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Lecture 1/9

Introduction and point estimation methods

Course objectives

» Introduce statistical inference and illustrate its applications
» Establish the mathematical framework

» Present some commonly used estimation methods
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Lecture outline

1 — Introduction

2 — The mathematical framework of statistical inference
3 — Some (classical) methods for point estimation

4 — Standard exercises

5 — Appendices
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Lecture outline

1 — Introduction



One word, several meanings. . .

» One (or several) statistic(s): numerical indicators, often
simple, computed from data.

Examples : average, standard deviation, median, etc.. ..

Remark: a mathematical definition of the word “statistic” (first meaning) will
be given later.
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One word, several meanings. . .

» One (or several) statistic(s): numerical indicators, often
simple, computed from data.

Examples : average, standard deviation, median, etc.. ..

> statistics: a mathematical discipline which has several
branches, including

m descriptive statistics,
w statistical inference (part 1 of this course),
wm design of experiments,

m statistical learning (part 2 of this course),

-

Remark: a mathematical definition of the word “statistic” (first meaning) will
be given later.
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Historical example: the opinion survey case

Desired quantity: descriptive
statistic calculated for the
entire population,

example : mean age, age
distribution, opinion, etc.

sample
data observed for only a few
individuals

A descriptive statistic may be calculated on:
> the entire population — quantity of interest

» a sample — “approximate” value (to be defined)

To infer = to draw conclusions about a population
from data collected on a sample
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Exhaustive census is not statistical inference
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Source : Insee.

Descriptive statistics are useful to “explore” data sets

Goals: obtain numerical summaries (of small dimension)
and/or easily interpretable visualizations, etc.

Note: in France, for municipalities with more than 10,000 inhabitants, the systematic census has been

replaced since 2004 by random (but not 1ID) sampling of addresses. o/s6



Another example: estimation of a proportion
Context. Consider a box with W white balls and R red balls,
where W and R are unknown.

Goal. Estimate the proportion 6 = WLJFR of white balls.

Data (observations). We perform n draws with replacement
w for the i-th draw, x; = 1 if the ball is white, 0 otherwise.

Steps to estimate 6

@ statistical modeling

x; realization of a RV X;, with X; id Ber(f),0<6<1
@® inference (here, estimation)

using the data x = (x, ..., xn) and the statistical model.

w Consider = 1571 1 X; (a possible descriptive statistic)

m |s it reasonable to use it as a “‘substitute” for the unknown 0
?
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Relation between statistical inference and probability theory
Probability theory provides the foundation for statistical inference:
> probability theory: a probability space is given;
> statistical inference: several probabilistic models are assumed
possible; we want to extract (from data) information from
data about the underlying probability measure.
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Relation between statistical inference and probability theory

Probability theory provides the foundation for statistical inference:

> probability theory: a probability space is given;

> statistical inference: several probabilistic models are assumed
possible; we want to extract (from data) information from
data about the underlying probability measure.

lllustration on the “box” example:

Probability
(W and R known)

Inference
(W and R unknown)

o distribution of the number
of white balls after n draws;

e estimate 6;
e give an interval

conclusions

certain

typ:':al e distribution of the num- | containing 0;
questions ber of draws to get the first | e decide whether 6 < 0.5
white ball or not.
type of for finite n, impossible in gen-

eral to answer with certainty
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Example of questions addressed, in various fields

» Healthcare: identify biomarkers responsible for a disease
using data collected from cohorts.

» Insurance: evaluate the risk of insolvency of an insurance
company.

» Industry: control the quality of a production line from data
collected for only a few elements.

» Opinion survey: predict the winner of an election from a
survey, quantify the uncertainty about the prediction.

> Ecology: estimate the size of a population of animals using
partial observations (e.g., capture-mark-recapture).
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Lecture outline

2 — The mathematical framework of statistical inference



From data to random variables

Data (observations)
Let x € X denote the data to be analyzed. For instance:

@ a scalar quantity, measured on n objects/individuals:
- K:(le---;xn)r Xj GR, &:Rn,

@® d scalar quantities, potentially of different natures, measured
on n objects/individuals:
mw x = (x1,...,x), xi €ERY, X =R"™,

© any dataset of a more complex nature
(times series, symbolic data, graphs, etc.).

