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Lecture 10/9

Unsupervised learning: two examples

In this lecture you will. . .

◮ Understand the main ideas of unsupervised learning through

two examples of unsupervised learning tasks.

◮ Learn how to reduce the dimension of a dataset using

principal component analysis.

◮ Learn how to partition the data into clusters of similar

examples (clustering) using the K-means algorithm.
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Lecture outline

1 – Introduction to unsupervised learning

2 – Principal components analysis

3 – Clustering

4 – A taste of some (more) advanced methods

5 – Appendices
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Recap: supervised learning

◮ We observe pairs (Xi ,Yi ):

(X1,Y1), . . . , (Xn,Yn)
iid
∼ PX ,Y

,

with Xi ∈ X : instance and Yi ∈ Y: label.

◮ We want to approach the optimal predictor

h∗ = argminh E (L(Y , h(X ))) ,

which is a property of the conditional distribution PY |X :

h∗(x) = argminỹ∈Y E (L(Y , ỹ) | X = x)

= argminỹ∈Y

∫

L(y , ỹ) PY |X=x(dy).
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Unsupervised learning

Learning without a “teacher”:

◮ we observe instances only,

X1, . . . , Xn
iid
∼ PX

,

and we are interested in the distribution PX .

Assume that X ⊂ R
p and that PX has a pdf f X .

Problem: curse of dimensionality

Estimating a “general” pdf f X has a cost (sample size required to

achieve a certain accuracy) that scales exponentially with the

dimension p.†

† Non-parametric statistics, a branch of statistics which studies among other thing density estimation
under weak assumptions, provides theoretical results (not covered) that support this claim.
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Goals in unsupervised learning

1 Ideally, estimate the pdf f X of the data distribution.

➠ unless p is small enough (say, p . 5, rare in learning

problems), this problem is in general too difficult†.

2 Reveal underlying “structures” in the distribution

(without explicitely constructing a density estimator)

† In low dimension, one can use, e.g., kernel density estimators (not covered).
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Goal: dimension reduction

We are looking for a mapping

T : X → Z ⊂ R
q with q ≪ p

x 7→ z = T (x)

together with a reconstruction mapping

T̃ : Z → X

z 7→ x̂ = T̃ (z)

such that

1
n

∑n
i=1 L(xi , x̂i ) = 1

n

∑n
i=1 L

(

xi , T̃
(
T (xi )
︸ ︷︷ ︸

zi

))

is as small as possible (where L(x , x̂) denotes a loss function).

Remark: more generally, Z could be a q-dimensional manifold, which is an abstract generalization of the
concepts of curve (q = 1) and surface (q = 2); cf. differential geometry.
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“Linear” dimension reduction

Let x1, . . . , xn ∈ R
p be an observed sample. Let q < p.

Definition: affine subspace

Aq ⊂ R
p is an affine subspace of dimension q if there exists

◮ µ ∈ R
p,

◮ a matrix A of size p × q with rank q,

such that Aq = Affµ,A = {y ∈ R
p such that y = µ+ Az , z ∈ R

q}.

Definition: principal components analysis (PCA)

PCA consist in finding the best approximation of the data, for the

quadratic loss, by an affine subspace Aq.

The dimension q is either given or chosen automatically.
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“Linear” dimension reduction (cont’d)

Thus, we are looking for Aq = Affµ,A and (zi ) such that

µ, A, (zi ) ∈ argmin
n∑

i=1

‖xi − (µ+ Azi )‖
2
. (⋆)

△! The solution is not unique.

✏ If Ã has the same range as A, then

there exists z̃i ’s such that A zi = Ã z̃i for all i .

➠ We will assume wlog that the columns of A are orthonormal:

A⊤A = Idq.

Remark: the orthonormality assumption still does not make A unique. . .
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“Linear” dimension reduction (cont’d)

✏ Fix some µ, A and (zi ), and set z̃i = zi − z̄ . Then

µ+ Azi = µ+ A (z̃i + z̄)

= µ+ Az̄
︸ ︷︷ ︸

µ̃

+ Az̃i .

➠ We can constrain the zi ’s, wlog, to be such that z̄ = 0.
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Partial result

Proposition

Minimizing the criterion for a given matrix A leads to:

µ = x̄ ,

zi = A⊤(xi − x̄),

and we have the geometric interpretation:

➠ x̂i = µ+ Azi is the orthogonal projection of xi on Affµ,A.

