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Statistics and Learning

Lecturers (alphabetic order):

Julien Bect, Gilles Faÿ, Ziad Kobeissi, Laurent Le Brusquet,

Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator
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Lecture 1/9

Introduction and point estimation methods

Course objectives

◮ Introduce statistical inference and illustrate its applications

◮ Establish the mathematical framework

◮ Present some commonly used estimation methods
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Lecture outline

1 – Introduction

2 – The mathematical framework of statistical inference

3 – Some (classical) methods for point estimation

4 – Standard exercises

5 – Appendices
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One word, several meanings. . .

◮ One (or several) statistic(s): numerical indicators, often

simple, computed from data.

Examples : average, standard deviation, median, etc.. . .

◮ statistics: a mathematical discipline which has several

branches, including

➠ descriptive statistics,

➠ statistical inference (part 1 of this course),

➠ design of experiments,

➠ statistical learning (part 2 of this course),

➠ . . .

Remark: a mathematical definition of the word “statistic” (first meaning) will

be given later.
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Historical example: the opinion survey case

Desired quantity: descriptive 

statistic calculated for the

entire population,

example : mean age, age 

distribution, opinion, etc.

sample

data observed for only a few 

individuals

A descriptive statistic may be calculated on:

◮ the entire population → quantity of interest

◮ a sample → “approximate” value (to be defined)

To infer = to draw conclusions about a population

from data collected on a sample
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Exhaustive census is not statistical inference

Descriptive statistics are useful to “explore” data sets

Goals: obtain numerical summaries (of small dimension)

and/or easily interpretable visualizations, etc.

Note: in France, for municipalities with more than 10,000 inhabitants, the systematic census has been
replaced since 2004 by random (but not IID) sampling of addresses.
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Another example: estimation of a proportion

Context. Consider a box with W white balls and R red balls,

where W and R are unknown.

Goal. Estimate the proportion θ = W
W+R

of white balls.

Data (observations). We perform n draws with replacement

➠ for the i-th draw, xi = 1 if the ball is white, 0 otherwise.

Steps to estimate θ

1 statistical modeling

xi realization of a RV Xi , with Xi
iid∼ Ber(θ), 0 ≤ θ ≤ 1

2 inference (here, estimation)

using the data x = (x1, . . . , xn) and the statistical model.

➠ Consider θ̂ = 1
n

∑n
i=1 Xi (a possible descriptive statistic)

➠ Is it reasonable to use it as a “substitute” for the unknown θ

?
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Relation between statistical inference and probability theory
Probability theory provides the foundation for statistical inference:

◮ probability theory: a probability space is given;

◮ statistical inference: several probabilistic models are assumed

possible; we want to extract (from data) information from

data about the underlying probability measure.

Illustration on the “box” example:

Probability

(W and R known)

Inference

(W and R unknown)

typical

questions

• distribution of the number

of white balls after n draws;

• distribution of the num-

ber of draws to get the first

white ball

• estimate θ;

• give an interval

containing θ;

• decide whether θ ≤ 0.5

or not.

type of

conclusions
certain

for finite n, impossible in gen-

eral to answer with certainty
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Example of questions addressed, in various fields

◮ Healthcare: identify biomarkers responsible for a disease

using data collected from cohorts.

◮ Insurance: evaluate the risk of insolvency of an insurance

company.

◮ Industry: control the quality of a production line from data

collected for only a few elements.

◮ Opinion survey: predict the winner of an election from a

survey, quantify the uncertainty about the prediction.

◮ Ecology: estimate the size of a population of animals using

partial observations (e.g., capture-mark-recapture).

◮ . . .

https://fr.wikipedia.org/wiki/Capture-marquage-" "recapture
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From data to random variables

Data (observations)

Let x ∈ X denote the data to be analyzed. For instance:

1 a scalar quantity, measured on n objects/individuals:

➠ x = (x1, . . . , xn), xi ∈ R, X = R
n;

2 d scalar quantities, potentially of different natures, measured

on n objects/individuals:

➠ x = (x1, . . . , xn), xi ∈ R
d , X = R

n×d ;

3 any dataset of a more complex nature

(times series, symbolic data, graphs, etc.).

