter)

Vo regular UE of 0, VO € © ,
" A 1
Ry (9) — varg (9) > = 1Y),
with /1(9) = varg (Sg(Xl))
w \When equality holds for all 6, the estimator is called efficient.

Asymptotic efficiency

Definition. An estimator is called asymptotically efficient if

» it is asymptotically normal at the rate %

> with asymptotic variance /; *(6).

Remark: this definition is valid for the vector-valued case as well, replacing the

variance by the covariance matrix 19/60

Asymptotic efficiency of the MLE
Context: X1, Xs, ... id Py and, V0 € ©, Py admits a pdf f.

Definition: regular model

The statistical model is called regular if
» conditions Co—Cy are verified (def. given in lecture 2)
» The conditions C3 & C4 are verified
» VO € ©, the Fisher information matrix /;(6) is positive definite.

Theorem

If the statistical model is regular and if the MLE 6, is consistent,
then it is asymptotically efficient :

Vi (0, -0) —— 7 (0,172(9)).

n—o00
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Fisher information in regular models

Reminder. The Fisher information brought by X is the matrix

1(8) = varg(Sy) = Eg (59 s/ ) .

Proposition: another expression for the FIM

In a regular model, we have

10) =—Eo (Vo (57 )
In other words : VO € ©, Vj < p, Vk < p,

o (9w _ 0
(160 = B0 (358 ) =~ B0 (5 060

Remark: actually, if Co—C3 hold, then C4 and (%) are equivalent.
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Example: component reliability (cont'd)

Question: is 0, = 1/X, asymptotically efficient?

We have already computed the score: Sp(X1) = § — Xi.

Computation of Fisher's information (two approaches):

Comput. of Eq (59(X1)2) Comput. of —Ey (%(Xl))
MO =) == d K= -Eo(-F) = &

Conclusion: since ﬁ( - (9) LN (0,62),

n— 00

-

0, = )-% is asymptotically efficient.

m \We recover the conclusions of the theorem (Cy—C, hold indeed).
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Motivation

Problem

A point estimator necessarily makes some estimation error.
How can we “report” this error?

Two approaches:

» provide, in addition to the estimated value,

» the distribution of the estimator 7j, exact or approximate,
» or at least some “measure of dispersion”
(e.g., its standard deviation);

» give, instead of a point estimation 7,

a confidence interval for 7.

23/69

Coverage probability
Reminder. n = g(0).

Let
» P(N) the power set (set of all subsets) of N = g(©).
> a statistic C(X) with values in P(N).

Goal. Having n € C (X) with high probability.
Definition
For 6 € ©, the coverage probability of C (X) is defined as:

Py (n € C(X))

A\ In general, the coverage probability depends on the underlyign
distribution, i.e., on 6.
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Confidence regions and confidence intervals

We aim to control the coverage probability.

Let « €]0, 1].

Definition: confidence region with level 1 — «

A confidence region with level (at least) 1 — « for 7 is a statistics
C (X) taking values in P(N), such that:

Ve O, Py(neC(X)) > 1—a.

We say that C (X) is a confidence region with level exactly 1 — «a if
Ve ©, Pp(neC(X)) = 1—-a.

(Some authors also write: of “size” 1 — «.)

Scalar case. If C(X) is an interval, it is called a confidence interval.

25/69

Example: A4 (i, 05) n-sample, with known o3
Since)?wﬂ/(u,g—f), T:\/EXU—_O“ ~ A (0,1), for a = 5%:
P, (ﬁ X—u ¢ [-1.96, 1.96]) ~1—a=095%,

where 1.96 is the quantile of order 97.5% of the distribution .47(0, 1).

0.4
0.3
0.2

0.1F

We “pivot” to obtain a Cl with level exactly 95% :

VnE € [-196,196] & e C(X)=|X-1.96%, X+1.96%|.
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Interpretation: simulations

We simulate 100 realizations with g = 10 and o9 = 1.

IC #100

IC #1

In red: realizations where the IC does not contain p = 10.

m The proportion of cases where the Cl does not contain p is (approx.) «.

27/69
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2 — Confidence regions and confidence intervals

2.2 — Exact confidence intervals




Pivotal functions

The method can be formalized using pivotal functions.

Definitions
A function
T:XxN — R

is called pivotal if the distribution of the RV T = T(X,n) does not
depend on 6. We say that the distribution of T(X,n) is free from
the parameter.

Back to the example: Xi,..., X, N (u,03) with known op.

Then T =/n ij—;“ is pivotal since

Xn — p

00

Vn

~ A(0,1).

