-
Bentriou Mahmoud authored
models. It's a better semantic and improve performance as well as readability of the code. All the tests passes (except the remark in the last commit).
Bentriou Mahmoud authoredmodels. It's a better semantic and improve performance as well as readability of the code. All the tests passes (except the remark in the last commit).
lha.jl 8.60 KiB
length_var(A::LHA) = length(A.map_var_automaton_idx)
get_value(A::LHA, x::Vector{Int}, var::VariableModel) = x[A.map_var_model_idx[var]]
copy(S::StateLHA) = StateLHA(S.A, S.loc, S.values, S.time)
# Not overring getproperty, setproperty to avoid a conversion Symbol => String for the dict key
function getindex(S::StateLHA, var::VariableAutomaton)
return (S.values)[(S.A).map_var_automaton_idx[var]]
end
getindex(S::StateLHA, l_var::Vector{VariableAutomaton}) =
[S[var] for var in l_var]
setindex!(S::StateLHA, val::Float64, var::VariableAutomaton) = (S.values)[(S.A).map_var_automaton_idx[var]] = val
setindex!(S::StateLHA, val::Int, var::VariableAutomaton) = (S.values)[(S.A).map_var_automaton_idx[var]] = convert(Float64, val)
setindex!(S::StateLHA, val::Bool, var::VariableAutomaton) = (S.values)[(S.A).map_var_automaton_idx[var]] = convert(Float64, val)
function Base.show(io::IO, S::StateLHA)
print(io, "State of LHA\n")
print(io, "- location: $(S.loc)\n")
print(io, "- variables:\n")
for (var, idx) in (S.A).map_var_automaton_idx
print(io, "* $var = $(S.values[idx]) (idx = $idx)\n")
end
print(io, "- time: $(S.time)")
end
function Base.show(io::IO, E::Edge)
print(io, "(Edge: ")
print(io, (E.transitions[1] == nothing) ? "Asynchronous #, " : ("Synchronized with " * join(E.transitions,',') * ", "))
print(io, Symbol(E.check_constraints))
print(io, ", ")
print(io, Symbol(E.update_state!))
print(io, ")")
end
function Base.copyto!(Sdest::StateLHA, Ssrc::StateLHA)
Sdest.A = Ssrc.A
Sdest.loc = Ssrc.loc
for i = eachindex(Sdest.values)
Sdest.values[i] = Ssrc.values[i]
end
Sdest.time = Ssrc.time
end
# In future check_consistency(LHA), check if constant has the name
# of one of the LHA fields
isaccepted(S::StateLHA) = (S.loc in (S.A).locations_final)
# Methods for synchronize / read the trajectory
function init_state(A::LHA, x0::Vector{Int}, t0::Float64)
S0 = StateLHA(A, :init, zeros(length_var(A)), t0)
for loc in A.locations_init
if A.Λ[loc](A,S0)
S0.loc = loc
break
end
end
return S0
end
function _push_edge!(edge_candidates::Vector{Edge}, edge::Edge, nbr_candidates::Int)
if nbr_candidates < 2
edge_candidates[nbr_candidates+1] = edge
else
push!(edge_candidates, edge)
end
end
function _find_edge_candidates!(edge_candidates::Vector{Edge}, current_loc::Location,
A::LHA, Snplus1::StateLHA, only_asynchronous::Bool)
nbr_candidates = 0
edges_from_current_loc = A.map_edges[current_loc]
for target_loc in keys(edges_from_current_loc)
for edge in edges_from_current_loc[target_loc]
if edge.check_constraints(A, Snplus1)
if edge.transitions[1] == nothing
_push_edge!(edge_candidates, edge, nbr_candidates)
nbr_candidates += 1
return nbr_candidates
end
if !only_asynchronous && edge.transitions[1] != nothing
_push_edge!(edge_candidates, edge, nbr_candidates)
nbr_candidates += 1
end
end
end
end
return nbr_candidates
end
function _get_edge_index(edge_candidates::Vector{Edge}, nbr_candidates::Int,
detected_event::Bool, tr_nplus1::Transition)
ind_edge = 0
bool_event = detected_event
for i = 1:nbr_candidates
edge = edge_candidates[i]
# Asynchronous edge detection: we fire it
if edge.transitions[1] == nothing
return (i, bool_event)
end
# Synchronous detection
if !detected_event && tr_nplus1 != nothing
if (edge.transitions[1] == :ALL) ||
(tr_nplus1 in edge.transitions)
ind_edge = i
bool_event = true
end
end
end
return (ind_edge, bool_event)
end
function next_state!(Snplus1::StateLHA, A::LHA,
xnplus1::Vector{Int}, tnplus1::Float64, tr_nplus1::Transition,
Sn::StateLHA; verbose::Bool = false)