The data is modeled, a priori, by a random variable (RV) X

➠ x is considered as a realization of X .
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Statistical model

The observation space (X ,A )

It is the measurable space in which X takes its values.

Most of the time, we will use:

◮ X = R
n with A = B (Rn)

◮ or, more generally, X = R
n×d with A = B

(

R
n×d
)

.

Statistical modeling

Let (Ω,F ,P) be a probability space carrying:

◮ the observed random variable X ,

◮ any other (unobserved) RV that we might need.

The probability P is not perfectly known: we consider a

◮ set P of probability distributions over (Ω,F ) supposed to

contain the “true” probability measure.
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Statistical model (cont’d)

Distribution of the observations

Let PX denote the distribution of X when P ∈ P is the underlying

probability measure.

➠ We have a set PX =
{

P
X ,P ∈ P

}

of possible distributions.

Definition: Statistical model

Formally, we define a statistical model as the triplet

M =
(

X , A , P
X
)

.

Remarks:

◮ We can construct several models (Ω,F ,P,X ) for a given M .

◮ In particular, when we only care about the observed RV X , we can work

on the canonical model: Ω = X , F = A , P = P
X , X = IdX .
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Statistical inference

Reminder: the data x ∈ X is seen as a realization of X ∼ P
X ,

for a certain (unknown) probability P ∈ P.

The goal of statistical inference

Goal: to construct procedures allowing to extract information about

P
X from

◮ one realization of X ,

◮ the knowledge of the set PX of all possible distributions.

Important

Since the true probability P is unknown, we must design statistical

procedures that are “applicable” to any probability P ∈ P.
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Family of distributions

The set P is represented by a parameterized family:

P = {Pθ, θ ∈ Θ} .

Parametric model

If Θ is finite-dimensional, the model is called parametric.

◮ the parameter vector θ is often of small size.

◮ we will denote by p the number of parameters (Θ ⊂ R
p).

Example. Family of Gaussian distributions on X = R

P
X =

{

N (µ, σ2), µ ∈ R, σ2 ∈ R
+
∗

}

(In this example we consider only one scalar observation.)
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Sampling models

n-sample

If X = (X1, . . . ,Xn) is such that:

◮ the Xi ’s are (mutually) independent,

◮ all the Xi ’s have the same distribution Pθ,

then the Xi ’s are called independent et identically distributed (iid)

and we say that X is an (iid) n-sample.

Distribution of an n-sample.

Consider the model that describes each of the Xi ’s individually:

◮ (X , A , {Pθ, θ ∈ Θ})
Then we have:

◮ (X ,A ) = (X n,A ⊗n) (product space),

◮ ∀θ ∈ Θ, P
X

θ = P⊗n
θ (product distribution).



15/56

Sampling models

n-sample

If X = (X1, . . . ,Xn) is such that:

◮ the Xi ’s are (mutually) independent,

◮ all the Xi ’s have the same distribution Pθ,

then the Xi ’s are called independent et identically distributed (iid)

and we say that X is an (iid) n-sample.

Distribution of an n-sample.

Consider the model that describes each of the Xi ’s individually:

◮ (X , A , {Pθ, θ ∈ Θ})
Then we have:

◮ (X ,A ) = (X n,A ⊗n) (product space),

◮ ∀θ ∈ Θ, P
X

θ = P⊗n
θ (product distribution).



16/56

Example: component reliability

This application will be used as an illustration in several lectures.

Context

◮ We are interested in the reliability of components from a

production line.

◮ Reliability: measured by the lifetime of the components.

◮ Data (observations): a sample of n = 10 components, for

which the lifetime has been recorded : x = (x1, . . . , xn).

Modeling

◮ Each xi is modeled by a scalar RV Xi .