Remark: we can also choose T = \/n (X, — p) ~ A4(0,0%).

28/69

Probability refresher: quantiles

Definition: quantile of order r
Let F(x) be the cdf of a probability distribution on R.

For 0 < r < 1, the quantile of order r of the distribution is defined
as:

g =inf{xeR, F(x) >r}=min{x eR, F(x)>r}.

Properties:
» If F is continuous, then F(q,) = r.
» If, in addition, F is strictly increasing, then g, = F_l(r).
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Quantile function of the .#7(0, 1) distribution

047
0.3
0.2

0.1

-4 20.84 0 > 4 -4 20. 8‘4 0 > 4

-0.84

0 0.2‘ 05 1
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How to use pivotal functions

Let T (X,n) be a pivotal function and a € |0, 1].

Proposition

Assume that the cdf F of T (X, n) is continuous and strictly
increasing, and denote by g, = F~1(r) the quantile of order r.

Then, for all v € [0,q] :

c (K) — {77 € N such that gy < T(Ka 77) < qw—f—l—a}
=T (Ka [CI%QWJrl—a])

is a confidence interval for n with level exactly 1 — a.

Proof. Py (g(6) € C7 (X)) =Py (¢, < T (X.n) < ds1-a)
— F(gyt1a) = F(@)=1—a O
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Example: A (i, 05) n-sample, with known o3

Consider once more the pivotal function

(X

T(X,p)=+/n O—_O”) ~ A(0,1).

For all v < a, we obtain a Cl with level (exactly) 1 — «:

00 V; 00

2 o X —
x/ﬁ ql o+ V/E qW I

with g, the quantile of order r of the .47(0, 1) distribution.

CY= | X —

For instance, with v = 5 and o = 0.05:

—Ql—at+y = —qo.o75 ~ —1.96
—@qy = —qo.025 ~ +1.96

32/69

How to choose v 7

0.4

02

0

-4 -3 -2 -1 0 1 2 3 4

04
vy=ax0.2
02
3.4588

0
-4 -3 -2 -1 0 1 2 3 4

04
v=ax0.5
02
3.2897

0
-4 -3 -2 -1 0 1 2 3 4
0.4

02

0

-4 -3 -2 -1 0 1 2 3 4

Density of the .4#7(0,1) distribution and corresponding quantiles
for @ = 0.1 and several values of v (in red: gy+1-a — ).

o . «
Usual criterion: value s.t. the Cl has minimal length (here v = E)
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Example: component reliability (cont'd)

It can be proved that:

T(X,;n)=— ~ T(nn).

SE Y

Thus, a Cl with level exactly 1 — «a is :

SRR

, —
Qv+1—a Qqy

with g, the quantile of order r of the ['(n, n) distribution.

Choice of : we can take v = 3 for simplicity, or search numerically for the
value ~ such that the length 1/gy — 1/g14y—qa is minimal.

34/69

Example: component reliability (cont'd)

1.4

A(1)
_ n
L pdf of 7

Numerical application:
08 n =10, a = 5%, x =10.15.
C = [5.9418,21.1693]

041

0.2
2%
) (9, Gy+1-a 2.5% |

0 q'=0.47954 1 q*=1.7085 2 %7(1)

n

Probability density function of the pivotal distribution '(n, n)
and corresponding quantiles for a = 0.05 and v = 3.
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L ecture outline

2 — Confidence regions and confidence intervals

2.3 — Asymptotic confidence intervals

Motivation and goal

Problem

It is sometimes (often) difficult to find a pivotal function.

Solution: use once again an asymptotic approach.
» Intervals with “approximate guarantees’ will be obtained.

» Computation becomes easier using the previously introduced

tools
(CLT, Slutsky, delta method. .. ).

A Any analysis carried out in an asymptotic setting is
approximate when n is finite.

m The results can be poor for small n. ..
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Asymptotic confidence regions (intervals)
We set X, = (X1,...,X5). Recall that n = g(6) and N = g(©).

Definition: asymptotic confidence region

An asymptotic confidence region with level (at least) 1 — v is a
statistic Cp(X,,), with values in P(N), such that

Vo € ©, ILm Py (g(0) € Ch(X,)) > 1—a.

(variant: “exactly” if equality holds for all 6.)

Recall that for an “exact” CR with level (at least) 1 — «,
Ve, Py(g(d) € Cn(X,)) = 1-a

(here, “exact” means “non asymptotic”).

37/69

Asymptotic confidence regions (intervals)

How to use asymptotic pivotal functions.

