-
Bentriou Mahmoud authoredBentriou Mahmoud authored
dist_G_ER.lha 1.86 KiB
NbVariables = 6;
NbLocations = 5;
const int x1 = 50;
const int x2 = 100;
const double t1 = 0.0;
const double t2 = 0.8;
VariablesList = {t, tprime, d, n, in, test_abs};
LocationsList = {l0, l1, l2, l3, l4};
AVG(Last(d));
InitialLocations={l0};
FinalLocations={l2};
Locations={
(l0, TRUE , (t:1));
(l1, TRUE , (t:1));
(l2, TRUE , (t:1));
(l3, TRUE , (t:1));
(l4, TRUE , (t:1,tprime:1));
};
% Attention: une variable test_abs a ete rajoutee pour check si on a
% reach an absorbing state
Edges={
% Init
((l0,l1), #, t>=0, {n=E,d=0,in=1,test_abs=k_1*(E*S)+(k_2+k_3)*ES});
((l1,l3), #, t<=t1 & n<=x1-1, {d=min(((n-x1)^2)^0.5,((n-x2)^2)^0.5),in=0});
((l1,l3), #, t<=t1 & n>=x2+1, {d=min(((n-x1)^2)^0.5,((n-x2)^2)^0.5),in=0});
((l1,l3), #, in=0 & t>=t1 & t<=t2 & n>=x1 & n<=x2, {d=d*(t-t1),tprime=0});
((l1,l3), #, t<=t1 & n>=x1 & n<=x2, {d=0,in=0});
((l1,l3), #, in=1 & t>=t1 & t<=t2 & n>=x1 & n<=x2, {tprime=0});
((l1,l4), #, in=0 & t>=t1 & t<=t2 & n<=x1-1, {d=d+d*(t-t1)});
((l1,l4), #, in=0 & t>=t1 & t<=t2 & n>=x2+1, {d=d+d*(t-t1)});
((l1,l4), #, in=1 & t>=t1 & t<=t2 & n<=x1-1, #);
((l1,l4), #, in=1 & t>=t1 & t<=t2 & n>=x2+1, #);
%((l1,l2), #, in=1 & t>=t2, #);
%((l1,l2), #, in=1 & t>=t2, {d=d*(t2-t1)});
%((l1,l2), #, test_abs=0 & t<=t1, {d=min(((n-x1)^2)^0.5,((n-x2)^2)^0.5)*(t2-t1)});
%((l1,l2), #, test_abs=0 & t>=t1 & t<=t2, {d=d+(t2-t)*min(((n-x1)^2)^0.5,((n-x2)^2)^0.5)});
((l3,l1), ALL, t>=0, {n=E,test_abs=k_1*(E*S)+(k_2+k_3)*ES});
((l3,l2), #, in=1 & t>=t2, {d=d*(t2-t1)});
((l3,l2), #, in=1 & test_abs=0, {d=d*(t2-t1)});
((l3,l2), #, in=0 & t>=t2, #);
((l3,l2), #, in=0 & test_abs=0, #);
((l4,l1), ALL, t>=0, {d=d+tprime*min(((n-x1)^2)^0.5,((n-x2)^2)^0.5),tprime=0,n=E,in=1,test_abs=k_1*(E*S)+(k_2+k_3)*ES});
((l4,l2), #, t>=t2, {d=d+tprime*min(((n-x1)^2)^0.5,((n-x2)^2)^0.5)});
((l4,l2), #, test_abs=0, {d=d+(t2-t)*min(((n-x1)^2)^0.5,((n-x2)^2)^0.5)});
};