◮ The Xi ’s are assumed iid, with values in (X ,A ) = (R,B(R)).
◮ (X ,A ) = (Rn, B(Rn)).
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Example: component reliability

Modeling (cont’d): family of distributions

Typical∗ assumption for the lifetime of a component:

Xi ∼ E(θ), θ > 0.

Hence the statistical model:

(

R
n, B(Rn), {E(θ)⊗n, θ > 0}

)

.

Reminder. The exponential distribution E(θ) has the density:

fθ(x) = θ exp(−θx)1[0,∞[(x).

with respect to Lebesgue’s measure

∗ in the case of unpredictable failures, not related to the age of the component
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Example: component reliability

A few problems of (statistical) interest

◮ estimate θ, or

◮ estimate η = 1
θ
= E(X1) (average lifetime)

➠ lectures 1 and 2

◮ provide confidence intervals for θ and η

➠ lecture 3

◮ test the hypothesis η ≤ 10, in order to assess the value of an

optional warranty extension

➠ lecture 4 on hypothesis testing

◮ estimate θ given prior information on its value

(e.g., provided by the manufacturer of the production line)

➠ lecture 5 on Bayesian estimation
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Example: component reliability (cont’d)

Data: a sample of size n = 10 [arbitrary unit]

0.5627 16.1121 5.4943 7.9374 1.2658

2.9885 8.6266 43.8877 2.1641 8.9138

Estimating η : a first estimator (see Lecture 2 for a definition)

X̄ =
1

n

n
∑

i=1

Xi
a.s.−−−→

n→∞
Eθ (X1) = η (SLLN).

➠ η̂(1) = X̄ seems to be a “reasonable” estimator of η.

Numerical application : η̂(1) = 10.1960
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Notations / vocabulary

Notations. We will often use notations such as

◮ Eθ(.) (expectation),

◮ varθ(.) (variance ou covariance matrix),

◮ fθ(.) (density), . . .

to indicate that theses operators or functions depend on a

probability Pθ for a particular value of θ.

Definition: Statistic

A statistic is a random variable (often scalar- or vector-valued) that

can be computed from X alone∗.

Example: the estimator η̂(1) = X̄ is a statistic.

∗ Technically: can be written as a measurable function of X .
In particular, depends neither on other (unobserved) RVs nor on θ.
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Numerical assessment of the performance of η̂(1)

With numerical simulations, (almost) everything is possible!

◮ we choose a particular value of η (here, η∗ = 11.4), then

◮ we simulate on a computer a large number m of n-samples

(here, m = 10000).

Remarks

◮ Our estimates are, in this case,

not very accurate.

◮ Providing confidence intervals

would be very relevant here.

◮ In this simple example we can

compute the density of η̂(1)

analytically.

➠ gamma distribution
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η̂(2) : another estimator

With a convergence argument similar to the one used earlier:

1

n

n
∑

i=1

X 2
i

a.s.−−−→
n→∞

Eθ

(

X 2
1

)

=
2

θ2
= 2η2,

therefore using η̂(2) =

√

1

2n

∑n
i=1 X

2
i seems “reasonable” as well.

Numerical application η̂(2) = 11.2228

Questions

◮ How can we compare two estimators ?

◮ Is there an estimator that is “better” than all the others ?

◮ How to construct “good” estimators ?
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Mathematical framework

In this section:

◮ we consider a statistical model

M =
(

X ,A ,
{

P
X

θ , θ ∈ Θ
})

,

most of the time assumed to be parametric (Θ ⊂ R
p);

◮ when X is an IID n-sample, we write
◮ X = (X1, . . . ,Xn)

◮ X = X n, with X = R or X = R
d ,

◮ P
X

θ = P
⊗n
θ ;

◮ we want to estimate a “quantity of interest”:
◮ either θ itself,

◮ or, more generally, η = g(θ).
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The substitution method

Assume that

◮ we already have an estimator η̂ of η = g(θ)

◮ and we want to estimate another quantity of interest η′

that can be written as η′ = h(η), with h a continuous function.

