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Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Gilles Faÿ, Ziad Kobeissi, Laurent Le Brusquet,
Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator
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Lecture 6/9

Introduction to supervised learning
Linear models for regression

Course objectives

◮ Introduce the basic concepts of statistical learning
◮ Establish the mathematical framework for regression and

classification problems
◮ Learn how to build and use linear regression models
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Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression

3 – Standard exercices (with solutions)

4 – Appendices
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Machine learning (apprentissage automatique)

One possible definition. . .

“Machine learning is the study of computational methods for
improving performance by mechanizing the acquisition of
knowledge from experience.” → data !

(P. Langley and H. A. Simon (1995). Comm. of the ACM, 38(11):54–64)

Image: J. Walsh (2016). Machine Learning: The Speed-of-Light Evolution of AI and Design.
https://www.autodesk.com/redshift/machine-learning/
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Statistical learning: a “disciplinary” point of view

Computer science

Artificial intelligence (AI)

Machine learning

Mathematics
(“mathematical sciences”)

Statistics

Statistical learning
(apprentissage statistique)

Remark: in practice, “machine learning” (apprentissage automatique) and “statistical learning”
(apprentissage statistique) are often used interchangeably.
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Example: handwritten character recognition

A subset of the MNIST database
containing 70 000 b&w images† of size 28 × 28 pixels

Supervised learning problems: examples are provided with a label.

➠ Learn to classify a new image in one of the 10 classes.

† 60 000 training examples and 10 000 test examples
Source: https://www.openml.org/search?type=data&id=554
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Example: real estate pricing in Ames (Iowa)

Database of real estate transactions data
(sales price + 79 attributes; 1460 transactions)

Supervised learning problem: here, the price plays the role of a label.

➠ Learn to predict the price of a house from its 79 attributes.

Source: Kaggle competition “House Prices: Advanced Regression Techniques”
(https://www.kaggle.com/c/house-prices-advanced-regression-techniques)
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Several forms of learning
◮ Supervised learning: examples with labels.

◮ analogy: learning with a teacher.

➠ Lectures 6 to 8

◮ Unsupervised learning: examples without labels
◮ analogy: learning without a teacher, pattern discovery

➠ Lecture 9

and also. . . (not covered in this course)

◮ Active learning
◮ the labels are queried sequentially;
◮ example: detection of bank frauds

→ in-depth analysis of “suspicious” cases only.

◮ Reinforcement learning
◮ Transfer learning
◮ . . .
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Numerous fields of application

◮ Computer vision
◮ Speech recognition
◮ Natural Language Processing (NLP)
◮ Fraud detection
◮ Personalized medicine
◮ Recommender systems & targeted marketing
◮ . . .

Lecture outline

1 – Introduction to (supervised) statistical learning
1.1 – Statistical learning
1.2 – The mathematical framework of supervised learning

2 – Linear regression

3 – Standard exercices (with solutions)

4 – Appendices
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ML vocabulary: instance space and label space

Instance space: X
◮ instances x1, . . . , xn ∈ X

Label space: Y
◮ labels y1, . . . , yn ∈ Y

MNIST example:

Class: zero, one, . . . nine

X = [0, 1]28×28 Y = {“zero” , . . . , “nine”}

In this and the following lectures, we will always assume:

X = Rp Y = R → regression, or
Y = {0, 1} → classification†.

† more precisely: binary classification. However, binary classification methods can also be useful for
“multi-class” problems (such as MNIST). . .
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Statistical model

The statistical model of supervised learning

i) In supervised learning, we consider an iid n-sample:

(X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y

where PX ,Y is an unknown probability measure on X × Y.

ii) Unless explicitely mentioned, we make no assumption on the
distribution: θ = PX ,Y and Θ = {probability measures on X × Y}.

Notation. We denote by (X ,Y ) another pair of RVs, which follows the
same distribution PX ,Y but is not observed.