# En fait d'apres observation de Cosmos, après qu'on ait lu la transition on devrait stop.
edge_candidates = Vector{Edge}(undef, 2)
first_round::Bool = true
detected_event::Bool = false
turns = 0
if verbose
println("#####")
@show xnplus1, tnplus1, tr_nplus1
@show Sn
@show Snplus1
end
# In terms of values not reference, Snplus1 == Sn
# First, we check the asynchronous transitions
while first_round || length(edge_candidates) > 0
turns += 1
#edge_candidates = empty!(edge_candidates)
current_loc = Snplus1.loc
# Save all edges that satisfies transition predicate (asynchronous ones)
nbr_candidates = _find_edge_candidates!(edge_candidates, current_loc, A, Snplus1, true)
# Search the one we must chose, here the event is nothing because
# we're not processing yet the next event
ind_edge, detected_event = _get_edge_index(edge_candidates, nbr_candidates, detected_event, nothing)
# Update the state with the chosen one (if it exists)
# Should be xn here
if ind_edge > 0
edge_candidates[ind_edge].update_state!(A, Snplus1, xnplus1)
end
first_round = false
if verbose
@show turns
@show edge_candidates
@show ind_edge, detected_event, nbr_candidates
println("After update")
@show Snplus1
end
if (ind_edge == 0)
break
end
# For debug
if turns > 100
println("Number of turns in next_state! is suspicious")
@show first_round, detected_event
@show length(edge_candidates)
@show tnplus1, tr_nplus1, xnplus1
@show edge_candidates
for edge in edge_candidates
@show edge.check_constraints(A, Snplus1)
end
error("Unpredicted behavior automaton")
end
end
if verbose
@show Snplus1
println("Time flies with the flow...")
end
# Now time flies according to the flow
for i in eachindex(Snplus1.values)
coeff_deriv = (A.flow[Snplus1.loc])[i]
if coeff_deriv > 0
Snplus1.values[i] += coeff_deriv*(tnplus1 - Snplus1.time)
end
end
Snplus1.time = tnplus1
if verbose
@show Snplus1
end
# Now firing an edge according to the event
first_round = true
while first_round || length(edge_candidates) > 0
turns += 1
#edge_candidates = empty!(edge_candidates)
current_loc = Snplus1.loc
# Save all edges that satisfies transition predicate (synchronous ones)
nbr_candidates =_find_edge_candidates!(edge_candidates, current_loc, A, Snplus1, false)
# Search the one we must chose
ind_edge, detected_event = _get_edge_index(edge_candidates, nbr_candidates, detected_event, tr_nplus1)
# Update the state with the chosen one (if it exists)
if verbose
@show turns
@show edge_candidates
@show ind_edge, detected_event, nbr_candidates
end
if ind_edge > 0
edge_candidates[ind_edge].update_state!(A, Snplus1, xnplus1)
end
first_round = false
if verbose
println("After update")
@show detected_event
@show Snplus1
end
if (ind_edge == 0 || detected_event)
break
end
# For debug
if turns > 100
println("Number of turns in next_state! is suspicious")
@show detected_event
@show length(edge_candidates)
@show tnplus1, tr_nplus1, xnplus1
@show edge_candidates
for edge in edge_candidates
@show edge.check_constraints(A, Snplus1)
end
error("Unpredicted behavior automaton")
end
end
end
# For tests purposes
function read_trajectory(A::LHA, σ::Trajectory; verbose = false)
@assert (σ.m).dim_state == σ.m.dim_obs_state # Model should be entirely obserbed
A_new = LHA(A, (σ.m)._map_obs_var_idx)
l_t = times(σ)
l_tr = transitions(σ)
Sn = init_state(A_new, σ[1], l_t[1])
Snplus1 = copy(Sn)
if verbose println("Init: ") end
if verbose @show Sn end
for n in 1:length_states(σ)
next_state!(Snplus1, A_new, σ[n], l_t[n], l_tr[n], Sn; verbose = verbose)
copyto!(Sn, Snplus1)
if Snplus1.loc in A_new.locations_final
break
end
end
return Sn
end