The data is modeled, a priori, by a random variable (RV) X
w x is considered as a realization of X.
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Statistical model

The observation space (X, &)

It is the measurable space in which X takes its values.
Most of the time, we will use:

> X =R" with & = B(R")

> or, more generally, X = R"™*9 with & = B (R"Xd).

11/56



Statistical model
The observation space (X, &)

It is the measurable space in which X takes its values.
Most of the time, we will use:

» X =R" with & = B(R")

> or, more generally, X = R"™*9 with & = B (R"Xd).

Statistical modeling
Let (Q2,.7,P) be a probability space carrying:
» the observed random variable X,

» any other (unobserved) RV that we might need.

The probability IP is not perfectly known: we consider a

> set & of probability distributions over (£2,.%) supposed to
contain the “true” probability measure.
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Statistical model (cont'd)

Distribution of the observations

Let PX denote the distribution of X when P € 7 is the underlying
probability measure.

m We have a set 22X = {IP)K,IP’ € ?P} of possible distributions.
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Statistical model (cont'd)

Distribution of the observations

Let PX denote the distribution of X when P € 7 is the underlying
probability measure.

m We have a set 22X = {IP’K,]P’ € @} of possible distributions.

Definition: Statistical model

Formally, we define a statistical model as the triplet

M= (g, o, @5)

Remarks:
» We can construct several models (Q2,.7, &, X) for a given ./ .

» In particular, when we only care about the observed RV X, we can work
on the canonical model: QO =X, F =o, # = 2% X = Tdy.

12/56



Statistical inference

Reminder: the data x € X is seen as a realization of X ~ PX,
for a certain (unknown) probability P € &,

The goal of statistical inference

Goal: to construct procedures allowing to extract information about
PX from

» one realization of X,

» the knowledge of the set X of all possible distributions.
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Statistical inference

Reminder: the data x € X is seen as a realization of X ~ PX,
for a certain (unknown) probability P € &,

The goal of statistical inference

Goal: to construct procedures allowing to extract information about
PX from

» one realization of X,

» the knowledge of the set X of all possible distributions.

Important

Since the true probability P is unknown, we must design statistical
procedures that are “applicable” to any probability P € £2.
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Family of distributions

The set & is represented by a parameterized family:

@Z{Pg,@é@}.

Parametric model
If © is finite-dimensional, the model is called parametric.
» the parameter vector 0 is often of small size.

» we will denote by p the number of parameters (© C RP).
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Family of distributions

The set & is represented by a parameterized family:

@Z{Pg,@é@}.

Parametric model
If © is finite-dimensional, the model is called parametric.
» the parameter vector 0 is often of small size.

» we will denote by p the number of parameters (© C RP).

Example. Family of Gaussian distributions on X = R
PX={ N (,0%), peR, o?eRS}

(In this example we consider only one scalar observation.)
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Sampling models

n-sample
If X =(Xi,...,Xp) is such that:
» the X;'s are (mutually) independent,
» all the X;'s have the same distribution Py,

then the X;'s are called independent et identically distributed (iid)
and we say that X is an (iid) n-sample.
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Sampling models

n-sample
If X =(Xi,...,Xp) is such that:
» the X;'s are (mutually) independent,
» all the X;'s have the same distribution Py,

then the X;'s are called independent et identically distributed (iid)
and we say that X is an (iid) n-sample.

Distribution of an n-sample.
Consider the model that describes each of the X;'s individually:

> (X, of, {Pg.0 € O)
Then we have:
> (X, o) = (X", /%"  (product space),
> V0 € O, IP% =PJ"  (product distribution).
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Example: component reliability
This application will be used as an illustration in several lectures.
Context

» \We are interested in the reliability of components from a
production line.

» Reliability: measured by the lifetime of the components.

» Data (observations): a sample of n = 10 components, for
which the lifetime has been recorded : x = (x1, ..., x,).
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Example: component reliability
This application will be used as an illustration in several lectures.
Context

» \We are interested in the reliability of components from a
production line.

» Reliability: measured by the lifetime of the components.

» Data (observations): a sample of n = 10 components, for
which the lifetime has been recorded : x = (x,. .., Xxp).