△! change of notation (wrt previous lectures)

➠ observations: Xi ∈ X → (Xi ,Yi ) ∈ X × Y
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Goal

Goal of supervised learning (informally)

We want to “learn” from data† a prediction function‡

ĥ : X → Y
x 7→ y = ĥ(x)

such that the RVs Y and ĥ(X ) are as “close” as possible.

† We should write ĥ(x) = ĥ(x ; (X1,Y1), . . . , (Xn,Yn)). . .
‡ If Y is finite, it is also called classification function or “classifier”.

To this end, let us consider a loss function:

L : Y × Y → R+

(y , ỹ) 7→ L(y , ỹ).

➠ L(y , ĥ(x)) quantifies the loss when y is predicted by ĥ(x).
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Goal (cont’d)

Definition: risk (generalization error)

Given a loss function L and a prediction function h, the risk, or
generalization error, is defined as :

R(h) = E (L(Y , h(X ))) ,

where the expectation is with respect to (X ,Y ).

(NB: the concept of “risk” in this context differs from that in the previous lectures)

△! This risk depends on the unknown distribution θ = PX ,Y :

Rθ(h) =

∫∫

X×Y
L(y , h(x)) PX ,Y (dx , dy).

➠ From now on, we will simply write R(h).
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Goal (cont’d)
The optimal prediction function depends on the unknown
distribution PX ,Y :

h∗ = h∗(PX ,Y ) = argminh R(h).

(existence/uniqueness not guaranteed)

Goal of supervised learning

We want to construct, from the data (X1,Y1), . . . , (Xn,Yn), a prediction
function

ĥ : X → Y
x 7→ y = ĥ(x)

such that the risk R(ĥ) is as close as possible to the optimal risk

R∗ = inf
h
R(h)

(also called “Bayes risk”).

Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression
2.1 – Introduction to regression models
2.2 – Linear model / quadratic loss
2.3 – Back to statistical inference
2.4 – Other loss functions
2.5 – Limitations of “ordinary least squares”

3 – Standard exercices (with solutions)

4 – Appendices
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Regression

We consider in the rest of this lecture the regression case: Y = R.

Francis Galton (1886). “Regression Towards Mediocrity in Hereditary Stature”,
Journal of the Anthropological Institute, 15:246–263.

Stat. vocab.: Y = response variable / X = explanatory variables.
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Quadratic loss

Consider for a start the quadratic loss:

L(y , ỹ) = (y − ỹ)2.

(this is the most commonly used in regression settings)

Proposition

For the quadratic loss, the optimal prediction function is

∀x ∈ X , h∗(x) = E(Y |X = x).

Vocabulary : x 7→ E(Y |X = x) is sometimes called “regression function”.

We will consider this loss function until further notice.
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Quadratic loss (cont’d)

Proof. By the law of total expectation, we get:

R(h) = E


E

(
(Y − h(X ))2 | X

)

︸ ︷︷ ︸
⊛


 .

Le term ⊛ can be decomposed as :

E
(
(Y − h(X ))2 | X

)

= E
(
(Y−E(Y | X ) + E(Y | X )− h(X ))2 | X

)

= var(Y | X ) + (E(Y | X )− h(X ))2 .

The first term does not depend on h, and the second one is
minimal when h(X ) = E(Y | X ) a.s..
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Empirical risk

Recall that the joint distribution PX ,Y is unknown

➠ the risk R(h) cannot be computed.

Definition: empirical risk

We call empirical risk the risk

R̂n(h) =

∫∫

X×Y
L(y , h(x)) P̂n(dx , dy) =

1
n

n∑

i=1

L(Yi , h(Xi ))

associated to the empirical measure P̂n = 1
n

∑n
i=1 δXi ,Yi

.

With the quadratic loss :

R̂n(h) =
1
n

n∑

i=1

(Yi − h(Xi ))
2 .
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Empirical risk minimization
A general learning method:

1 Choose a family H of prediction functions.
2 Select the function h which minimizes the empirical risk:

ĥERM = argminh∈H R̂n(h).