Consequence. Plugging this result into (⋆), we get

A = argmin
n∑

i=1

∥
∥
∥

(

Idp − AA⊤
)

(xi − x̄)
∥
∥
∥

2
.



11/53

Partial result

Proposition

Minimizing the criterion for a given matrix A leads to:

µ = x̄ ,

zi = A⊤(xi − x̄),

and we have the geometric interpretation:

➠ x̂i = µ+ Azi is the orthogonal projection of xi on Affµ,A.

Consequence. Plugging this result into (⋆), we get

A = argmin
n∑

i=1

∥
∥
∥

(

Idp − AA⊤
)

(xi − x̄)
∥
∥
∥

2
.



12/53

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x (1)

x
(2
)

x̄

xi

x̂i

zi



13/53

Partial result: proof
Fix some A and (zi ), with z̄ = 0, and set vi = xi − Azi . Then

∑

i

‖xi − (µ+ Azi )‖
2 =

∑

i

‖vi − µ‖2

= n ‖µ−
1

n

∑

i

vi‖
2 + c

where c does not depend on µ. Therefore, the optimal µ is

µ =
1

n

∑

i

vi = x̄ − Az̄ = x̄ .

Thus we set µ = x̄ , and proceed similarly to determine each of the zi ’s.

For all i the minimum is attained (exercise) at

zi = A⊤(xi − x̄),

and we check that z̄ = 1

n

∑

i zi = A⊤(x̄ − x̄) = 0.

Remark: the expressions can also be obtained quickly by setting the gradient of the criterion to zero.
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Notations
Let X be the matrix of observations:

X =






(x1)
⊤

...

(xn)
⊤




 =







x
(1)
1 . . . x

(p)
1

...
...

x
(1)
n . . . x

(p)
n







We will assume, wlog, that x̄ = 0.

We are looking for a matrix A such that

A = argmin
n∑

i=1

∥
∥
∥

(

Idp − AA⊤
)

xi

∥
∥
∥

2

= argmin
∥
∥
∥

(

Idp − AA⊤
)

X⊤
∥
∥
∥

2

F

where ‖.‖F denotes the Frobenius norm:

‖M‖2F =
∑

i ,j

M2
ij = tr(M⊤M) = tr(MM⊤).
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Singular value decomposition (SVD)

Theorem

Let M be an n × p real matrix. There exist matrices

◮ U, orthogonal with size n × n (U⊤U = Idn),

◮ V , orthogonal with size p × p (V⊤V = Idp),

◮ D = diag(d1, . . . , dr , 0, . . . , 0) with size n × p,

with d1 ≥ d2 ≥ . . . ≥ dr > 0

such that :

M = UDV⊤,

and r is the rank of both D et M.

The scalars d1, . . . , dr , 0, . . . 0 are the singular values of M.

◮ d2
1 , . . . , d

2
r are the non-zero eigenvalues of MM⊤ and M⊤M.

Proof. See PC 8, bonus exercise.
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Solution of the optimization problem

Let U, D and V be the matrices obtained from the SVD of X :

X = UDV⊤
.

Fundamental Theorem of PCA

Let

◮ v1, v2, . . . , vp the columns of V ,

◮ Vq = (v1 | . . . | vq) the submatrix with the first q columns.

Then

Vq ∈ argminA

∥
∥
∥

(

Idp − AA⊤
)

X⊤
∥
∥
∥

2

F
,

where A ranges over the set of all p × q matrices with rank q.

➠ proof
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Recap: PCA

Algorithm: Principal components analysis (PCA)

Computing the PCA of a sample (x1, . . . , xn) consists in :

1 Computing the mean x̄ and centering the data: xi ← xi − x̄ .

2 Constructing the matrix X of centered data.

3 Computing the matrix V from the SVD of X

(the singular values are useful too, cf. next section)

4 Reducing the dimension: zi = V⊤
q xi .

Reconstruction. x̂i = x̄ + Vqzi .

Vocabulary.

◮ v1, . . . , vq (columns of Vq): principal axes.

◮ z
(1)
i , . . . , z

(q)
i : principal component.
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Example: handwritten digits (not MNIST, another one!)

Data: n = 658 images 16×16 of the digit “3” → p = 256

Source : The Elements of Statistical Learning, Springer
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Example: handwritten digits (cont’d)

Visualization of the first two principal axes

mean x̄ principal axis v1 principal axis v2

∀i , x̂i = x̄ + z
(1)
i v1 + z

(2)
i v2
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Principal plane
(
z(1), z(2)

)
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Dashed lines: 5%, 25%, 50%, 75%, 95% quantiles.