Modeling

» Each x; is modeled by a scalar RV X;.
» The X;'s are assumed iid, with values in (X, &) = (R, B(R)).
> (X, &)= (R", B(R")).
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Example: component reliability

Modeling (cont'd): family of distributions

Typical* assumption for the lifetime of a component:

Xi~&(0), 6>0.
Hence the statistical model:

(R", B(R"), {£(6)®",6 > 0}).

*in the case of unpredictable failures, not related to the age of the component
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Example: component reliability

Modeling (cont'd): family of distributions

Typical* assumption for the lifetime of a component:
Xi~&(0), 6>0.

Hence the statistical model:

(R", B(R"), {£(6)®",6 > 0}).

Reminder. The exponential distribution £(#) has the density:

fo(x) = 0 exp(—0x) 1jg,o0[(x)-

with respect to Lebesgue's measure

*in the case of unpredictable failures, not related to the age of the component
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Example: component reliability

A few problems of (statistical) interest

> estimate 0, or
> estimate n = § = E(X;) (average lifetime)

m lectures 1 and 2
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Example: component reliability

A few problems of (statistical) interest

> estimate 6, or

> estimate n = 5 = E(X1) (average lifetime)
s |ectures 1 and 2

» provide confidence intervals for § and n

nw lecture 3
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Example: component reliability

A few problems of (statistical) interest

>
| 2

estimate 6, or

estimate ) = 1 = E(X;) (average lifetime)

- |ectures 1 and 2

provide confidence intervals for 6 and 7

> |ecture 3

test the hypothesis < 10, in order to assess the value of an
optional warranty extension

m lecture 4 on hypothesis testing

18/56



Example: component reliability

A few problems of (statistical) interest

>
| 2

estimate 6, or

estimate ) = 1 = E(X;) (average lifetime)

- |ectures 1 and 2

provide confidence intervals for 6 and 7

> |ecture 3

test the hypothesis 1 < 10, in order to assess the value of an
optional warranty extension

m lecture 4 on hypothesis testing

estimate 6 given prior information on its value

(e.g., provided by the manufacturer of the production line)

m lecture 5 on Bayesian estimation

18/56



Example: component reliability (cont'd)

Data: a sample of size n = 10 [arbitrary unit]

0.5627

16.1121

5.4943

7.9374

1.2658

2.9885

8.6266

43.8877

2.1641

8.9138
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Example: component reliability (cont'd)

Data: a sample of size n = 10 [arbitrary unit]

0.5627 | 16.1121 | 5.4943 | 7.9374 | 1.2658
2.9885 | 8.6266 | 43.8877 | 2.1641 | 8.9138

Estimating 7 : a first estimator (see Lecture 2 for a definition)

n

_ 1 .
X=- ZX,- —>n:soo Ep (X1) =n (SLLN).
i=1

m 7(1) = X seems to be a “reasonable” estimator of 7.

Numerical application : /(1) = 10.1960
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Notations / vocabulary

Notations. We will often use notations such as
> Ey(.) (expectation),
» vary(.) (variance ou covariance matrix),
> fp(.) (density), ...

to indicate that theses operators or functions depend on a
probability Py for a particular value of 6.
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Notations / vocabulary

Notations. We will often use notations such as
> Ey(.) (expectation),
» varg(.) (variance ou covariance matrix),
> fp(.) (density), ...

to indicate that theses operators or functions depend on a
probability Py for a particular value of 6.

Definition: Statistic
A statistic is a random variable (often scalar- or vector-valued) that

can be computed from X alone*.

Example: the estimator #(1) = X is a statistic.

* Technically: can be written as a measurable function of X.
In particular, depends neither on other (unobserved) RVs nor on 6.
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Numerical assessment of the performance of ﬁ(l)

With numerical simulations, (almost) everything is possible!
» we choose a particular value of 7 (here, 1, = 11.4), then

» we simulate on a computer a large number m of n-samples
(here, m = 10000).
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Numerical assessment of the performance of ﬁ(l)

With numerical simulations, (almost) everything is possible!
» we choose a particular value of 7 (here, 1, = 11.4), then

» we simulate on a computer a large number m of n-samples
(here, m = 10000).