Their use is illustrated in:

» the parameter of a Rayleigh distribution

This is an exercise mixing definitions and questions.

» the component reliability example

It can be proved that

1 - 1 _
Co=||l1——=qi_2o | Xn, |1+ —=0q1_2 | X,
(1= Fros) %o (1 Jos)
is an asymptotic Cl with level 1 — « for n where g, the
quantile of order r of the .47(0, 1) distribution.

A The design of asymptotic Cl is part of the course (and exam).
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Summary and preview

We have seen and will practice in PC 3:

» the tools to establish the convergence in distribution and the
convergence rate of a sequence of estimators,

» The use of the (asymptotic) distribution of a sequence of
estimators to construct confidence intervals or regions.

We will cover in Lecture 4:

» decision-making through statistical hypothesis testing,
» the construction of such a test,

» the risks associated with this decision.

39/69
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L ecture outline

3 — Standard exercises (with solutions)
3.1 — Questions

Exercise 1 (Estimation of the probability of an event)

Let (Xn)n>1 be a sequence of IID RV with values in (X, .<7).

For a given A € o7, we estimate = IP(X; € A) by:

L 1S
n = ; ;]lx,'EA'
| =

Question

Study the asymptotic behaviour of ﬁgl).
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Exercise 2 (Asymptotic distribution)

Let Xi,..., X, 'S £(0), with 6 > 0.

Let n denote the probability of exceeding a given threshold xg > O:

n = Py(X > x0) = exp (—6xp) .

Questions

® Study the asymptotic behaviour of the sample mean X,,.

@® Propose an estimator ﬁ,(,l) as a function of X, using the

substitution method.

© Study the asymptotic behaviour of ﬁgl).

O Let ﬁ,(,2) = %27:1 1x.>,- Is one of the estimators
asymptotically preferable to the other?

41/69

Exercise 3 (Rayleigh distribution: asymptotic Cl)
This is a long exercise about the concept of asymptotic
confidence interval.

Let X1,..., X, S & (02), with 02 > 0.

Questions @-O detail how to obtain asymptotic IC using
asymptotic pivotales functions.

Questions @-@ show how to compute coverage probability in the
context of asymptotic confidence intervals.
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

Definition

A (sequence of) function(s)
T,: X"xN — R

is an asymptotic pivotal function if the limit distribution of
T, (X,,n) does not depend on 6 :

To (Xpm) —— T

n—o00

where T, is a RV whose distribution is free of 6.

Definition given with the lesson notations

m For the exercise, n = 0 = o2,

43/69

Exercise 3 (Rayleigh distribution: asymptotic Cl)

How to use asymptotic pivotal functions:
m exactly as we used the non-asymptotic ones |
m The obtained intervals are asymptotic confidence intervals.

Questions

O Give the asymptotic distribution of X,, =

:Il—‘

3o

® Using the asymptotic distribution of X,,, propose an
asymptotic pivotal functions,

©® Give a confidence interval for n with level exactly 1 — «.
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Exercise 3 (Rayleigh distribution: asymptotic Cl)

Reminder : the coverage probability of a Cl is its true level.

Computing the coverage probability of C, (X,,) requires the use of
Cumulative distribution function (CDF) of T,.

Here, T, depends on X, whose distribution is not a standard one.
m The CDF can however be numerically computed..

Questions
]- n
how that — Xi ~SR(n,1
@ Show aU,-E_l (n,1)

where F(") is the CDF of the SR(n, 1) distribution.

© Give the coverage probability of C,(X,,) as a function of F(7),

45/69

Exercise 4 (Asymptotic Cl for the Component reliability

application)
Reminder about “Component reliability”
(X1, Xn) N EB) et n = %
Questions
@ Show that
T,=+/n (X”)_(_ ) n_‘joo> A(0,1).

is an asymtotically pivotal function (voir exercise 3 for a
definition of this term).

® Use this pivotal function to design an asymptotic Cl with level
1—a.

© Determine the cov. prob. of the obtained asymptotic Cl.
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L ecture outline

3 — Standard exercises (with solutions)

3.2 — Solutions

Solution of exercise 1

Using the CLT with Y; = 1x.ca d Ber(n):

Vi (fn—1) —— A (0,n(1 —n)).

n—o00

Concl.: if 0 < n < 1, then 7, is asymptotically Gaussian, with

» convergence rate: %

» asymptotic variance: 7(1 — 7).
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Solution of exercise 2

© Using CLT:

: X :
with h: u+— exp (——O> continuous on R* .
u

Applying method of moments with X,, estimator of % .