The substitution method

The substitution method consists in using

η̂′ = h (η̂) as an estimator of η′.
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Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ), θ > 0.

We are interested in the probability that a failure occurs before t0:

➠ η′ = Pθ (X1 ≤ t0) =

∫ t0

0

θ exp(−θx)dx

= 1 − exp(−θt0) = 1 − exp

(

− t0

η

)

.

Using η̂(1) = X̄ as an estimator of η = 1
θ
, we get

η̂′ = 1 − exp
(

− t0

X̄

)

.
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Empirical measure

Let X1, . . . ,Xn
iid∼ P

X1 .

Recall the Dirac measure at x ∈ X :

∀A ∈ A , δx(A) =

{

1 if x ∈ A,

0 otherwise.

Definition: empirical measure

The empirical measure is the (random) measure defined by:

P̂
X1 =

1

n

n
∑

i=1

δXi
.

Application: the empirical measure can be seen as an estimator

of PX1 ➠ allows us to construct other estimators using the

substitution method.
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Example : estimator of the k-th order moment

Assume X1 ∈ Lk . Then

mk = E

(

X k
1

)

= G

(

P
X1

)

is well defined, with G (µ) =
∫

X xkµ(dx). By substitution:

m̂k = G

(

P̂
X1

)

=

∫

X
xk

1

n

n
∑

i=1

δXi
(dx) =

1

n

n
∑

i=1

X k
i .

Other examples:

◮ sample variance ➠ exercise 3

◮ empirical cumultive distribution function ➠ complement
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The method of moments

Assume that

◮ X1, . . . , Xn
iid∼ Pθ, with θ ∈ Θ;

◮ the model is parametric: Θ ⊂ R
p,

◮ we want to estimate θ itself

Consider the function

h : Θ ⊂ R
p → h(Θ) ⊂ R

p,

θ 7→ h(θ) =







Eθ (X1)
...

Eθ

(

X
p
1

)






.

Remark: sometimes other moments can be used (not necessarily the first p).
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The method of moments (cont’d)

Assume h : Θ → h(Θ) injective, and thus bijective.

The method of moments

The method of moments consists in

◮ estimating the first p moments m̂k = 1
n

∑n
i=1 X

k
i , k ≤ p,

◮ then applying h−1 to construct an estimator of θ.

Hence moment-of-moments estimator : θ̂ = h−1 (m̂1:p), where

m̂1:p =







1
n

∑n
i=1 Xi

...
1
n

∑n
i=1 X

p
i






.

Remark: well defined only if m̂1:p ∈ h(Θ) Pθ-ps, pour tout θ.

Otherwise, minimization of some distance (generalized method of moments).
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Method of moments: examples

Example: component reliability

We have Eθ (X1) = θ−1 (exponential distribution), therefore

θ = (Eθ (X1))
−1

and θ̂ =
(

X̄
)−1

.

Another example: Gaussian n-sample ✏ PC 1, Ex. 1.1

X1, . . . ,Xn
iid∼ N (µ, σ2), with θ =

(

µ, σ2
)

∈ R× R
∗
+.

Considering the first two moments, we have:

(

µ̂

σ̂2

)

=

(

1

n

∑n

i=1
Xi

1

n

∑n

i=1
X 2

i −
(

1

n

∑n

i=1
Xi

)2

)

.
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Likelihood function

Assume a dominated model: P
X

θ admits a pdf fθ wrt a measure ν

on X , for all θ ∈ Θ. ➠ reminder: density

Definition: likelihood

We call likelihood the function:

L : Θ×X → R+

(θ; x) 7→ fθ (x)

We call log-likelihood the function lnL.

Remark. If X1, . . . ,Xn
iid∼ Pθ, then,

L(θ; x) =
∏n

i=1
fθ (xi ) , therefore lnL(θ; x) =

∑n

i=1
ln fθ (xi ) .