. Remarks
Aln histogram . . .
0.1 1 @ e 1 » Our estimates are, in this case,
pdf of #(1)
0.08 not very accurate.
0.06 » Providing confidence intervals
would be very relevant here.
0.04 o
» In this simple example we can
0.02 compute the density of #(*)
0 analytically.
0 =114 20 30 yHically

21/56



2)

A . another estimator

With a convergence argument similar to the one used earlier:

02

1
therefore using A2 = / — 7. X2 seems “reasonable” as well.
gn on i=17%

Numerical application #(®) = 11.2228

1, as o 2 )
;ZX,'WEG(XQZ*:Z%
i=1
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ﬁ(2) - another estimator

With a convergence argument similar to the one used earlier:

02

1
therefore using 7(2) = \/2— 71 X? seems “reasonable” as well.
n

Numerical application #(®) = 11.2228

1< 2 as. 2 2 2
;ZX,' mEe(Xﬂ:*:QU,
i=1

Questions

» How can we compare two estimators ?
» |s there an estimator that is “better’ than all the others ?

» How to construct “good” estimators 7
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Lecture outline

3 — Some (classical) methods for point estimation
3.1 — The substitution method
3.2 — The method of moments
3.3 — Maximum likelihood estimation



Mathematical framework

In this section:

» we consider a statistical model
= (2,9 {Pf 0c0}),

most of the time assumed to be parametric (© C RP);
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Mathematical framework

In this section:

» we consider a statistical model
X
'%: (&7%7 {]P)Q 9 9 € e}) )
most of the time assumed to be parametric (© C RP);

» when X is an [ID n-sample, we write
> X =(X1,...,X,)
> X =X" with X =R or X =RY,
> Py =P5";
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Mathematical framework

In this section:

» we consider a statistical model
X
'%: (&7%7 {]P)Q 9 9 € e}) )
most of the time assumed to be parametric (© C RP);

» when X is an IID n-sample, we write
> X =(X1,...,X,)
> X =X" with X =R or X =RY,
> Py =P5";

> we want to estimate a “quantity of interest
» either 0 itself,
> or, more generally, n = g(0).
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Lecture outline

3 — Some (classical) methods for point estimation
3.1 — The substitution method



The substitution method

Assume that
» we already have an estimator 7j of 7 = g(6)

» and we want to estimate another quantity of interest
that can be written as 7’ = h(7)), with h a continuous function.

24/56



The substitution method

Assume that
» we already have an estimator 7 of n = g(6)

» and we want to estimate another quantity of interest
that can be written as 1’ = h(n), with h a continuous function.

The substitution method
The substitution method consists in using

2/

7' = h (7)) as an estimator of 7.
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Example: component reliability

Reminder: Xi,..., X, 'S £(6), 6> 0.

We are interested in the probability that a failure occurs before ty:
to
s 'r], = ]PH (Xl < to) = / 9exp(—9x)dx
0

[
=1—exp(—0tg) =1 —exp <—O> .
n
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Example: component reliability

Reminder: Xi,..., X, 'S £(6), 6> 0.

We are interested in the probability that a failure occurs before ty:
to
[ 2 'r], = ]P)H (Xl < to) = / 9exp(—9x)dx
0
to
=1—exp(—0tg) =1 —exp (—) .
n

Using /1) = X as an estimator of n = %, we get

L
' =1—exp <—§O>.
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Empirical measure
Let X1,..., X, < pX,
Recall the Dirac measure at x € X:

1 if A
VAe o, s(A) =4 "XED
0 otherwise.
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Empirical measure
Let X1,..., X, < pX,

Recall the Dirac measure at x € X:

1 if A
VAE o, SA)=4 "X
0 otherwise.

Definition: empirical measure

The empirical measure is the (random) measure defined by:
1 n
PX =2 "oy

Application: the empirical measure can be seen as an estimator
of PX1 m allows us to construct other estimators using the
substitution method.
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Example : estimator of the k-th order moment

Assume X; € LX. Then
my =E (Xlk) g (IP’Xl)

is well defined, with & (1) = [, x*p(dx).
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Example : estimator of the k-th order moment

Assume X; € LX. Then
my =E (Xlk) g (PXI)

is well defined, with & (1) = [, x*pu(dx). By substitution:

le /x 725X (dx) Zxk
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Example : estimator of the k-th order moment

Assume X; € LX. Then
my =E (Xlk) e (le)

is well defined, with & (1) = [, x*uu(dx). By substitution:
mk:g(ﬁbxl) :/ Zax (dx) Zxk