Example: “linear” (affine) prediction functions

H =
{
h : Rp → R

∣∣∣ ∃β ∈ Rp+1, ∀x ∈ X ,

h(x) = β0 + β1x
(1) + . . .+ βpx

(p)
}

△! the ERM method is reasonable if H is “not too large”

➠ otherwise, complex models must be penalized (more on this in
Lecture 8)
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Other examples of families of prediction functions

◮ linear models with general basis functions

h(x) = β1h1(x) + . . .+ βKhK (x),

where the functions hk : X → R are known;

◮ additive models

h(x) = h1(x
(1)) + . . .+ hp(x

(p)),

where the hk ’s belong to a given family of R → R functions;

◮ neural networks,
◮ decision trees,
◮ generalized linear/additive models
◮ . . .

Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression
2.1 – Introduction to regression models
2.2 – Linear model / quadratic loss
2.3 – Back to statistical inference
2.4 – Other loss functions
2.5 – Limitations of “ordinary least squares”

3 – Standard exercices (with solutions)

4 – Appendices
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Residual sum of squares
We consider prediction functions h of the form :

h(x) = β0 + β1x
(1) + . . .+ βpx

(p) = β⊤x

with β =




β0

β1
...
βp


 and x =




1
x (1)

...
x (p)


.

Definition: RSS / least squares criterion

Empirical risk: R̂(h) = 1
n

∑n
i=1

(
Yi − β⊤Xi

)2.

We define the Residual Sum of Squares (RSS):

RSS(β) =
n∑

i=1

(
Yi − β⊤Xi

)2

or least squares criterion.
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Matrix-vector notations

Let X =




1 X
(1)
1 . . . X

(p)
1

1 X
(1)
2 . . . X

(p)
2

...
...

1 X
(1)
n . . . X

(p)
n




and Y =




Y1

Y2
...
Yn


.

➠ X has size n × (p + 1) and Y has length n.

Matrix form of the criterion

RSS(β) = ‖Y − Xβ‖2

= (Y − Xβ)⊤ (Y − Xβ)

= β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y
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Minimization of the least squares criterion

Assumption

We assume X⊤X invertible

➠ implies p + 1 ≤ n.

Let β̃ =
(
X⊤X

)−1
X⊤Y . Then:

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y
= (β − β̃)⊤X⊤X (β − β̃) + c

where c is a constant (i.e., does not depend on β).

Indeed: β̃⊤X⊤Xβ = Y⊤X
(
X⊤X

)−1
X⊤Xβ = Y⊤Xβ.
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Minimization of the least squares criterion
Reminder : RSS(β) = (β − β̃)⊤X⊤X (β − β̃) + c.

We have:

i ∀a ∈ Rp+1, a⊤X⊤Xa = ‖Xa‖2 ≥ 0,

ii X⊤X is invertible, hence positive definite.

(i) implies that RSS(β) is minimal at β̃;

(ii) implies that the minimizer is unique (a⊤X⊤Xa = 0 =⇒ a = 0).

Proposition: least squares estimator

When X⊤X is invertible,

β̂ =
(
X⊤X

)−1
X⊤Y

is the unique minimizer of the RSS function.

➠ complement: matrix calculus
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Goodness of fit
Without explanatory variables, we would have

ĥ(x) = β̂0, with β̂0 = Ȳ =
1
n

n∑

i=1

Yi .

Let us set TSS =
∑n

i=1
(
Yi − Ȳ

)2 → Total Sum of Squares.

Definition: coefficient of determination R2

Reminder : RSS(β) =
∑n

i=1
(
Yi − β⊤Xi

)2. We set :

R2 = 1 − RSS(β̂)
TSS

.