A1) _ (%) — _ X
i —h(Xn)—exp< Xn)

48/69

Solution of exercise 2

® h is differentiable on R with A'(u) = X—g exp (—ﬁ)
u u

Using the Delta-theorem in the Gaussian cae, we get:
ValhX)—n(E)) == o (1) X
" 7 n—00 ’ 0) 62

i (ﬁ,g,l) _ 77) _d ., (0, (x00 exp(—@xo))2>

n—o00

Let:

The asymptotic variance of 7“7,(,1) is 02(0) = (xof exp (—6xp))>.
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Solution of exercise 2

Zi,...,Z, 1ID

N 1 n 1
o 771(72) = - Z Zi with Zi = 1 x>, = { Z1 ~ Ber(n)

i=1

Using the result of exercise 1:
vn (ﬁﬁz) - 77) — ¥ (0,9(1 7))
n—o0
with 1 = exp (—fxp), we obtain the asymptotic variance:

05(0) = exp (—0x0) (1 — exp (—6x0))
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Solution of exercise 2

Let A(0) = o3(0) — o2(6).

A(f0) = exp(—6x0) (1 —exp (—0xp) — Xgﬁz exp (—Gxo))
= exp (—6x0) ¢(6x0)
with p(u) = 1 — exp(—u)(1 + v?).

Analyzing the sign of the derivative of ¢ leads to ¢ > 0 on R,..

~(1)

N’ is asymptotically preferable to ﬁ,(,2).
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Solution of exercise 2

0.25

0.2

0.15

0.1

0.05

Plots of bothasymptotic variances for xg = 2.0.
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Solution of exercise 3

@ Direct application of the CLT:

G(33xaf3) v ot 3)).

Xn 7r
2
Vi | £ . ¥ (0,1)
T n—00
2_ =
2
® Thus _
Xn \/?
o 2 | . . :
Th =+/n| ——=——— | is an asymptotic pivotal function.
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Solution of exercise 3

® Since T, — 4 A (0,1), we have with asymptotic probability

n—oo
1 — o that:
o 2
—qi_a < /n —F— | <
2 _ _
2

with g, the quantile of order r of the .4#7(0,1) distribution.

It comes the asymptotic confidence intervals with level 1 — o :

—1

V25 N <2
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Solution of exercise 3

The asymptotic Cl can be simplified with a Taylor approximation:

Asymptotic Cl with level (exactly) 1 — « for o

2 - qi—2¢ /4 qi—-2 /4
Ch=1/—X,|1-— 24/ ==1,1 24/— =1
" \/;n[ Vo Vmro - vn Vo ]
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Solution of exercise 3

L~ R(1).

X:
@ As X; ~ R(0?). o is a scale parameter : —
o

1 n
As X; are |ID, it comes — ZX; ~ SR(n,1).
o

i=1

© Coverage probability of /, (X))

Py (0 € Co(X,)) = ( Zx <b>
= F)(b,) — F(”)(an)

ap, = \/j—\/_ 2 — —ql__
with
b, = \/7+\/_ 2 — —ql——

Remark. Here the coverage probability does not depend on 6.
This is a special case because o is a scale parameter. s6/60

Solution of exercise 3

0.96 e
— (i verage probability
0.955 - 1
0.95 —————— —
10° 10’ 10?

sample size n

Coverage probability of the asymptotic ClI C,(X,,) with a = 5%.

Remark. Observe that we have indeed a confidence interval with asymptotic
level (exactly) 1 — a:

VO, lim Pyp(oce€ G (X,)=1—-a.
n— oo

57/69




Solution of exercise 4

@ It has already been shown (CLT, Slutski, Mann-Wald) that

Ta(Xpm) = va Lo

n

>~ A4 (0,1),

n—0o0

w Thus, T, is an asymptotic pivotal function.

A Asymptotic Cl with level (exactly) 1 — « for 7 :

Cn = Kl— %ql_g) X, <1+%q1_g> Xn]

with g, the quantile of order r of the .4#7(0,1) distribution.
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Solution of exercise 4

Numerical application:
n =10, =0.05, £ =10.1515
1Ce¥aCt _[5. 942, 21.17],
02} / 9«
0 \\ I I |\ |
: X

2 5
valeurs de T = o

[CASYIP- — [3.86, 16.44]

‘ | ‘
valeurs de T,'= \/n (1-12)

A Do not confuse intervals on pivotal functions [qg s ql_g] and confidence interval for 7.
2 2
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Solution of exercise 4

251
-
Cl
----asympt. Cl
20 -

15+

5 ," | | | | | | | | | J
0 100 200 300 400 500 600 700 800 900 1000

sample size n

Comparison of exact and asymptotic Cls, as a function of n
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Solution of exercise 4