Red dots: examples shown on the next slide.
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Interpretation of the components
(
z(1), z(2)

)
based on the 25

examples selected on the previous slide.

replacements

q
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Sample covariance matrix of the components

Let Σ̂Z denote the sample covariance matrix of the q components

Σ̂Z = 1
n

∑n
i=1(zi − z̄)(zi − z̄)⊤

= 1
n

∑n
i=1 ziz

⊤
i (car z̄ = 1

n

∑n
i=1 zi = 0)

= 1
n
Z⊤Z

with Z =






z⊤1
...

z⊤n




. Recall that zi = V⊤

q xi , and thus Z = XVq.

Using X = UDV⊤, we get

Σ̂Z =
1

n
V⊤
q VD⊤DV⊤Vq

=
1

n
diag(d2

1 , . . . , d
2
q ).
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Sample covariance matrix of the components (cont’d)

Conclusions.

◮ The (sample) variance of component z(j) is
d2
j

n
.

➠ Components sorted by decreasing variance.

◮ The (sample) covariances are equal to zero.

➠ The components are uncorrelated.



23/53

Sample covariance matrix of the components (cont’d)

Conclusions.

◮ The (sample) variance of component z(j) is
d2
j

n
.

➠ Components sorted by decreasing variance.

◮ The (sample) covariances are equal to zero.

➠ The components are uncorrelated.



24/53

Total variance of a sample

Definition / Proposition

The total variance of the p-variate sample (x1, . . . , xn) is

VT (x1, . . . , xn) =

p
∑

j=1

var
(

x
(j)
1 , . . . , x

(j)
n

)

.

With centered xi ’s, we have

VT (x1, . . . , xn) =
1

n
tr(X⊤X ) =

1

n

r∑

j=1

d2
j .

Proof. Using that the xi ’s are centered, we have

VT (x1, . . . , xn) =

p
∑

j=1

(

1

n

n
∑

i=1

(

x
(j)
i

)2
)

=
1

n
‖X‖2

F
=

1

n
tr(X⊤

X ).

Then, using X = UDV⊤, with U⊤U = Idn and V⊤V = Idp, we obtain

VT (x1, . . . , xn) =
1

n
tr(D⊤

D) =
1

n

r
∑

j=1

d
2
j .
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With centered xi ’s, we have

VT (x1, . . . , xn) =
1

n
tr(X⊤X ) =

1

n

r∑

j=1

d2
j .

Proof. Using that the xi ’s are centered, we have

VT (x1, . . . , xn) =

p
∑

j=1

(

1

n

n
∑

i=1

(

x
(j)
i

)2
)

=
1

n
‖X‖2

F
=

1

n
tr(X⊤

X ).

Then, using X = UDV⊤, with U⊤U = Idn and V⊤V = Idp, we obtain

VT (x1, . . . , xn) =
1

n
tr(D⊤

D) =
1

n

r
∑

j=1

d
2
j .
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Proportion of explained variance
Total variance of the reconstructed sample (x̂1, . . . , x̂n):

VT (x̂1, . . . , x̂n) =
1

n
tr(X̂⊤X̂ ) = ?.

Using X̂ = ZV⊤
q , we get:

VT (x̂1, . . . , x̂n) = tr(VqΣ̂ZV
⊤
q ) =

1

n

q
∑

j=1

d2
j .

Proportion of explained variance

The proportion of explained variance is defined as

VT (x̂1, . . . , x̂n)

VT (x1, . . . , xn)
=

∑q
j=1 d

2
j

∑r
j=1 d

2
j

.
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Example: handwritten digits (MNIST, p = 282 = 784)

50 100 150 200 250
0

20

40

60

80

100

number of components (q)

%
ex

p
la

in
ed

va
ri
an

ce

Remark: similarity with the coefficient of determination (R2) in regression.
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Definition : clustering, clusters

Let E = {x1, . . . , xn} be a sample of n observations xi ∈ X .

◮ We assume that X ⊂ R
p, thus E ⊂ R

p.

Definitions

Clustering† consists in partitioning the set E in K non-empty parts

Ek ⊂ E , 1 ≤ k ≤ K , that contain “similar” observations.

The number K is either given or chosen automatically.

The sets Ek are called groups or clusters.

Notations.

◮ Denote by π(k) =
{
i ≤ n | xi ∈ E (k)

}
the indices in Ek .

