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Statistics and Learning
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Julien Bect, Gilles Faÿ, Ziad Kobeissi, Laurent Le Brusquet,
Vincent Lescarret, Arshak Minasyan, Arthur Tenenhaus† & Xujia Zhu

† Course coordinator
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Lecture 5/9

Bayesian estimation

Course objectives

◮ Introduce the concept of prior information.
◮ Present the basics of the Bayesian approach.
◮ Demonstrate how to construct estimators using prior

information.
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Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Standard exercices (with solutions)

6 – Appendices
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Recap: comparing estimators

Quadratic risk: Rθ(η̂) = Eθ

(
‖η̂ − g(θ)‖2).

Definition

We say that η̂′ is (weakly) preferable to η̂ if
◮ ∀θ ∈ Θ, Rθ(η̂

′) ≤ Rθ(η̂),

We say that it is strictly preferable to η̂ if, in addition,
◮ ∃θ ∈ Θ, Rθ(η̂

′) < Rθ(η̂),

Remarks
◮ The relation “is preferable to” is a partial order on risk functions.
◮ In general there is no optimal estimator, i.e., no estimator that

is preferable to all the others (unless we restrict the class of
estimators that is considered).
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Comparing (all) estimators: two approaches

Two approaches make it possible to refine the comparison
for the cases where the risk functions cannot be compared:

1 the minimax (or “worst case”) approach:

Rmax
(
η̂
)

= sup
θ∈Θ

Rθ

(
η̂
)
,

➠ not discussed in this class;

2 the Bayesian (or “average case”) approach:

RBayes,π
(
η̂
)

=

∫

Θ
Rθ

(
η̂
)
π(dθ),

where π is a probability measure on Θ, to be chosen.

➠ this is the topic of this lecture.
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Example: white balls / red balls (see lecture #1)
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θ

Measure π: uniform over [0, 1]

θ̂a =

∑n
i=1 Xi + 1
n + 2
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6 pdf Beta(1, 6)

θ

Mesure π: Beta (1, 6)
➠ beta distrib.

θ̂b =

∑n
i=1 Xi + 1
n + 7

Observation: θ̂b < θ̂a,

➠ the second estimator provides smaller estimates
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Example: white balls / red balls (with n = 10)

R
θ

( θ̂
)

θ

θ̂ = X̄

θ̂ = θ̂a

θ̂ = θ̂b
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θ̂ = X̄ θ̂ = θ̂a θ̂ = θ̂b

Rmax
(
θ̂
) 0.025

1

4n

≈ 0.0208
1

4(n + 2)

≈ 0.1246
36

(n + 7)2
S

RBayes,π
(
θ̂
)

with π ∼ U [0,1]

≈ 0.0167
1

6n

≈ 0.0162
n + 4

6(n + 2)2

≈ 0.0456
n + 69

6(n + 7)2

RBayes,π
(
θ̂
)

with π ∼ Beta(1, 6)
≈ 0.0107

3

28n

≈ 0.0129
3n + 22

28(n + 2)2

≈ 0.0089
3n + 42

28(n + 7)2

➠ exercise 2 Establish the expressions of Rmax and RBayes,π for θ̂ = X̄ .

S valid for n ≤ 77
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Unknown parameter → random variables

We will assume from now on a dominated model: pdf fθ(x).

Consider the Bayesian risk (quadratic, in this case)

RBayes,π
(
η̂
)

=

∫

Θ
Rθ

(
η̂
)
π(dθ)

=

∫

Θ
Eθ

(
‖η̂ − g(θ)‖2) π(dθ).

It can be re-written as :

RBayes,π
(
η̂
)

=

∫∫

X×Θ
‖η̂(x)− g(θ)‖2 fθ(x) ν(dx) π(dθ)︸ ︷︷ ︸

Proba. measure on X ×Θ

.
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Unknown parameter → random variables (cont’d)

Let us introduce a new random variable ϑ, such that

(X , ϑ) ∼ fθ(x) ν(dx) π(dθ). (⋆)

Then the Bayesian risk can be re-written more simply as:

RBayes,π = E
(
‖η̂ − g(ϑ)‖2) ,

where the expectation is, this time, over both X and ϑ.