(usual abuse of notation: here fθ = f
X1
θ

)
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Maximum likelihood estimation

Definition: MLE

If θ̂ is a maximizer of θ 7→ L (θ;X ), then

θ̂ is a maximum likelihood estimator (MLE) of θ.

Remarks:

◮ Existence and uniqueness of the MLE: not guaranteed in

general.

◮ Equivalently, θ̂ is a maximizer of θ 7→ lnL (θ;X ).

◮ Assume Θ ⊂ R
p. If L is of class C 1 wrt θ on int(Θ), a

necessary condition for an interior point θ̂ ∈ int(Θ) to

maximize the likelihood is:

(

∇θ (lnL)
)(

θ̂;X
)

= 0.

This is called the likelihood equation.
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MLE example: component reliability

For x1, . . . , xn ≥ 0, we have L (θ; x) =
∏n

i=1 θ exp (−θxi ), and thus

lnL (θ; x) = n ln(θ)− θ

n
∑

i=1

xi .

Stationarity condition (“likelihood equation”)

∂(lnL)
∂θ

(

θ; x
)

= 0 ⇐⇒ n

θ
−

n
∑

i=1

xi = 0.

✏ If
∑n

i=1 xi > 0, unique solution in Θ = R
∗
+ at θ = n

(
∑n

i=1 xi
)−1

.

✏ It is indeed a maximum of the likelihood function (cf. sign of the derivative).

➠ Since
∑n

i=1 Xi > 0 a.s., a unique MLE exists: θ̂ =
(

X̄
)−1

.

Remark: the same estimator was obtained by the method of moments.



33/56

MLE example: component reliability

For x1, . . . , xn ≥ 0, we have L (θ; x) =
∏n

i=1 θ exp (−θxi ), and thus

lnL (θ; x) = n ln(θ)− θ

n
∑

i=1

xi .

Stationarity condition (“likelihood equation”)

∂(lnL)
∂θ

(

θ; x
)

= 0 ⇐⇒ n

θ
−

n
∑

i=1

xi = 0.

✏ If
∑n

i=1 xi > 0, unique solution in Θ = R
∗
+ at θ = n

(
∑n

i=1 xi
)−1

.

✏ It is indeed a maximum of the likelihood function (cf. sign of the derivative).

➠ Since
∑n

i=1 Xi > 0 a.s., a unique MLE exists: θ̂ =
(

X̄
)−1

.

Remark: the same estimator was obtained by the method of moments.



33/56

MLE example: component reliability

For x1, . . . , xn ≥ 0, we have L (θ; x) =
∏n

i=1 θ exp (−θxi ), and thus

lnL (θ; x) = n ln(θ)− θ

n
∑

i=1

xi .

Stationarity condition (“likelihood equation”)

∂(lnL)
∂θ

(

θ; x
)

= 0 ⇐⇒ n

θ
−

n
∑

i=1

xi = 0.

✏ If
∑n

i=1 xi > 0, unique solution in Θ = R
∗
+ at θ = n

(
∑n

i=1 xi
)−1

.

✏ It is indeed a maximum of the likelihood function (cf. sign of the derivative).

➠ Since
∑n

i=1 Xi > 0 a.s., a unique MLE exists: θ̂ =
(

X̄
)−1

.

Remark: the same estimator was obtained by the method of moments.



34/56

MLE example: Gaussian IID n-sample, θ =
(

µ, σ2
)

Same approach as in the previous example.

1 First write the log-likelihood:

lnL (θ; x) = −n

2
ln(2π)− n

2
ln(σ2)−

∑n
i=1(xi − µ)2

2σ2
,

2 Solving the likelihood equation yields:

θ̂ =

(

µ̂

σ̂2

)

=

(

1
n

∑n
i=1 Xi

1
n

∑n
i=1(Xi − µ̂)2

)

.

3 It can be proved that the maximum is indeed attained at this

point.

✏ PC 1, Ex. 1.1

Remark: the same estimator was obtained by the method of moments.
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Summary and preview

We have seen and will practice in PC 1:

◮ the general framework of statistical inference,

◮ some classical methods for point estimtion.