® Coverage probability of /, (X))

Po(ne€ Ch(X,)) = Py (776 Kl—%(h—%),(hL

1

vn

1 X, 1

— IP)H 1 S_S 1
1-|—WCI1—% n 1—WCI1—%

Xn
Since (reminder) — ~ T (n, n), it comes:
n

n,n ]' n,n ]'
Py (7 € Co(X,)) = FI | g —— | =AW |
ﬁql—% + q1—«

with FT("" the cdf of the ['(n, n) distribution.
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Solution of exercise 4

0.96
0-947 — coverage probability|
092" — 11—« :
0.9 K = 0.90351(n = 10) -
0.88] |
086/ . o o ]

10 107 10° 10*

sample size n

Coverage probability of the asympt. Cl with level 95%

Remarks.

» The property V0, lim 7, ,(Ci(X,)) > 1 — ais verified.
n— oo

» Usually the coverage probability depends on 6. It is not the case here
because 7) is a scale parameter.
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Lecture outline

4 — Appendices




Proof

As Z has a moment of order 2, we can define:
» its mean p = E(2),
> its covariance matrix ¥z = E((Z — u)(Z — ) ").

We start by noting that if it exists a € R\ {0} and c € R s.t.
a'lZ=c; as., thenc=a'p.

An intermediate result

Let V be a positive scalar random variable. We have :

E(V)=0 < V=0 as. (%)
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Proof (cont'd)

Let a € R9\ {0} et c € R.

a'lZ=cas. < a(Z-p)=0 as.
— a(Z—-p)(Z—-pu)'Ta=0 as.
<~ E(a'(Z - p)(Z — p)"a) = 0 (utilisant (%))
«— a'¥ya=0

As the matrix ¥z is positive-definite, a' ¥za = 0 (with a # 0) is
equivalent to a € Ker(X 7).
Thus,

Z dégénérée <<= Ja#0tq. a'Z=c as.
< da#0 € Ker(Xy)
<= X 7 non inversible
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Relation between convergence in distribution and in proba.

We already know that convergence in probability implies convergence in
distribution. Let (Y,)nen= be a sequence of RV with values in RY.

Proposition

d . P
If Y, < ¢, with ¢ € R? a constant, then Y, — c.

Corollary

If there exists ¢ € RY,
» a RV Z with values in RY,

» a sequence (an)nen+ of real numbers such that lim a, = oo,

n— oo
such that
d
dn (Yn - C) — Z
n— oo
then
P
Yn —> C.
n— oo

Proof (exercise): use above proposition and Slutsky's theorem (see below). ([
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Proof “Delta-theorem” (scalar case)

Consider the function 1) defined by :

M) —hm)
df(y){ y—m ok

h'(m) siy =m;

) ) . ) ) d
1) is continuous at m because h est differentiable at m. Since Y, —— m,
n— oo

Y(Ya) —— $(m) = H'(m),
and thus (Slutsky)
(V(Ya = m), () —— (Z,H'(m)).
Finally, we have

VA (h(Ya) = h(m)) = /0 (Yo — m)$(Ys) —— K (m)Z. O
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Regular models: regularity conditions C3 and Cy
Reminder: Cy, C; and Cy were defined in Lecture #2.

Regularity condition C;

0 — fy(x) is twice continuously differentiable for v-almost all x.

Regularity condition Cy

At any point € ©, we have

[ 9oVE B vlde) = Vi [ V] ) (o).
S S

In other words: VO € ©, Vk < p, Vj < p,

82 fg (5)
5 00,00

0 afg (5)
00k |5 08

v(dx) = v(dx).
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Example: an MLE that is not asymptotically Gaussian

Let X1,...,X, S Upo g1, with 6 > 0 unknown.

A This model is not regular (why?).

It can be proved that (cf. PC 1, exercise 1.2)
> 0, = max;<p X; is the MLE of 4, and

A 1
> 1 (0 —0) —— ~Z with ZNE()\:—).
n—00 0
In this particular case
w the MLE is not asymptotically Gaussian;

w the convergence rate is %: faster than %
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The Rayleigh # (02) distribution
X ~ % (0?) if X admits the pdf

Moments

» mean: E,(X) = a\/g

Property
if X ~2%(0°) then Y = X2 ~ & (5%).

Sum of Rayleigh distributions

We define (for the exercise) the following distribution:

If (X1,...,X,) © R(0?), then Z =Y X; ~ SR(n,0?).
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