Bayesian approach

In Bayesian statistics, the unknown parameter θ is (also) modeled
as a random variable.

(Technical remark: the introduction of a new random variable ϑ such that (⋆) holds is always possible, if
we are willing to replace the underlying set Ω by Ω̃ = Ω × Θ, provided that Θ is endowed with a
σ-algebra FΘ such that θ 7→ Pθ(E) is FΘ-measurable for all E ∈ F .)
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Bayesian statistical models

Technical assumptions: we assume from now on that

◮ Θ is endowed with a σ-algebra FΘ, e.g., if Θ ⊂ Rp, FΘ = B (Θ);

◮ θ 7→ Pθ(E ) is FΘ-measurable for all E ∈ F (σ-algebra on Ω).

Definition
A Bayesian statistical model consists of

◮ a statistical model as previously defined:
(
X , A ,

{
PX
θ , θ ∈ Θ

})
,

◮ a probability distrib. π, called prior distribution, on (Θ, FΘ).

Dominated model → makes it possible to define a likelihood.
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Joint, prior, and posterior distributions

Recall that we have introduced a new random variable ϑ, such that

(X , ϑ) ∼ fθ(x) ν(dx) π(dθ). (⋆)

Bayesian vocabulary

We call:
◮ joint distribution the distribution of X and ϑ, that is, (⋆),
◮ prior distribution the marginal distribution Pϑ of ϑ, that is, π,
◮ posterior distribution the distribution Pϑ|X of ϑ given the data.

Interpretation (“subjective Bayes”)

◮ prior distribution → knowledge about θ before data acquisition
◮ posteriori distribution → . . . after data acquisition
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By the way. . . what is a conditional distribution ?
General definition: beyond the scope of this lecture!

(⇒ uses the notion of kernel)

Let (U,V ) be a pair of random variables (or vectors) that admits a
density with respect to a product measure ν1 ⊗ ν2.

We will define PV |U=u as the measure with density

f V |U(v | u) =
f U,V (u, v)

f U(u)

with respect to ν2, for all u such that f U(u) > 0.

Then we have, for any mesurable function ϕ s.t. ϕ(U,V ) ∈ L1,

E (ϕ(U,V ) | U)
a.s.
=

∫

Θ
ϕ(U, v) f V |U(v | U) ν2(dv).
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Joint and marginal densities
We will assume† from now on that π admits a pdf
◮ wrt a measure ρ on (Θ,FΘ), e.g., Lebesgue measure,
◮ we will write (abusively): π(dθ) = π(θ) ρ(dθ).

Proposition

The joint distribution admits the joint pdf

f (X ,ϑ)(x , θ) = fθ(x)π(θ),

and the corresponding marginal densities are

f ϑ(θ) = π(θ),

f X (x) =

∫
fθ(x)π(θ) ρ(dθ).

†: This is not actually an assumption, since we can always use ρ = π (with the pdf equal to 1).
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Proof

Joint pdf (informal proof)

P(X ,ϑ)(dx , dθ) = fθ(x) ν(dx) π(θ) ρ(dθ)

= fθ(x)π(θ)︸ ︷︷ ︸
joint pdf

ν(dx) ρ(dθ)

Marginal densities → we just need to integrate:

f ϑ(θ) =

∫
fθ(x)π(θ) ν(dx) = π(θ),

f X (x) =

∫
fθ(x)π(θ) ρ(dθ).
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Likelihood and Bayes’ formula

Recall the conditional density:

f V |U(v | u) =
f (U,V )(u, v)

f U(u)
, ∀u s.t. f U(u) 6= 0. (⋆)

Proposition

i) The conditional distribution of X given ϑ admits the pdf

f X |ϑ(x | θ) = fθ(x) (“likelihood”).

ii) The posterior distribution (ϑ given X ) admits the pdf :

f ϑ|X (θ | x) =
fθ(x)π(θ)

f X (x)
(Bayes’ formula).