Properties. ➠ proof: see exercise 1

◮ 0 ≤ R2 ≤ 1,
◮ R2 = 1 ⇐⇒ ∀i , Yi = β̂Xi .
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“Ozone” example: presentation of the data

variable description
O3obs concentration of ozone on day t + 1
MOCAGE pollution prediction obtained by a deterministic

computation fluid dynamics (CFD) model
TEMPE MétéoFrance temperature forecast for day t + 1
RMH2O humidity ratio at day t

NO2 nitrogen dioxide concentration on day t

NO nitrogen monoxide concentration on day t

VentMOD wind strength on day t

VentANG wind orientation of day t

Learning task
◮ predict the ozone concentation on day t + 1

from data available on day t

◮ predict if the concentration will exceed 150µg/m3

(classification task, cf. lecture #7).

Application and data obtained from https://github.com/wikistat/Apprentissage/tree/master/Pic-ozone
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“Ozone” example: data visualization
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“Ozone” example: linear regression

Linear regression using n = 210 days of data.
Remark. All variables ➠ standardized for the sake of interpretability.

β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG
103.4 28.9 22.5 -3.2 -34.4 37.9 1.4 2.6

Coefficient of determination. R2 = 65.7%

50 100 150 200 250

50

100

150

200

250

yi

ŷ i
=

β̂
⊤
x i

Observations:

◮ the negative coefficient associated
to NO2 is surprising
(but NO2 is correlated with NO);

◮ RMH2O, VentMOD and VentANG
appear to be of lesser importance;

◮ the model explains partly the data.
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Properties of the least squares estimator

Recall that, until now: (X1,Y1), . . . , (Xn,Yn)
iid∼ PX ,Y .

➠ in the section, we assume instead deterministic Xi ’s
(equivalently, we work “conditionally on the Xi ’s”).

Assume moreover that there exists β ∈ Rp+1 such that

(i) ∀i , Yi = β⊤Xi + ǫi

where the errors ǫi are

(ii) centered: E(ǫi ) = 0,

(iii) uncorrelated: i 6= j ⇒ cov(ǫi , ǫj) = 0,

(iv) homoscedastic: var(ǫi ) = σ2 for some σ2 > 0.
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Properties of the least squares estimator

Proposition

Under these assumptions, β̂ is an unbiased estimator:

E
(
β̂
)

= β,

and its covariance matrix is:

var
(
β̂
)

= σ2
(
X⊤X

)−1
.
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Properties of the least squares estimator

Proof.

Recall that the Xi ’s are assumed deterministic.

Let ǫ = (ǫ1, . . . , ǫn)
⊤. Then:

(i) ⇒
{

Y = Xβ + ǫ

β̂ =
(
X⊤X

)−1
X⊤Y = β +

(
X⊤X

)−1
X⊤ǫ

(ii) ⇒ E
(
β̂
)
= β +

(
X⊤X

)−1
X⊤ E (ǫ) = β

(iii)+(iv) ⇒ var
(
β̂
)

=
(
X⊤X

)−1
X⊤ var (ǫ) X

(
X⊤X

)−1

= σ2 (X⊤X
)−1
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Distribution of (β̂, σ̂2) under a normality assumption
Assume furthermore that (v) ǫ is Gaussian:

logL(β, σ2;Y ) = −n

2
log(2πσ2) − 1

2σ2

n∑

i=1

(
Yi − β⊤Xi

)2
.

Proposition: MLE of (β, σ2) (see PC 6)

The MLE is





β̂ = argminβ
∑n

i=1
(
Yi − β⊤Xi

)2
,

σ̂2 = 1
n

∑n
i=1

(
Yi − β̂⊤Xi

)2
.

➠ We recover the least square estimator of β

Student’s theorem: distribution of (β̂, σ̂2) (see PC 6)

◮ β̂ ∼ N
(
β, σ2 (X⊤X

)−1
)
,

◮ σ̂2 ∼ σ2

n χ2(n − p − 1),

◮ β̂ et σ̂2 are independent.
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Tests / CI on the value of a component of β

We know that β̂j ∼ N
(
βj , σ

2vj
)

with vj =
[(
X⊤X

)−1
]
j ,j

.