We will cover in the next lecture:

◮ the quantitative assessment of an estimator’s performance,

◮ the comparison of estimators,

◮ the asymptotic approach (n → ∞).
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Exercise 1 (Bernoulli model) ➠ solution

Let X1, . . . ,Xn be an n-sample of binary observations,

independent and identically distributed according to the

Bernoulli Ber(p) distribution, with p ∈ [0, 1].

Questions

1 Specify a formal statistical model M =
(

X , A , PX
)

corresponding to this description.

2 Construct an estimator of p using the method of moments.

3 Construct an estimator of p using the maximum likelihood

method.

4 Compute the expectation and variance of X̄n = 1
n

∑n
i=1 Xi .
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Exercise 2 (log-normal distribution) ➠ solution

A bit of context

The association between childhood leukemia and exposure to very

low-frequency magnetic fields (mainly due to electrical structures

and appliances) is statistically significant for residential exposure

averaged over 24 hours, with levels above 0.4µT .

Source :

Modeling assumption. For dwellings located less than 50 meters

from HV lines, residential exposure averaged over 24 hours follows

a lognormal distribution.

➠ log-normal distribution
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Exercise 2 (log-normal distribution) ➠ solution

Let

◮ X = (X1, . . . ,Xn) : n-sample with a log-normal LN (µ, σ2)

distribution, where σ2 > 0 is known.

◮ p0 : probability that a RV following the LN (µ, σ2)

distribution exceeds the threshold s0 = 0.4µT.

Questions

1 Construct an estimator of µ using the maximum likelihood

method.

2 Using the substitution method, derive an estimatoir of p0.

3 Does the resulting estimator of p0 converge almost surely? If

so, to what limit?
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Exercise 3 (sample variance) ➠ solution

Let X1, . . . ,Xn be an n-sample of real-valued observations,

independent and identically distributed, with a finite second order

moment.

Let M denote the set of all probability measures on (R, B(R)) with

a finite second order moment.

Questions

1 Prove that var (X1) = G
(

P
X1
)

, where G is a function defined

on M, to be specified.

2 Using the substitution method, derive from G an estimator of

the variance.

3 Study the convergence of the estimator when n → +∞.

➠ back to slide 27
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Solution of exercise 1 ➠ back to questions

➊ Statistical model M =
(

X , A , PX
)

The “natural” (minimal) set to describe the values of a binary

variable is X = {0, 1}.
➠ X = {0, 1}n for an n-sample

On a finite or countable set, we use in general the discrete

σ-algebra, i.e., the set of all subsets of X .

➠ A = P ({0, 1}n) = P ({0, 1})⊗n

The distribution of an n-tuple (X1, . . . ,Xn) of independent RVs is

the product measure PX1 ⊗ · · · ⊗ PXn .

➠ PX = {Ber(p)⊗n, p ∈ [0, 1]}

Remark: another possible choice would have been X = R
n, A = B(Rn).
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Solution of exercise 1 ➠ back to questions

➋ Method of moments

If X ∼ Ber(p), then Ep (X ) = p.

➠ The method of moments, applied to the first-order moment,

directly yields the estimator p̂n = 1
n

∑n
i=1 Xi = X̄n.

➌ Maximum likelihood

First write the likelihood:

L(p;X ) =
n
∏

i=1

pXi (1 − p)1−Xi

= pN(1 − p)n−N ,

where N =
∑n

i=1 Xi and 00 = 1,
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Solution of exercise 1 ➠ back to questions

then the log-likelihood for p ∈ (0, 1):

ℓ(p;X ) = ln(L(p;X ))

= N ln(p) + (n − N) ln(1 − p).

The log-likelihood is differentiable on (0, 1), with derivative

∂ℓ

∂p
(p;X ) =

N

p
− n − N

1 − p

=
n

p(1 − p)
·
(

X̄n − p
)

.