◮ Π = {π1, . . . , πK} is a partition of {1, . . . n}.

† also called data partitioning.
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Example of clustering result

Example with p = 2 and K = 2

-1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

x (1)

x
(2
)

➠

-1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

x (1)

x
(2
)

cluster E1

cluster E2
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Dissimilarity: definition

We are looking for a partition such that, for all k ,

◮ the instances† in cluster Ek are “similar” to each other,

◮ and as dissimilar as possible to those in other clusters.

Definition

In clustering algorithms, we call dissimilarity the

function D : X × X → R that is used to measure the “distance”

between examples.

Remark: not always a distance but satisfies in general

◮ the symmetry property: D(x , y) = D(y , x),

◮ the positivity property: D(x , y) ≥ 0.

† a.k.a. “examples”, “observations’, “data”, “individuals”. . .
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Dissimilarity: examples

◮ General form: D(xi , xi ′) =
∑p

j=1 dj

(

x
(j)
i , x

(j)
i ′

)

◮ Quantitative variable: dj

(

x
(j)
i , x

(j)
i ′

)

= f
(

|x
(j)
i − x

(j)
i ′
|
)

.

Example: dj

(

x
(j)
i , x

(j)
i ′

)

=
(

x
(j)
i − x

(j)
i ′

)2
.

Remark: it is often beneficial to normalize the variables:

x
(j)
i →

x
(j)
i

sj
, (usual choice for sj : sample standard deviation)

◮ Qualitative variable: dj

(

x
(j)
i , x

(j)
i ′

)

= cste if x
(j)
i 6= x

(j)
i ′

(0

otherwise)
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Within-cluster and between-cluster inertia
Let us write dii ′ = D(xi , xi ′).

Within-cluster inertia

Within-cluster inertia is defined as:

W (Π) =
1

2

K∑

k=1

∑

i ,i ′∈πk

dii ′ .

(W=Within)

Between-cluster inertia

Between-cluster inertia is defined as:

B(Π) =
1

2

∑

k,k ′ 6=k

∑

i∈πk

∑

i ′∈πk′

dii ′ .

(B=Between)
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Within-cluster and between-cluster inertia (cont’d)

Property

W (Π) + B(Π) = 1
2

∑

i ,i ′ dii ′

Definition

T = 1
2

∑

i ,i ′ dii ′ is the total inertia.

◮ Does not depend on the partition.

Proof of the property:

T =
1

2

∑

i,i ′

dii ′ =
1

2

∑

k,k′

∑

i∈πk

∑

i ′∈πk′

dii ′

=
1

2

∑

k

∑

i,i ′∈πk

dii ′

︸ ︷︷ ︸

W (Π)

+
1

2

∑

k,k′ 6=k

∑

i∈πk

∑

i ′∈πk′

dii ′

︸ ︷︷ ︸

B(Π)



32/53

Within-cluster and between-cluster inertia (cont’d)

Property

W (Π) + B(Π) = 1
2

∑

i ,i ′ dii ′

Definition

T = 1
2

∑

i ,i ′ dii ′ is the total inertia.

◮ Does not depend on the partition.

Proof of the property:

T =
1

2

∑

i,i ′

dii ′ =
1

2

∑

k,k′

∑

i∈πk

∑

i ′∈πk′

dii ′

=
1

2

∑

k

∑

i,i ′∈πk

dii ′

︸ ︷︷ ︸

W (Π)

+
1

2

∑

k,k′ 6=k

∑

i∈πk

∑

i ′∈πk′

dii ′

︸ ︷︷ ︸

B(Π)



33/53

Optimal partition

We would like to find the optimal partition:

Π⋆ = argminΠW (Π)

Remark: since W (Π) + B(Π) = T , Π⋆ = argmaxΠ B(Π).

Problem : this is a combinatorial optimization problem

◮ 34105 partitions for n = 10 and K = 4,

◮ ≈ 7.5 1011 partitions for n = 20 and K = 5.

Solution : look for a sub-optimal solution

➠ K -means algorithm
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Dissimilarity considered here : dii ′ = ‖xi − xi ′‖
2.

With this choice of dissimilarity ( ➠ proof ):

W (Π) =
∑K

k=1 nk
∑

i∈πk
‖xi − x̄k‖

2

where x̄k = 1
|πk |

∑

i∈πk
xi is the barycenter of the cluster, nk = |πk |.

➠ x̄k is called the centroid of cluster k .