Pivotal function

T =
β̂j − βj√

n σ̂2vj
n−p−1

∼ T (n − p − 1)

with T (n− p− 1): Student’s t distrib. with n− p− 1 degrees of freedom

➠ Student’s t distribution

Remark:
n σ̂2

n − p − 1
=

1
n − p − 1

n∑

i=1

(
Yi − β̂⊤Xi

)2

is an unbiased estimator of σ2 (see PC 6).
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Proof

It follows from Student’s theorem that
◮ U =

β̂j−βj

σ
√
vj

∼ N (0, 1)

◮ V = n σ̂2

σ2 ∼ χ2(n − p − 1),
◮ and U and V are independent.

Thus

T =
β̂j − βj√

n σ̂2vj
n−p−1

=
U√
V

n−p−1

∼ T (n − p − 1),

by definition of the Student’s t distribution with k = n − p − 1
degrees of freedom.
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Test for H0 : βj = 0 / H1 : βj 6= 0
Let 0 < α < 1.

Take βj = 0 in the def. of T (i.e.,
assume H0) and

δ = 1|T |>q1−α
2

-2.57 0 2.57
0

0.1

0.2

0.3

0.4

95%

2.5% 2.5%

pdf
T (n − p − 1)

Exact confidence interval for βj

[
β̂j −

√
n σ̂2vj

n − p − 1
q1−α

2
, β̂j +

√
n σ̂2vj

n − p − 1
q1−α

2

]

qr : quantile of order r of T (n − p − 1)
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“Ozone” example: CIs and p-values

CI95% t pval
β0 [100.1, 106.7] 62.9 < 10−6

MOCAGE [21.1, 36.8] 7.4 < 10−6

TEMPE [16.5, 28.5] 7.6 < 10−6

RMH2O [−7.0, 0.6] -1.7 0.095
NO2 [−53.0, −15.7] -3.7 < 10−3

NO [19.8, 55.4] 4.2 < 10−3

VentMOD [−2.7, 5.4] 0.7 0.49
VentANG [−0.8, 6.0] 1.6 0.12

with t: realization of T for the corresponding coefficient

Remark: regression without RMH2O, VentMOD et VentANG

➠ the coefficient of determination drops from 65.7% to 64.5%.
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“Ozone” example: data corruption

Assume that 5 out of n measurements of ozone concentration
(n = 210) are corrupted, i.e., approx. 2% of the sample.

Estimated coefficients without and with corrupted data:
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 103.4 28.9 22.6 -3.2 -34.4 37.6 1.4 2.6
with 125.2 79.2 -15.6 24.2 -155.1 141.4 4.7 24.9

➠ Strong sensitivity of the coefficients to “outliers”.

Solution
Use a loss function that leads to a prediction function with better
robustness properties than the quadratic loss.
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Usual loss functions

1

2

3

4

ǫ−ǫ δ−δ
0

0
y − ỹ

L2 (quadratic) loss
L1 loss
Huber’s loss
ǫ-insensitive loss
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L1 loss

Loss function : L(y , ỹ) = |y − ỹ |.

Proposition (see PC 6)

For the L1 loss, the optimal prediction function is

∀x ∈ X , h∗(x) = med(Y |X = x)

“Ozone” example
β0 MOCAGE TEMPE RMH2O NO2 NO VentMOD VentANG

w/o 100.8 27.5 19.2 -3.3 -32.2 33.9 -1.0 3.9
with 101.4 28.3 18.6 -1.6 -35.1 37.5 0.5 3.2

➠ better stability with respect to outliers.
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Limitations of “ordinary least squares”

Recall that X has size #individuals ×#variables (n × (p + 1)).