Other examples:
» sample variance

» empirical cumultive distribution function
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Lecture outline

3 — Some (classical) methods for point estimation

3.2 — The method of moments



The method of moments

Assume that
> Xi, ... X, S Py, with 0 € ©;
» the model is parametric: © C RP,

> we want to estimate 6 itself
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The method of moments

Assume that
> X1, ..., X, 9 p,, withfcO;
» the model is parametric: © C RP,

> we want to estimate 6 itself

Consider the function

h: ©CRP — h(©)CRP,
Eg (X1)
0 —  h(0) = :
Eg (X{)

Remark: sometimes other moments can be used (not necessarily the first p).
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The method of moments (cont'd)
Assume h: © — h(©) injective, and thus bijective.
The method of moments
The method of moments consists in

» estimating the first p moments iy, = %27:1 X,-k, k < p,

» then applying h~! to construct an estimator of 6.
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The method of moments (cont'd)

Assume h: © — h(©) injective, and thus bijective.

The method of moments
The method of moments consists in
> estimating the first p moments iy, = %27:1 Xk, k <p,

» then applying h™! to construct an estimator of 6.

Hence moment-of-moments estimator : § = h=! (sfi1.,), where
1 S X
n =17

il = 3
15 P
5 i1 X
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The method of moments (cont'd)

Assume h: © — h(©) injective, and thus bijective.

The method of moments
The method of moments consists in
> estimating the first p moments iy, = %27:1 Xk, k <p,

» then applying h™! to construct an estimator of 6.

Hence moment-of-moments estimator : § = h=! (sfi1.,), where

% 27:1 Xi

il = 3
15 P
5 i1 X

Remark: well defined only if i1, € h(©) Pg-ps, pour tout 6.
Otherwise, minimization of some distance (generalized method of moments).
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Method of moments: examples

Example: component reliability

We have Ey (X;) = 61 (exponential distribution), therefore

6=(By(X)) " and 0= (X)"".
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Method of moments: examples

Example: component reliability

We have Eq (X;) = 61 (exponential distribution), therefore
§=(By (X)) " and 6=(X)""

Another example: Gaussian n-sample = PC 1, Ex. 1.1

X,y Xo 8 N (1, 02), with § = (u,02) € R x R%.

Considering the first two moments, we have:

<ﬁ2>_ %Z?:lxi 5 |,
%27:1 Xi2 - (% 27:1 Xi)

g
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Lecture outline

3 — Some (classical) methods for point estimation

3.3 — Maximum likelihood estimation



Likelihood function

Assume a dominated model: ]P% admits a pdf fy wrt a measure v

on X, forall 6 € ©.
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Likelihood function

Assume a dominated model: JP% admits a pdf fy wrt a measure v
on X, for all 6 € ©.

Definition: likelihood
We call likelihood the function:

L : @X& = R+
(0;x) = fy(x)

We call log-likelihood the function In L.
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Likelihood function

Assume a dominated model: JP% admits a pdf fy wrt a measure v
on X, for all 6 € ©.

Definition: likelihood
We call likelihood the function:

L : @X& = R+
(0;x) = fy(x)

We call log-likelihood the function In L.

Remark. If X1,..., X, nd Py, then,
L(0;x) = H7_1f9 (xi), therefore  In £(0;x) = ZI,’_I Infy (x;) .

(usual abuse of notation: here fy = £,*)
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Maximum likelihood estimation

Definition: MLE

If § is a maximizer of 6 — L (6; X), then
0 is a maximum likelihood estimator (MLE) of 6.
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Maximum likelihood estimation

Definition: MLE

If § is a maximizer of 6 — L (6; X), then
0 is a maximum likelihood estimator (MLE) of .

Remarks:

» Existence and uniqueness of the MLE: not guaranteed in
general.

> Equivalently, § is a maximizer of 6 — In £ (6; X).

32/56



Maximum likelihood estimation

Definition: MLE

If § is a maximizer of 6 — L (6; X), then
0 is a maximum likelihood estimator (MLE) of 6.

Remarks:
> Existence and uniqueness of the MLE: not guaranteed in
general.

> Equivalently, § is a maximizer of 6 — In £ (6; X).