Proof. Simply apply (⋆) to the joint pdf.
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Remark: proportionality

The term 1
f X (x)

plays the role of a normalizing constant:

f ϑ|X (θ | x) =
fθ(x)π(θ)

f X (x)
.

Notation. The symbol “∝” indicates proportionality. Thus,

f ϑ|X (θ | x) ∝ fθ(x) π(θ),

or, less formally,

posterior pdf ∝ likelihood × prior pdf.

The “constant” f X (x) is often difficult to compute, but in some situations the computation can be
avoided (MAP estimator, MCMC numerical methods. . . ).
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Example: white balls / red balls (cont’d)

Reminder: we want to estimate θ = W
W+R from X1, . . . ,Xn

iid∼ Ber(θ).

Density of the observations:

fθ(x) = Πn
i=1θ

xi (1 − θ)1−xi = θN(x) (1 − θ)n−N(x).

with N(x) =
∑n

i=1 xi .

We assume a prior distribution Beta(a0, b0) for the parameter θ:

π(θ) ∝ θa0−1 (1 − θ)b0−1 ,

and we denote, as before, ϑ the corresponding RV.

(The choice of the prior distribution will be discussed later.)

18/42

Example: white balls / red balls (cont’d)

Then we have:

f ϑ|X (θ | x) ∝ fθ(x)π(θ)

∝ θN(x) (1 − θ)n−N(x) · θa0−1 (1 − θ)b0−1

= θa0+N(x)−1 (1 − θ)b0+n−N(x)−1 .

We recognize (up to a cst) the pdf of the Beta(an, bn) distrib., with
{
an = a0 + N,

bn = b0 + n − N.

➠ beta distrib.

Conclusion. Posterior distribution: ϑ | X ∼ Beta(an, bn).
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Example: white balls / red balls (cont’d)
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replacements

prior pdf
posterior pdf

U[0,1] prior, n = 5

U[0,1] prior, n = 20

Beta(1, 6) prior, n = 5

Beta(1, 6) prior, n = 20

x̄x̄

x̄x̄

θθ

θθ

Remark: for n → ∞, we have a E(ϑ | X n) = X̄n + O( 1
n
) with var(ϑ | X n) ≃

θ(1−θ)
n

.

20/42

Example: component reliability

Reminder: X1, . . . ,Xn
iid∼ E(θ) = E( 1

η ), hence the likelihood:

L(η, xn) = f (xn | η) =
n∏

i=1

1
η
exp

(
−1
η
xi

)

= η−n exp

(
−1
η

n∑

i=1

xi

)
.

(Here, we directly use η as our unknown parameter.)

We choose (see below) a truncated N (η0, σ
2
0) prior for η:

π(η) ∝ exp

(
−(η − η0)

2

2σ2
0

)
1η≥0.

Abuse of notation: we simply denote f the conditional probability density, instead of f Xn|η , where η is
the random variable associated with the parameter η.
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Example: component reliability (cont’d)
Posterior distribution of η. From Bayes’ formula we get:

f (η | xn) ∝ η−n exp

(
−1
η

n∑

i=1

xi

)

︸ ︷︷ ︸
likelihood

· exp
(
−(η − η0)

2

2σ2
0

)

︸ ︷︷ ︸
prior pdf

.

△! This time we fail to recognize a “familiar” density

➠ numerical evaluation of the integrals

f (xn) =

∫ +∞

0
η−n e−

1
η

∑n
i=1 xi e

− (η−η0)
2

2σ2
0 dη

E (η | X n = xn) =
1

f (xn)

∫ +∞

0
η · η−n e−

1
η

∑n
i=1 xi e

− (η−η0)
2

2σ2
0 dη

Abuse of notation (cont’d): we often use the same symbol (here, η) to represent both a point in the
parameter space and the RV associated with the parameters.
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Example: component reliability (cont’d)
Numerical application. η0 = 14.0, σ0 = 1.0 and the true value is η = 11.4.

10 =11.4
0
=14.0 17

0

0.5

1

1.5

2

2.5

3

3.5

4

π(η)

f (η | x10)

f (η | x100)

f (η | x1000)

f (η | x10000)

Figure – Prior and posterior densities of η, for four values of n.
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Several approaches

Two kinds of sources of prior information:
◮ “historical” data,
◮ experts: subjective knowledge, field expertise, etc.