Critical cases for “ordinary least squares”
◮ when X⊤X not invertible,
◮ or poorly conditioned.

Typical cases:
◮ when the number of variables is large

(p + 1 > n, sometimes p ≫ n)

Example: genomics.

◮ when there are strong correlations between explanatory
variables

Example: “ozone” data (cf. variables NO and NO2)
➠ lack of interpretability of the coefficients
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One possible solution: penalized regression

A penalty term is added to the empirical risk:

β̂ = argmin
β

RSS(β)︸ ︷︷ ︸
data “fidelity”

+ λ︸︷︷︸
hyperparameter

Ω(β)︸ ︷︷ ︸
penalty

.

➠ see Lecture 8
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Exercise 1 (Regression seen as a projection) ➠ solution

Let (Xi ,Yi ) ∈ Rp × R, 1 ≤ i ≤ n, denote an n-sample of observations.

Consider the linear regression model from ➠ slide 21 :

h(x) = β0 +

p∑

j=1

βjx
(j) = β⊤ x , x ∈ Rp+1,

and the corresponding least squares estimator:

β̂ = argminβ

n∑

i=1

(
Yi − β⊤Xi

)2
.

As in ➠ slide 22 , we denote by
◮ X ∈ Rn×(p+1) the matrix of regressors,
◮ Y ∈ Rn the vector of responses.
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Exercise 1 (Regression seen as a projection) ➠ solution

Questions

1 Set Ŷ = X β̂. Prove that Ŷ is the projection of Y onto the
image of X .

2 Give the expression of the projection matrix, assuming that
X⊤X is invertible.

3 Prove that the coefficient of determination, defined in
➠ slide 25 , satisfies the property 0 ≤ R2 ≤ 1, with R2 = 1 iff
∀i , Yi = β̂⊤ Xi .
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Solution of exercise 1 ➠ back to questions

➊ Reminders:
◮ The projection of y ∈ Rn onto a closed convex set C ⊂ Rn is

the unique y∗ ∈ C such that ‖y − y∗‖ = minv∈C ‖y − v‖.
◮ The image of X , which we will denote by Im(X ), is the linear

subspace of Rn generated by the columns of X :

Im(X ) =
{
v ∈ Rn | ∃β ∈ R(p+1), v = Xβ

}
.

To begin with, note that
◮ Im(X ) is indeed a closed convex set (since all linear subspaces

are closed in finite dimension),
◮ Ŷ = X β̂ belongs to Im(X ).
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Solution of exercise 1 ➠ back to questions

Furthermore, for all v = Xβ ∈ Im(X ), using the fact that

β̂ = argmin
β

‖Y − Xβ‖2 ,

we find that

‖Y − Ŷ ‖ = ‖Y − X β̂‖
≤ ‖Y − Xβ‖ = ‖Y − v‖,

therefore Ŷ is indeed the projection of Y onto Im(X ).

➋ Using the expression of β̂ established in class, we can write the
projection of Y onto Im(X ) as

Ŷ = X β̂ = X
(
X⊤X

)−1
X⊤ Y .
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Solution of exercise 1 ➠ back to questions

This being true for all Y ∈ Rn, we conclude that the matrix of the
projection operator is:

P = X
(
X⊤X

)−1
X⊤.

➌ Recall the characterization of the projection onto a linear
subspace:

Theorem
Let y ∈ Rn and let F be a linear subspace of Rn. Then, y∗ is the
projection of y onto F if, and only if,
◮ y∗ ∈ F ,
◮ y − y∗ ∈ F⊥.
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Solution of exercise 1 ➠ back to questions

We apply the theorem with F = Im(X ) and y = Y .