> Assume © C RP. If L is of class C! wrt § on int(©), a
necessary condition for an interior point 6 € int(©) to
maximize the likelihood is:

(Vo(InL))(8;X) = 0.

This is called the likelihood equation.
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MLE example: component reliability

For x1,...,X, > 0, we have £ (6; x) = []_; 0 exp (—0x;), and thus

In£(0;x) = nin(@ —HZX,
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MLE example: component reliability

For xi,...,x, > 0, we have £ (0;x) = [[7_; 0 exp (—0x;), and thus
InL(6;x) = nin(0) — 0 x;.
i=1

Stationarity condition (“likelihood equation™)

oinL), [ o
20 (9,5)—0 — giz;x,—O.

= If 37 xi > 0, unique solution in ® =RY at 0§ =n (37, x,-)71

@ |t is indeed a maximum of the likelihood function (cf. sign of the derivative).
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MLE example: component reliability

For xi,...,x, > 0, we have £ (0;x) = [[7_; 0 exp (—0x;), and thus
InL(6;x) = nin(0) — 0 x;.
i=1

Stationarity condition (“likelihood equation™)

oinL), n_ “ o
20 (9,5)—0 — 7 ;x,—o.

= If 37 | x > 0, unique solution in ® =R% at 0 =n(>7 x,-)fl.

® |t is indeed a maximum of the likelihood function (cf. sign of the derivative).
. . . A o\ —1

w Since Y7 ; X; > 0 a.s., a unique MLE exists: 0 = (X) .

Remark: the same estimator was obtained by the method of moments.
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MLE example: Gaussian [ID n-sample, 6 = (,u,az)
Same approach as in the previous example.

@ First write the log-likelihood:

n n " (xi — p)?
InL(0;x) = —5 In(27) — > In(0?) — Z:I:]éo.2/j/)7
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MLE example: Gaussian [ID n-sample, 6 = (,u,az)
Same approach as in the previous example.

@ First write the log-likelihood:

n n " (xi — p)?
InL(0;x) = —5 In(27) — > In(0?) — Z:I:]éO.ZIU/)a

@® Solving the likelihood equation yields:

()= (1B o)

n

Remark: the same estimator was obtained by the method of moments.
34/56



MLE example: Gaussian [ID n-sample, 6 = (,u,aQ)
Same approach as in the previous example.

@ First write the log-likelihood:

n n " (xi — p)?
InL(0;x) = —5 In(27) — > In(0?) — Z:I:]éO.ZIU/)a

@® Solving the likelihood equation yields:
-(5)- (1B )
=( = i R .
& 2 i (Xi— 1)
© It can be proved that the maximum is indeed attained at this
point.
=2 PC1, Ex. 1.1

Remark: the same estimator was obtained by the method of moments.
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Summary and preview

We have seen and will practice in PC 1:

> the general framework of statistical inference,

» some classical methods for point estimtion.
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Summary and preview

We have seen and will practice in PC 1:

> the general framework of statistical inference,

» some classical methods for point estimtion.

We will cover in the next lecture:

> the quantitative assessment of an estimator’s performance,
» the comparison of estimators,

» the asymptotic approach (n — o0).

35/56



Lecture outline

4 — Standard exercises
4.1 — Questions
4.2 — Solutions



Lecture outline

4 — Standard exercises
4.1 — Questions



Exercise 1 (Bernoulli model)

Let Xi,...,X, be an n-sample of binary observations,
independent and identically distributed according to the
Bernoulli Ber(p) distribution, with p € [0, 1].

Questions
@ Specify a formal statistical model .#Z = (§7 o, 95)
corresponding to this description.
@® Construct an estimator of p using the method of moments.

® Construct an estimator of p using the maximum likelihood
method.

© Compute the expectation and variance of X, = %Z,’-’:l X;.
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Exercise 2 (log-normal distribution)

A bit of context

The association between childhood leukemia and exposure to very
low-frequency magnetic fields (mainly due to electrical structures
and appliances) is statistically significant for residential exposure
averaged over 24 hours, with levels above 0.4 T.

)
«r

Source : ANSES

Modeling assumption. For dwellings located less than 50 meters
from HV lines, residential exposure averaged over 24 hours follows
a lognormal distribution.
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Exercise 2 (log-normal distribution)

Let

» X = (Xi,...,X,) : n-sample with a log-normal Z#" (1, 0?)
distribution, where o2 > 0 is known.