Advanced topics (not covered in this course):

◮ merging several sources of prior information,

◮ “weakly informative” or “objective” priors,

◮ least favorable priors (cf. minimax),

◮ . . .
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Example: white balls / red balls (cont’d)

Assume that we have data from a past experiment:
◮ sample of n0 = 20 draws,
◮ N0 = 15 white balls drawn.

Choice of a prior distribution

We can decide, e.g., to choose a Beta(a0, b0) prior,
with a0 = N0 = 15 and b0 = n0 − N0 = 5.

Arguments in favour of this choice:

◮ the shape of the distrib. makes computations easier (see below);

◮ expectation : a0
a0+b0

= p0, with p0 = N0
n0

;

◮ variance: a0b0
(a0+b0)2(a0+b0+1) ≈

p0(1−p0)
n0

➠ variance of X̄n0 .
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Example: white balls / red balls (cont’d)

Prior density Beta(15, 5)
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Example: component reliability
We have the following pieces of information:
◮ The manufacturer claims that the lifetime of its components is

approximately η0 = 6 months.
◮ A field expert estimates that the accuracy of the

manufacturer’s data is roughly ε0 = 10%.

Choice of a prior distribution (elicitation)

We can decide, e.g., to choose a N (η0, σ0) prior,
truncated to [0,+∞), with σ0 = ε0η0/1.96.

Arguments in favour of this choice:

◮ The prior is (approx.) centered on the manufacturer’s value η0.

◮ ≈ 95% of the prior probability is supported by the
interval [0.9η0, 1.1η0].

◮ The choice of a Gaussian shape and the value 95% are arbitrary.
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Conjugate priors ➠ easier computations !

Families of conjugate prior distributions

A family of distributions (densities) is called conjugate for a given
statistical model if, for any prior π in this family, the posterior f ϑ|X

remains inside the family.

Examples.
◮ Ber(θ) sample + bêta prior,
◮ N (µ, σ2) sample with known σ2 + N prior on µ,
◮ N (µ, σ2) sample with known µ + IG† prior on σ2,
◮ E(θ) sample + gamma prior, ➠ gamma distrib.

◮ . . .

†: inverse gamma. Z ∼ IG if 1/Z has a gamma distribution.
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Bayes estimators

Goal
We want to construct estimators of η = g(θ) taking into account
◮ the data x ,
◮ and the prior distribution π.
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Bayes estimators
Let L : N × N → R be a loss function.
◮ Reminder: we “lose” L(η, η̃) if we estimate η̃ when the true value is η.

Definition: Bayesian estimator

A Bayesian estimator is an estimator that minimizes the posterior
expected loss:

η̂ = argminη̃∈N J(η̃,X )
with

J(η̃, x) = E
(
L
(
g(ϑ), η̃

) ∣∣ X = x
)

=

∫

Θ
L
(
g(θ), η̃

)
f ϑ|X (θ | x) ρ(dθ).

(☞ J is well-defined for PX -almost all x .)

Remark: equivalently, a Bayesian estimator minimizes the Bayes risk Rπ.

30/42

Quadratic loss

Consider the quadratic loss function L(η, η̃) = ‖η − η̃‖2:

J(η̃, x) =

∫

Θ
‖g(θ)− η̃‖2 f ϑ|X (θ | x) ρ(dθ).

Proposition

In this case, the Bayesian estimator is

η̂ = E (g(ϑ) | X ) =

∫

Θ
g(θ) f ϑ|X (θ | X ) ρ(dθ).

➠ η̂ is the posterior mean of ϑ

Remark: it can also be written as

η̂(x) =

∫
Θ
g(θ) fθ(x)π(θ) ρ(dθ)

f X (x)
=

∫
Θ
g(θ) fθ(x)π(θ) ρ(dθ)∫
Θ
fθ(x)π(θ) ρ(dθ)

.