YY − Ŷ

Im(X )
Ŷ
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Solution of exercise 1 ➠ back to questions

Consider now the coefficient of determination:

R2 = 1 − RSS(β̂)
TSS

, where

{
TSS =

∥∥Y − Ȳ 1n×1
∥∥2

RSS(β) = ‖Y − Xβ‖2

Let us decompose the TSS:

TSS =
∥∥∥Y − Ŷ + Ŷ − Ȳ 1n×1

∥∥∥
2

(1)

=
∥∥∥Y − Ŷ

∥∥∥
2
+
∥∥∥Ŷ − Ȳ 1n×1

∥∥∥
2

(2)

= RSS(β̂) +
∥∥∥Ŷ − Ȳ 1n×1

∥∥∥
2
.

The transition from (1) to (2) follows from Pythgora’s theorem.
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Solution of exercise 1 ➠ back to questions

Indeed,
◮ Ŷ ∈ Im(X ) and Y − Ŷ ∈ Im(X )⊥ since Ŷ is the projection

of Y onto the linear subspace Im(X ).

◮ Ŷ − Ȳ 1n×1 ∈ Im(X ) since 1n×1 ∈ Im(X ).

Thus:

i 0 ≤ RSS(β̂) ≤ SCT , therefore 0 ≤ R2 ≤ 1,

ii R2 = 1 iff SCR(β̂) = 0 iff Y = X β̂.

Lecture outline

1 – Introduction to (supervised) statistical learning

2 – Linear regression

3 – Standard exercices (with solutions)

4 – Appendices
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Matrix calculus

The result can also be found using matrix calculus.

Let v ∈ Rq, z ∈ Rq and M ∈ Rq×q.

1) differentiation of h(z) = v⊤z =
∑q

j=1 vjzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




v1
...
vq


 = v therefore ∇z

(
v⊤z

)
= v .

2) differentiation of h(z) = z⊤Mz =
∑p

i ,j=1 ziMi ,jzj

∇zh(z) =




∂h
∂z1
...
∂h
∂zq


 =




∑q
j=1 M1,jzj +

∑q
i=1 Mi,1zi

...∑q
j=1 M1,jzj +

∑q
i=1 Mi,1zi




therefore ∇z

(
z⊤Mz

)
= (M +M⊤)z .
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Matrix calculus (cont’d)

Application to the minimization of the least squares criterion.

Recall that

RSS(β) = β⊤X⊤Xβ − 2Y⊤Xβ + Y⊤Y

Thus we have

∇β RSS(β) = 2X⊤Xβ − 2X⊤Y = 2
(
X⊤Xβ − X⊤Y

)
,

and finally:

∇βRSS(β̂) = 0 =⇒ β̂ =
(
X⊤X

)−1
X⊤Y .

➠ back to slide ??
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Data standardization

Let X = (X1, . . . ,Xn) be an n-sample taking values in Rp.

Data standardization consists in transforming X to X̃ as follows:

X̃
(j)
i =

X
(j)
i − X

(j)
n

S
(j)
n

, 1 ≤ i ≤ n, 1 ≤ j ≤ p,

where X
(j)
n and S

(j)
n are the sample average and standard deviation

of the j-th variable, respectively:

X
(j)
n =

1
n

n∑

i=1

X
(j)
i ,

(
S
(j)
n

)2
=

1
n

n∑

i=1

(
X

(j)
i − X

(j)
n

)2
.

➠ back to slide 28
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Student’s t distribution T (k)

Definition of T (k), k integer ≥ 1
Let U and V be two RVs such that

◮ U ∼ N (0, 1)

◮ V ∼ χ2(k)

◮ U and V are independent

then T = U√
V
k

follows a Student’s t distribution with k degrees of freedom.

Properties
T (k)

d−−−→
k→∞

N (0, 1)

Exercise : prove it.

Probability density function

f (x) =
1√
kπ

Γ( k+1
2 )

Γ( k2 )

(
1 +

x2

k

)− k+1
2

Mean
◮ for k ≥ 2, Ek(T ) = 0

Variance
◮ for k ≥ 3, vark(T ) = k

k−2

➠ back to slide ??


