-
Bentriou Mahmoud authoredBentriou Mahmoud authored
network_model.jl 11.28 KiB
using MacroTools
function get_multiplicand_and_species(expr::Expr)
@assert expr.args[1] == :*
multiplicand = reduce(*, expr.args[2:(end-1)])
sym_species = expr.args[end]
return (multiplicand, sym_species)
end
get_multiplicand_and_species(sym::Symbol) = (1, sym)
function get_multiplicand_and_species(expr::Real)
if expr == 0
return (0, :∅)
else
error("A number can't be a species identifier")
end
end
#=
function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict)
str_propensity = ""
for op in propensity.args[2:end]
if haskey(dict_species, op)
str_propensity *= "xn[$(dict_species[op])] * "
elseif haskey(dict_params, op)
str_propensity *= "p[$(dict_params[op])] * "
else
str_propensity *= "$(op) * "
end
end
return str_propensity[1:(end-2)]
end
=#
function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict)
operator_expr = propensity.args[1]
operands_expr = propensity.args[2:end]
if (operator_expr in [:+, :-]) && length(operands_expr) == 1
return "($(operator_expr)" * "$(get_str_propensity(operands_expr[1], dict_species, dict_params)))"
end
str_propensity = "("
for op in operands_expr[1:(end-1)]
str_propensity *= "$(get_str_propensity(op, dict_species, dict_params))" * "$(operator_expr)"
end
str_propensity *= "$(get_str_propensity(operands_expr[end], dict_species, dict_params)))"
return str_propensity
end
function get_str_propensity(propensity::Symbol, dict_species::Dict, dict_params::Dict)
if haskey(dict_species, propensity)
return "xn[$(dict_species[propensity])]"
elseif haskey(dict_params, propensity)
return "p[$(dict_params[propensity])]"
else
error("Error during the parsing of propensity functions: a symbol is neither a parameter or a species.")
end
end
get_str_propensity(propensity::Real, dict_species::Dict, dict_params::Dict) = "$(propensity)"
function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Expr, list_species::Vector)
for operand in propensity.args[2:end]
fill_params!(dict_params, l_dim_params, operand, list_species)
end
end
function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Symbol, list_species::Vector)
if !(propensity in list_species) && !haskey(dict_params, propensity)
l_dim_params[1] += 1
dict_params[propensity] = l_dim_params[1]
end
end
fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Real, list_species::Vector) = nothing
macro network_model(expr_network,expr_name...)
transitions = Transition[]
dict_species = Dict{VariableModel,Int}()
dict_params = Dict{ParameterModel,Int}()
dim_state = 0
dim_params = 0
l_dim_params = [0]
list_expr_reactions = Any[]
empty_symbols = [:∅]
# First we detect all of the species
for expr_reaction in expr_network.args
local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_))
if isreaction
push!(list_expr_reactions, expr_reaction)
push!(transitions, TR)
# Parsing reactants, products
for reaction_part in [reactants, products]
# If there's several species interacting / produced
if typeof(reaction_part) <: Expr && reaction_part.args[1] == :+
for operand in reaction_part.args[2:end]
mult, sym_species = get_multiplicand_and_species(operand)
if !haskey(dict_species, sym_species) && !(sym_species in empty_symbols)
dim_state += 1
dict_species[sym_species] = dim_state
end
end
else
mult, sym_species = get_multiplicand_and_species(reaction_part)
if !haskey(dict_species, sym_species) && !(sym_species in empty_symbols)
dim_state += 1
dict_species[sym_species] = dim_state
end
end
end
end
if !isreaction && !(typeof(expr_reaction) <: LineNumberNode)
error("Error in an expression describing a reaction")
end
end
list_species = [species for species in keys(dict_species)]
# Then we detect parameters in propensity expressions
# Parameters are the symbols that are not species (at this point we know all of the involved species)
allowed_op_in_propensity = [:*]
for expr_reaction in list_expr_reactions
local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_))
fill_params!(dict_params, l_dim_params, propensity, list_species)
#=
if typeof(propensity) <: Expr
@assert propensity.args[1] in allowed_op_in_propensity "Only product of species/params/constants are allowed in propensity"
for operand in propensity.args[2:end]
if typeof(operand) <: Symbol
# If it's not a species, it's a parameter
if !(operand in list_species) && !haskey(dict_params, operand)
dim_params += 1
dict_params[operand] = dim_params
end
end
end
elseif typeof(propensity) <: Symbol
if !(propensity in list_species) && !haskey(dict_params, propensity)
dim_params += 1
dict_params[propensity] = dim_params
end
end
if !isreaction && !(typeof(expr_reaction) <: LineNumberNode)
error("Error in an expression describing a reaction")
end
=#
end
dim_params = l_dim_params[1]
# Creation of names variables
model_name = isempty(expr_name) ? "Network" : expr_name[1]
model_name = Symbol(replace(model_name, ' ' => '_') * "Model")
id = MarkovProcesses.newid()
nbr_reactions = length(list_expr_reactions)
basename_func = "$(model_name)_$(id)"
basename_func = replace(basename_func, '-'=>'_')
# Writing of f!
symbol_func_f! = Symbol("$(basename_func)_f!")