31/42

Example: white balls / red balls (cont’d)

With a Beta(a0, b0) prior on ϑ, we have seen that:

ϑ|X ∼ Beta (N + a0, n − N + b0)

with N =
∑n

i=1 Xi .

The expectation of the Beta(a, b) distribution is a
a+b , thus:

θ̂ = E (ϑ | X ) =
N + a0

n + a0 + b0
.

Remark: we recover the expressions of θ̂a and θ̂b ( ➠ back to slide ?? ).
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Another example: Gaussian n-sample (with known σ2)

It can be proved (see PC 5) that X1, . . . ,Xn
iid∼ N

(
θ, σ2

0
)

◮ with θ ∈ R (unknown), σ0 > 0 (known),
◮ and ϑ ∼ N

(
µ, τ2),

then

ϑ | X ∼ N

(
τ2∑n

i=1 Xi + σ2
0µ

nτ2 + σ2
0

,
τ2σ2

0
nτ2 + σ2

0

)

Hence, the Bayesian estimator (for the quadratic loss):

θ̂ = λX + (1 − λ) µ with λ =
nτ2

nτ2 + σ2
0

Interpretation
◮ when n → ∞, θ̂ ≈ X̄ (the prior no longer has influence)

◮ with finite n, when
σ0

τ
≫ 1, θ̂ ≈ µθ (the data is ignored).
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L1 loss

Assume for simplicity that η = θ ∈ R.

Consider the loss function L(θ, θ̃) =
∣∣θ − θ̃

∣∣:

J(θ̃, x) =

∫

Θ

∣∣θ − θ̃
∣∣ f ϑ|X (θ | x) ρ(dθ).

Proposition

In this case the Bayesian estimator θ̂ is such that
∫ θ̂

−∞
f ϑ|X (θ | X ) ρ(dθ) =

∫ ∞

θ̂
f ϑ|X (θ | X ) ρ(dθ) =

1
2

PX -a.s..

➠ θ̂ is a median of the posterior density of ϑ

Remark: when ϑ has a symmetric posterior density, the two Bayesian
estimators (L1 and L2 loss) coincide.

Example: mean of a Gaussian n-sample, with a Gaussian prior.
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Example: white balls / red balls (cont’d)

Observed sample (n = 5): x = (W ,R ,R ,W ,R).

Prior on η: ϑ ∼ Beta(1, 6), with θ = P(X1 = W ).

0 1
0

1

2

3

4

5

6

Numerical application

prior pdf: Beta(1, 6)
posterior pdf: Beta(3, 9)

θ̂(L1) ≈ 0.2359
θ̂(L2) = 0.25

θ̂(L1) θ̂(L2)
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Exercise 1 (exponential likelihood + gamma prior) ➠ solution

Let X1, . . . ,Xn
iid∼ E(θ) with θ ∈ Θ = (0,+∞).

We endow θ with a Gamma (α0, β0) prior.

Questions

i Show that the gamma priori is conjugate, and find the
parameters αn and βn of the posterior distribution.

ii Give the Bayesian estimator of θ, for the quadratic loss.

iii prove that this estimator tends to the MLE when the
parameters α0 and β0 tend to a certain limit to be specified.
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Exercise 2 (maximal and Bayesian risks) ➠ solution

Let X1, . . . ,Xn
iid∼ Ber(θ) with θ ∈ Θ = (0, 1).

We want to estimate θ. The objective of this exercise is to
establish the expressions of the maximal and Bayesian quadratic
risks of θ̂ = X̄ , announced on ➠ slide 7 .

Questions

i Calculate the quadratic risk Rθ

(
X̄
)
, and deduce the maximal

risk Rmax
(
X̄
)
.

ii Calculate the Bayesian risk RBayes,π
(
X̄
)

when π is a
➠ beta distribution with parameters a > 0 and b > 0.
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Solution of exercise 1 ➠ back to questions

Preliminary remark: in this solution we use the same notation, as often done in

practice, for the “deterministic” parameter θ and the corresponding random

variable, denoted by ϑ in the lecture.

i) First write the likelihood:

L (θ; x) = f (x | θ) =
n∏

i=1

θe−θxi = θne−θ
∑n

i=1 xi ,

and the prior density:

π(θ) =
βα0

0
Γ(α0)

θα0−1 e−β0θ ∝ θα0−1 e−β0θ.