» po : probability that a RV following the Z4 (1, 0?)
distribution exceeds the threshold sp = 0.4uT.

Questions
@ Construct an estimator of y using the maximum likelihood
method.
® Using the substitution method, derive an estimatoir of pg.

© Does the resulting estimator of pg converge almost surely? If
so, to what limit?
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Exercise 3 (sample variance)

Let Xi,..., X, be an n-sample of real-valued observations,
independent and identically distributed, with a finite second order
moment.

Let M denote the set of all probability measures on (R, B(R)) with
a finite second order moment.

Questions

@ Prove that var (X;) = (P*1), where ¢ is a function defined
on M, to be specified.

® Using the substitution method, derive from ¢ an estimator of
the variance.

© Study the convergence of the estimator when n — +oc.
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Lecture outline

4 — Standard exercises

4.2 — Solutions



Solution of exercise 1

O Statistical model .7 = (X, o/, 2%)

The “natural” (minimal) set to describe the values of a binary
variable is X = {0, 1}.

w X = {0,1}" for an n-sample

On a finite or countable set, we use in general the discrete
o-algebra, i.e., the set of all subsets of X.

- o =P ({0,1)7) = P ({0,1))°"

The distribution of an n-tuple (X, ..., X,) of independent RVs is
the product measure PXt @ - .. ® PXn,

= 7% = (Bex(p)®", p € [0,1]}

Remark: another possible choice would have been X = R", & = B(R").
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Solution of exercise 1

® Method of moments
If X ~ Ber(p), then E, (X) = p.

m The method of moments, applied to the first-order moment,
directly yields the estimator p, = 1 3°7 | X; = X,.

® Maximum likelihood

First write the likelihood:
Lp:X) =] p(1—p)' %
i=1

=pM(1—p)" ",

where N =37 . X; and 0° = 1,
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Solution of exercise 1

then the log-likelihood for p € (0, 1):

(p: X) = In(£L(p; X))
= Nin(p) + (n— N)In(1 — p).

The log-likelihood is differentiable on (0, 1), with derivative

ov N n—N
(P X) = ——
ap(p ) P
n _
= X, —
p(1—p) ( P)
We have g—ﬁ(p;é)>0 iff p<N/n=X,,

S(pX) <0 iff p>N/n=X,



Solution of exercise 1

If X, =0, the log-likelihood is strictly decreasing

m the likelihood is maximal at p = 0.

If X, = 1, the log-likelihood is strictly increasing

m the likelihood is maximal at p = 1.
If 0 < X, < 1, the log-likelihood is maximal at p = X,

Summary: p, = X, is the unique MLE.

Remark: the log-likelihood takes infinite values at p = 0 and/or p = 1, but the

likelihood itself is well defined and continuous on [0, 1].
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Solution of exercise 1
O Expectation and variance of X

Reminders

> Ep(X1) = p and var,(X1) = p(1 — p).
» independence = decorrelation = var(}; Xi) = >, var(X).

Using that the X;'s are identically distributed:

Xn) = %ZEP[Xl] =P
i=1

Using that the X;'s are IID:

vary(X,) = varp (ZX) =2 zn:varp (Xi) = p(ln—p)
i=1
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Solution of exercise 2

O Maximum likelihood

First write the log-likelihood:

Up; X) = —g In(2703) — Z In(X;) + Wl(m)n(x).

i=1

The log-likelihood is differentiable, with derivative (for
Xi,..., X, > 0):

ol 1 &
2 X) = ;(In(Xi) — 1)

1 n
Finally, fi = - Z In(X;) is indeed the MLE since:
i=1

¢
a*(u;ﬁ) >0 forpu<f,

12
w; X) <0 forpu>fi
ou

0
787,11/(
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Solution of exercise 2

@ First express the probability of exceeding sy as a function of u:

po = P(X>s) with X ~ .24 (u,0°)
= 1= Fuo(%)

— 1-d <'”(5°3_ “) .

Then construct an estimator of py by substitution, using ji:

. In(sg) — [
By = 1_%((0)#)_
o
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Solution of exercise 2

® Let Z; = In(X;), i > 1. The random variables Z; are |ID, and
admit a first order moment equal to i, since Z; ~ A (i, 0?).