We have ∂ℓ
∂p
(p;X ) > 0 iff p < N/n = X̄n,

∂ℓ
∂p
(p;X ) < 0 iff p > N/n = X̄n.
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Solution of exercise 1 ➠ back to questions

If X̄n = 0, the log-likelihood is strictly decreasing

➠ the likelihood is maximal at p = 0.

If X̄n = 1, the log-likelihood is strictly increasing

➠ the likelihood is maximal at p = 1.

If 0 < X̄n < 1, the log-likelihood is maximal at p = X̄n.

Summary: p̂n = X̄n is the unique MLE.

Remark: the log-likelihood takes infinite values at p = 0 and/or p = 1, but the

likelihood itself is well defined and continuous on [0, 1].
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Solution of exercise 1 ➠ back to questions

➍ Expectation and variance of X̄

Reminders

◮ Ep(X1) = p and varp(X1) = p(1 − p).

◮ independence ⇒ decorrelation ⇒ var(
∑

i
Xi ) =

∑

i
var(Xi ).

Using that the Xi ’s are identically distributed:

Ep

(

X̄n

)

=
1

n

n
∑

i=1

Ep[X1] = p.

Using that the Xi ’s are IID:

varp(X̄n) =
1

n2
varp

(

n
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

varp (Xi ) =
p(1 − p)

n
.
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Solution of exercise 2 ➠ back to questions

➊ Maximum likelihood

First write the log-likelihood:

ℓ(µ;X ) = −n

2
ln(2πσ2

0)−
n
∑

i=1

ln(Xi ) +
(ln(Xi )− µ)2

2σ2
1(R+

∗ )
n(x).

The log-likelihood is differentiable, with derivative (for

X1, . . . ,Xn > 0):

∂ℓ

∂µ
(µ;X ) =

1

σ2

n
∑

i=1

(ln(Xi )− µ)

Finally, µ̂ =
1

n

n
∑

i=1

ln(Xi ) is indeed the MLE since:

∂ℓ

∂µ
(µ;X ) > 0 for µ < µ̂, ,

∂ℓ

∂µ
(µ;X ) < 0 for µ > µ̂.
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Solution of exercise 2 ➠ back to questions

➋ First express the probability of exceeding s0 as a function of µ:

p0 = P (X > s0) with X ∼ LN (µ, σ2)

= 1 − Fµ,σ(s0)

= 1 − Φ0

(

ln(s0)− µ

σ

)

.

Then construct an estimator of p0 by substitution, using µ̂:

p̂0 = 1 − Φ0

(

ln(s0)− µ̂

σ

)

.
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Solution of exercise 2 ➠ back to questions

➌ Let Zi = ln(Xi ), i ≥ 1. The random variables Zi are IID, and

admit a first order moment equal to µ, since Zi ∼ N (µ, σ2).

Thus, by the strong law of large numbers:

µ̂ =
1

n

n
∑

i=1

ln(Xi )
as−−−→

n→∞
E(Z1) = µ.

Hence, using the continuity of h : µ 7→ 1 − Φ0

(

ln(s0)− µ

σ

)

,

p̂0 = h (µ̂)
as−−−→

n→∞
h(µ) = p0.

Remark. Almost-sure convergence towards the parameter of

interest is called strong consistency (see next lecture).
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Solution of exercise 3 ➠ back to questions

➊ Using the Huygens-König and transfer theorems, we have:

var (X1) = E
(

X 2
1

)

− E (X1)
2 = G

(

P
X1

)

where, for all µ ∈ M,

G (µ) =

∫

X
x2µ(dx)−

(∫

X
xµ(dx)

)2

.

➋ We use the substitution principle, with the empirical distribution

as an estimator of PX1 :

P̂
X1
n =

1

n

n
∑

i=1

δXi
.
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Solution of exercise 3 ➠ back to questions

We find the estimator

S2
n =

∫

X
x2

P̂
X1
n (dx)−

(∫

X
x P̂X1

n (dx)

)2

=
1

n

n
∑

i=1

X 2
i − X̄ 2 =

1

n

n
∑

i=1

(

Xi − X̄
)2

,

which is called the sample variance.