Principle of the K−means algorithm

Iteratively,

◮ Given a partition Π, compute the

centroids x̄k .

◮ Modify Π in such a way that each

xi is associated to the cluster πk

whose (current) centroid x̄k is the

closest.

➠ Voronoï diagram

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x (1)

x
(2
)

centroids
cluster boundary
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K -means algorithm

Require: K > 0 {number of clusters}

Require: (x̄1,0, . . . , x̄K ,0) {centroids initialization}

t ← 0

repeat
✞

✝

☎

✆
Step 1 {construction of Πt from the centroids}

for all k do

πk,t = {i s.t. k = argmink′ ‖xi − x̄k′,t‖}

end for
✞

✝

☎

✆
Step 2 {centroids update}

for all k do

x̄k,t =
1

|πk,t |

∑

i∈πk,t
xi

end for

t ← t + 1

until W (Πt−1) = W (Πt−2)

return Πt−1
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Properties of the K−means algorithm

Proposition

Let (Πt)t≥0 denote the sequence of partitions constructed by the

algorithm.

Then, there exists T such that :

1 ∀t ≤ T , W (Πt) < W (Πt−1),

2 W (ΠT+1) = W (ΠT ).

△! The algorithm terminates in a finite number of iterations, but

◮ the partition ΠT is not, in general, the optimal partition;

◮ it depends on the starting point (x̄1,0, . . . , x̄K ,0).

➠ Recommended: several trials with random starting points.
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Example: handwritten digits

Consider the digits “6” and “9” (644 images each).



39/53

Example: handwritten digits

Represent each image by its first two principal components.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-12

-10

-8

-6

-4

-2

0

2

4

6

Z (1)

Z
(2
)
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Example: handwritten digits

-10 -8 -6 -4 -2 0 2 4 6 8 10

-12

-10

-8

-6

-4

-2

0

2

4

6

mal classés

Z (1)

Z
(2
)

cluster E1

cluster E2

centroids

boundary

missclassification rate: 0.92%

Note: here we use the labels, which are assumed unavailable in the non-supervised setting, to the sole
purpose of evaluating the quality of the partition that we have obtained.
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Homogeneity / dispersion
Reminder. We are looking for a partition such that, for all k ,

◮ the instances† in cluster Ek are “similar” to each other,

◮ and as dissimilar as possible to those in other clusters.

Definition: dispersion measure

The dispersion of cluster Ek is (often) measured by

Sk =




1

|πk |

∑

i∈πk

‖xi − x̄k‖
q





1
q

,

with q a positive real number, to be chosen†.

Interpretation. The smaller Sk , the more homogeneous the

cluster.

† P.-H. Cournède’s lecture notes and scikit-learn use q = 1.
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Davies-Bouldin index

Definition: similarity of clusters Ek and Ek ′

Rk,k ′ =
Sk + Sk ′

‖x̄k − x̄k ′‖
, 1 ≤ k , k ′ ≤ K , k 6= k ′.

Interpretation. The clusters are more dissimilar when their

dispersions are small with respect to the distance between their

centroids.

Definition: Davies-Bouldin index of a partition

DB =
1

K

K∑

k=1

max
k ′ 6=k

Rk,k ′

➠ Use: choose K in order to minimize DB.
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Example: handwritten digits with digits 1, 6 and 9

-12 -10 -8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

10

Z (1)

Z
(2
)

K 2 3 4 5 6 7 8

DB(K ) 0.76 0.42 0.77 0.89 0.76 0.77 0.79
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Example: handwritten digits with digits 1, 6 and 9

-12 -10 -8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

10

mal classés

Z (1)

Z
(2
)

cluster E1

cluster E2

cluster E3

centroids

boundary

misclassification rate: 2.1%
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Example: handwritten digits with all digits

-10 -5 0 5 10 15

-8

-6

-4

-2

0

2

4

6

8

10

Z (1)

Z
(2
)

digit 0

digit 1

digit 2

digit 3

digit 4

digit 5

digit 6

digit 7

digit 8

digit 9
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Example: handwritten digits with all digits

-10 -5 0 5 10 15

-8

-6

-4

-2

0

2

4

6

8

10

Z (1)

Z
(2
)

cluster E1

cluster E2

cluster E3

cluster E4

cluster E5

cluster E6

cluster E7

cluster E8

cluster E9

cluster E10

centroids

boundary

misclassification rate: 56%
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Example: handwritten digits with all digits