str_expr_model_f! = "function $(symbol_func_f!)(xnplus1::Vector{Int}, l_t::Vector{Float64}, l_tr::Vector{Transition}, xn::Vector{Int}, tn::Float64, p::Vector{Float64})\n\t"
# Computation of nu and propensity functions in f!
str_l_a = "l_a = SVector("
str_test_isabsorbing = "@inbounds("
l_nu = [zeros(Int, dim_state) for i = 1:nbr_reactions]
for (i, expr_reaction) in enumerate(list_expr_reactions)
local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_))
# Writing of propensities function
str_propensity = get_str_propensity(propensity, dict_species, dict_params)
str_expr_model_f! *= "@inbounds a$(i) = " * str_propensity * "\n\t"
# Anticipating the write of the function isabsorbing
str_test_isabsorbing *= str_propensity * "+"
# Update the nu of the i-th reaction
nu = l_nu[i]
if typeof(reactants) <: Expr && reactants.args[1] == :+
for operand in reactants.args[2:end]
mult, sym_species = get_multiplicand_and_species(operand)
if !(sym_species in empty_symbols)
nu[dict_species[sym_species]] -= mult
end
end
else
mult, sym_species = get_multiplicand_and_species(reactants)
if !(sym_species in empty_symbols)
nu[dict_species[sym_species]] -= mult
end
end
if typeof(products) <: Expr && products.args[1] == :+
for operand in products.args[2:end]
mult, sym_species = get_multiplicand_and_species(operand)
if !(sym_species in empty_symbols)
nu[dict_species[sym_species]] += mult
end
end
else
mult, sym_species = get_multiplicand_and_species(products)
if !(sym_species in empty_symbols)
nu[dict_species[sym_species]] += mult
end
end
str_expr_model_f! *= "nu_$i = $(Tuple(nu))\n\t"
# Anticipating the line l_a = (..)
str_l_a *= "a$(i), "
end
str_test_isabsorbing = str_test_isabsorbing[1:(end-1)] * ")"
str_l_a = str_l_a[1:(end-2)] * ")\n\t"
str_expr_model_f! *= str_l_a
str_expr_model_f! *= "asum = sum(l_a)\n\t"
str_expr_model_f! *= "if asum == 0.0\n\t\t"
str_expr_model_f! *= "copyto!(xnplus1, xn)\n\t\t"
str_expr_model_f! *= "return nothing\n\t"
str_expr_model_f! *= "end\n\t"
# Computation of array of transitions
str_expr_model_f! *= "l_nu = SVector(" * reduce(*, ["nu_$i, " for i = 1:nbr_reactions])[1:(end-2)] * ")\n\t"
str_expr_model_f! *= "l_sym_R = SVector$(Tuple(transitions))\n\t"
# Simulation of the reaction
str_expr_model_f! *= "u1 = rand()\n\t"
str_expr_model_f! *= "u2 = rand()\n\t"
str_expr_model_f! *= "tau = - log(u1) / asum\n\t"
str_expr_model_f! *= "b_inf = 0.0\n\t"
str_expr_model_f! *= "b_sup = a1\n\t"
str_expr_model_f! *= "reaction = 0\n\n\t"
str_expr_model_f! *= "for i = 1:$(nbr_reactions)\n\t\t"
str_expr_model_f! *= "if b_inf < asum*u2 < b_sup\n\t\t\t"
str_expr_model_f! *= "reaction = i\n\t\t\t"
str_expr_model_f! *= "break\n\t\t"
str_expr_model_f! *= "end\n\t\t"
str_expr_model_f! *= "@inbounds b_inf += l_a[i]\n\t\t"
str_expr_model_f! *= "@inbounds b_sup += l_a[i+1]\n\t"
str_expr_model_f! *= "end\n\t"
str_expr_model_f! *= "nu = l_nu[reaction]\n\t"
str_expr_model_f! *= "for i = 1:$(dim_state)\n\t\t"
str_expr_model_f! *= "@inbounds xnplus1[i] = xn[i]+nu[i]\n\t"
str_expr_model_f! *= "end\n\t"
str_expr_model_f! *= "@inbounds l_t[1] = tn + tau\n\t"
str_expr_model_f! *= "@inbounds l_tr[1] = l_sym_R[reaction]\n"
str_expr_model_f! *= "end\n"
# Writing of isabsorbing
symbol_func_isabsorbing = Symbol("isabsorbing_$(basename_func)")
str_expr_model_isabsorbing = "$(symbol_func_isabsorbing)(p::Vector{Float64},xn::Vector{Int}) = $(str_test_isabsorbing) === 0.0"
# Creation of code
expr_model_f! = Meta.parse(str_expr_model_f!)
expr_model_isabsorbing = Meta.parse(str_expr_model_isabsorbing)
map_idx_var_model = Dict(value => key for (key, value) in dict_species)
model_g = [map_idx_var_model[i] for i = 1:length(list_species)]
return quote
@everywhere @eval $(MarkovProcesses.generate_code_model_type_def(model_name))
@everywhere @eval $(MarkovProcesses.generate_code_model_type_constructor(model_name))
@everywhere @eval $(MarkovProcesses.generate_code_simulation(model_name, symbol_func_f!, symbol_func_isabsorbing))
@everywhere @eval $expr_model_f!
@everywhere @eval $expr_model_isabsorbing
getfield(Main, $(Meta.quot(model_name)))($dim_state, $dim_params, $dict_species, $dict_params, $transitions,
$(zeros(dim_params)), $(zeros(Int, dim_state)), 0.0,
$(Meta.quot(symbol_func_f!)), $(Meta.quot(symbol_func_isabsorbing)); g = $model_g)
end
end