➌ Applying the strong law of large numbers to the sequences (Xi )

and
(

X 2
i

)

, which are IID RVs with a first order moment, we find

X̄
as−→ E(X1),

1

n

n
∑

i=1

X 2
i

as−→ E(X 2
1 ),
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Solution of exercise 3 ➠ back to questions

and therefore

S2
n

as−→ var(X1).

Remarks: on the other hand, we don’t have convergence in L2 in

general, since the X 2
i ’s do not necessarily have a second order

moment (for this, the Xi ’s would need to have a moment of order

four).
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The gamma family of distributions

A random variable X follows the Γ(p, λ) distribution, with parameters

p > 0 and λ > 0, if it has the pdf

f (x) =
λp

Γ(p)
xp−1 exp(−λx)1R+(x).

Moments

◮ mean : Eθ(X ) = p

λ

◮ variance : varθ(X ) = p

λ2

Particular cases

◮ E(λ) = Γ(p = 1, λ)

◮ Γ(p = n
2
, λ = n

2
) = χ2(n)

Properties

◮ Let a > 0. If X ∼ Γ(p, λ), then aX ∼ Γ
(

p, λ
a

)

.

◮ If X and Y are independent, with X ∼ Γ(p, λ) and Y ∼ Γ(q, λ),

then X + Y ∼ Γ(p + q, λ).

➠ back to slide 21
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The log-normal distribution LN (µ, σ2)

Definition

X ∼ LN (µ, σ2), with µ ∈ R and σ2 > 0, if it admits the density

fµ,σ(x) =
1

σx
√

2π
exp

(

− (ln(x)− µ)2

2σ2

)

1
R

+
∗

(x).

Properties

◮ mean : Eµ,σ(X ) = exp

(

µ+
σ2

2

)

◮ variance : varµ,σ(X ) =
(

exp
(

σ2
)

− 1
)

exp
(

2µ+ σ2
)

◮ cumulative distribution function: Fµ,σ = Φ
(

ln(x)−µ

σ

)

, where Φ is

the cumulative distribution function of the N (0, 1) distribution.

◮ X ∼ LN (µ, σ2) iff ln(X ) ∼ N (µ, σ2).
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Density of the LN (µ, σ2) distribution
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➠ back to exercise 2
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Reminder: Probability density function wrt a measure

Let ν denote a positive masure on (X ,A ).

Definition: probability density function

The distribution P
X of a RV X taking values in (X ,A ) admits a density

with respect to ν if there exists f : X → R+, A -measurable and positive,

st

∀A ∈ A , P (X ∈ A) = P
X (A) =

∫

A

f (x) ν(dx).

➠ f is the probability density function of PX with respect to ν.

➠ It satisfies
∫

f dν = 1.

In this course, we will consider the following cases:

◮ “continuous” RV: reference measure ν = Lebesgue’s measure,

◮ discrete RV: reference measures ν = counting measure.

➠ back to slide 31
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Complement: the empirical cumulative distribution function

Let x ∈ R. The cumulative distribution function (cdf) of X1 at x is

F (x) = P
X1 (X1 ≤ x) = Gx

(

P
X1

)

with Gx (µ) =

∫ x

−∞
µ(dx).

Hence, by substitution, the empirical cdf (ECDF):

F̂ (x) =
1

n

n
∑

i=1

1{Xi≤x}.

For an IID n-sample X1, . . . ,Xn IID, with cumulative distribution

function F , it can be proved (Glivenko-Cantelli theorem) that

F̂n → F uniformly on R, almost surely.

https://fr.wikipedia.org/wiki/Théorème_de_Glivenko-Cantelli
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Complement: the empirical cumulative distribution function
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1

Figure – ECDF for X1, . . . ,Xn
iid∼ N (0, 1) and n = 20.

➠ back to slide 27
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