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 total

“0” 498 0 22 6 260 82 64 0 262 0 1194
“1” 0 1000 4 0 0 0 0 0 0 1 1005
“2” 3 1 234 122 12 202 54 3 60 40 731
“3” 1 0 29 230 4 211 5 5 131 42 658
“4” 0 21 70 112 2 42 3 144 19 239 652
“5” 2 0 61 37 66 171 88 1 119 11 556
“6” 3 6 135 0 128 43 335 0 10 4 664
“7” 0 2 2 49 0 6 0 458 1 127 645
“8” 2 7 82 138 1 93 1 17 41 160 542
“9” 0 10 0 64 0 3 0 303 7 257 644

total 509 1047 639 758 473 853 550 931 650 881 7291

Poor result ➠ need for a better dissimilarity measure !

(and, in particular, for a better representation)
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“4” 0 21 70 112 2 42 3 144 19 239 652
“5” 2 0 61 37 66 171 88 1 119 11 556
“6” 3 6 135 0 128 43 335 0 10 4 664
“7” 0 2 2 49 0 6 0 458 1 127 645
“8” 2 7 82 138 1 93 1 17 41 160 542
“9” 0 10 0 64 0 3 0 303 7 257 644

total 509 1047 639 758 473 853 550 931 650 881 7291

Poor result ➠ need for a better dissimilarity measure !

(and, in particular, for a better representation)



Lecture outline

1 – Introduction to unsupervised learning

2 – Principal components analysis

3 – Clustering

4 – A taste of some (more) advanced methods

5 – Appendices



48/53

Non-linear dimension reduction

source: Yan Xu, Houston Machine Learning Meetup, 2017
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Example: auto-encoder

source: https://towardsdatascience.com, Applied Data Deep Learning Part 3

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
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Clustering based on mixture models

source: bioinfo-fr.net
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Proof of the fundamental theorem of PCA

∥
∥
(
Idp − AA⊤

)
X⊤

∥
∥

2

F
=

∥
∥VD⊤U⊤ − AA⊤VD⊤U⊤

∥
∥

2

F

Properties of the Frobenius norm: if U and V are orthogonal,

∥
∥VMU⊤

∥
∥

2

F
= ‖M‖

2

F .

Hence :
∥
∥
(
Idp − AA⊤

)
X
∥
∥

2

F
=

∥
∥D⊤ − V⊤AA⊤VD⊤

∥
∥

2

F
.

Let Mn,p,q denote the set of all rank q matrices of size n × p. Then

Dq = diag(d1, . . . , dq, 0, . . . , 0) ∈ argminM∈Mn,p,q

∥
∥D⊤ −M⊤

∥
∥

2

F

(diagonal matrix with the q largest singular values).

We obtain the result by checking that V⊤VqV
⊤
q VD⊤ = D⊤

q .

➠ back to slide 16
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Expressions of T and W (Π) for dii ′ = ‖xi − xi ′‖
2

T = 1

2

∑

i,i ′ ‖xi − xi ′‖
2

= 1

2

∑

i,i ′ ‖(xi − x̄)− (xi ′ − x̄)‖2

= n
∑

i ‖xi − x̄‖2 −
∑

i,i ′(xi − x̄)⊤(xi ′ − x̄)

= n
∑

i ‖xi − x̄‖2

W (Π) = 1

2

∑

k

∑

i,i ′∈πk
‖xi − xi ′‖

2

= 1

2

∑

k

∑

i,i ′∈πk
‖(xi − x̄k)− (xi ′ − x̄k)‖

2

=
∑

k nk
∑

i∈πk
‖xi − x̄k‖

2

➠ back to slide 34
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Silhouette of a partition
Another indicator of the quality of a partition Π.

Let i ∈ πk . For each xi , define

◮ a(xi ): average distance to other points in the same cluster

◮ b(xi ): minimum average distance to points in another cluster

a(xi ) =
1

|πk |

∑

i′∈πk
‖xi′ − xi‖

b(xi ) = min
k′ 6=k

(

1
|πk′ |

∑

i′∈πk′
‖xi′ − xi‖

)

Interpretation : a(xi ) ≪ b(xi ) if the clusters are homogeneous and well

separated.

Silhouette of partition Π

s(Π) =
1

n

n
∑

i=1

b(xi )− a(xi )

max(a(xi ), b(xi ))

Choice of the number K of clusters:

∀Π, s(Π) ≤ 1 and we choose the partition such that s(Π) is maximal.
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