Thus, by the strong law of large numbers:

n—o00

i as
no= =57 InG) =2 E(Zy) = .
i n%ﬂ() (Z1) = p

| _
Hence, using the continuity of h: u+— 1 — ®g (n(so)u>
g

fo = h(d) —== h(u) = po.

n—o00

Remark. Almost-sure convergence towards the parameter of
interest is called strong consistency (see next lecture).
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Solution of exercise 3

@ Using the Huygens-Konig and transfer theorems, we have:
var(X1) = E (X?) —E(X)? = %(IP’Xl)

where, for all 4 € M,

o) = [ <utao- ([ xu(dx))z.

® We use the substitution principle, with the empirical distribution
as an estimator of PXt:

. 1<
]P)ffl = E Z (SX[.
i=1
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Solution of exercise 3

We find the estimator

S2 = /Xx21@>§1(dx)— </Xx1@>§1(dx)>2

n

_ fo2 X2 = Z(x-—xf,

=1l

which is called the sample variance.

©® Applying the strong law of large numbers to the sequences (X;)
and (X,-2), which are IID RVs with a first order moment, we find

X 2 E(X), 72x2 = E(X?),
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Solution of exercise 3

and therefore

52 25 var(X).
Remarks: on the other hand, we don’t have convergence in L2 in
general, since the X?'s do not necessarily have a second order
moment (for this, the X;'s would need to have a moment of order
four).
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The gamma family of distributions

A random variable X follows the '(p, A) distribution, with parameters
p>0and A\ > 0, if it has the pdf
AP

f(x) = ) xP~1 exp(—Ax) Ig+ (x).
Moments Particular cases
> mean : Eg(X) =% > EN)=T(p=1,]N)
> variance : varg(X) = &5 > Mp=4,2=2)=x%n)

Properties

> Let a>0. If X ~T(p,\), then aX ~ T (p, 2).

> If X and Y are independent, with X ~ I'(p, A\) and Y ~ I'(q, ),
then X+ Y ~T(p+ g, ).
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The log-normal distribution ZA4" (1, 0°)
Definition
X ~ LN (u,0?), with u € R and 02 > 0, if it admits the density
Ry
o) = = exp (L2 E ),

ox 2T 202

Properties
2

» mean: E, ,(X) =exp <,u s 02>

> variance : var, o(X) = (exp (02) — 1) exp (2u + 0?)
> cumulative distribution function: F,, = ® (W
the cumulative distribution function of the .47(0,1) distribution.

) , where @ is

> X ~ LN (n,0%)  iff In(X) ~ A (1, 0?).
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Density of the ZA4 (u, 0?) distribution

15 ! 2,
{ —o =1 —u =—1
—o=15 — =0
=2 =1
7 15 =
1,
1
0.5
0.5
0‘ : 0
0 1 2 3 4 5 0 1 2 3 4 5
x X

i back to exercise 2
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Reminder: Probability density function wrt a measure
Let v denote a positive masure on (X, 7).

Definition: probability density function

The distribution PX of a RV X taking values in (X, 2/) admits a density

with respect to v if there exists f : X — R, «/-measurable and positive,

st

VAc o/, P(XecA) =PX(A) = / f(x) v(dx).
A

m f is the probability density function of PX with respect to v.
m |t satisfies [ fdy = 1.

In this course, we will consider the following cases:
» ‘“continuous’ RV: reference measure v = Lebesgue's measure,

> discrete RV: reference measures v = counting measure.
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Complement: the empirical cumulative distribution function

Let x € R. The cumulative distribution function (cdf) of X; at x is

X

F(x) =PX (X, < x) = %, (le) with % (1) = / 1(dx).

Hence, by substitution, the empirical cdf (ECDF):

. 1<
Flx) =~ D lix<x
i=1

For an IID n-sample Xi, ..., X, lID, with cumulative distribution
function F, it can be proved (Glivenko-Cantelli theorem) that
Fn, — F uniformly on R, almost surely.
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https://fr.wikipedia.org/wiki/Théorème_de_Glivenko-Cantelli

Complement: the empirical cumulative distribution function

0.8

06

0.4

0.2

Figure — ECDF for Xi,..., X, c A4(0,1) and n = 20.

i back to slide 27
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