The posterior density then follow from the Bayes formula:

f (θ | x) ∝ L (θ; x) π(θ) ∝ θα0+n e−θ(β0+
∑n

i=1 xi)
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Solution of exercise 1 ➠ back to questions

The distribution of θ given X , aka posterior distribution, is
therefore a gamma distribution with parameters
◮ αn = α0 + n,
◮ βn = β0 +

∑n
i=1 Xi .

ii) The Bayesian estimator for the quadratic loss is given by the
posterior expectation of θ given the data:

E (θ | X ) =
αn

βn
=

α0 + n

β0 +
∑n

i=1 Xi
.

iii) This estimator tends to the MLE 1/X̄n when both α0 and β0

tend to zero.
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Solution of exercise 2 ➠ back to questions

i) X̄ is an unbiased estimator of θ = Eθ (X1), therefore

Rθ

(
X̄
)

= varθ
(
X̄
)

=
1
n
varθ (X1) =

θ (1 − θ)

n
.

The function θ 7→ Rθ

(
θ̂
)

is a polynomial of degree two in θ, which
attains its maximum at θ = 1

2 , hence:

Rmax
(
X̄
)

=
1
4n

.

ii) Let B(a, b) = Γ(a) Γ(b) / Γ(a + b).
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Solution of exercise 2 ➠ back to questions

The Bayesian risk for π = Beta(a, b) is:

RBayes,π
(
X̄
)

=

∫
Rθ

(
θ̂
)
π(dθ)

=

∫ 1

0

θ (1 − θ)

n
· 1
B(a, b)

θa−1 (1 − θ)b−1 dθ

=
1

n B(a, b)

∫ 1

0
θa (1 − θ)b dθ

=
B (a+ 1, b + 1)

n B(a, b)
=

1
n

ab

(a+ b + 1)(a + b)
.

In particular,
◮ For π = U [0,1] = Beta(1, 1), RBayes,π

(
X̄
)
= 1

6n .

◮ For π = Beta(1, 6), RBayes,π
(
X̄
)
= 3

28n .

Lecture outline

1 – Introduction: the Bayes risk

2 – Bayesian statistics: prior / posterior distribution

3 – Choosing a prior distribution

4 – Bayes estimators

5 – Standard exercices (with solutions)

6 – Appendices
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The beta family of distributions
Let X ∼ Beta(a, b) with (a, b) = θ ∈ (R+

⋆ )
2. Its pdf is :

fθ(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1 − x)b−1 1]0,1[(x).

Moments
◮ expectation : Eθ(X ) = a

a+b

◮ variance : varθ(X ) = ab
(a+b)2(a+b+1)

Special case

◮ U[0,1] = Beta(1, 1)

Properties

◮ If X ∼ Beta(a, 1), then − log(X ) ∼ E
( 1
a

)
.

◮ If X ∼ Γ(a, λ), Y ∼ Γ(b, λ), and X ⊥⊥ Y , then X
X+Y ∼ Beta(a, b).

➠ back to slide ?? ➠ back to slide ?? ➠ back to slide 36
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The gamma family of distributions
A random variable X follows the Γ(p, λ) distribution, with parameters
p > 0 and λ > 0, if it has the pdf

f (x) =
λp

Γ(p)
xp−1 exp(−λx)1R+(x).

Moments
◮ expectation : Eθ(X ) = p

λ

◮ variance : varθ(X ) = p
λ2

Special cases

◮ E(λ) = Γ(p = 1, λ)

◮ Γ(p = n
2 , λ = n

2 ) = χ2(n)

Properties

◮ Let a > 0. If X ∼ Γ(p, λ), then aX ∼ Γ
(
p, λ

a

)
.

◮ If X and Y are independent, with X ∼ Γ(p, λ) and Y ∼ Γ(q, λ),
then X + Y ∼ Γ(p + q, λ).

➠ back to slide ??


