Skip to content
Snippets Groups Projects
Commit 119c1c41 authored by Bentriou Mahmoud's avatar Bentriou Mahmoud
Browse files

add of a new automaton for computing euclidean distances + tests

parent 4ba2e876
No related branches found
No related tags found
No related merge requests found
function create_euclidean_distance_automaton_2(m::ContinuousTimeModel, timeline::AbstractVector{Float64}, observations::AbstractVector{Float64}, sym_obs::VariableModel)
# Requirements for the automaton
@assert sym_obs in m.g "$(sym_obs) is not observed."
@assert length(timeline) == length(observations) "Timeline and observations vectors don't have the same length"
nbr_observations = length(observations)
# Locations
locations = [:l0, :lfinal]
for i = 1:nbr_observations
push!(locations, Symbol("l$(i)"))
end
## Invariant predicates
@everywhere true_inv_predicate(x::Vector{Int}) = true
Λ_F = Dict{Location, Function}()
for loc in locations
Λ_F[loc] = getfield(Main, :true_inv_predicate)
end
## Init and final loc
locations_init = [:l0]
locations_final = [:lfinal]
map_var_automaton_idx = Dict{VariableAutomaton,Int}(:t => 1, :n => 2, :d => 3)
vector_flow = [1.0, 0.0, 0.0]
flow = Dict{Location, Vector{Float64}}()
for loc in locations
flow[loc] = vector_flow
end
## Edges
map_edges = Dict{Location, Dict{Location, Vector{Edge}}}()
for loc in locations
map_edges[loc] = Dict{Location, Vector{Edge}}()
end
idx_obs_var = getfield(m, :map_var_idx)[sym_obs]
to_idx(var::Symbol) = map_var_automaton_idx[var]
nbr_rand = rand(1:1000)
basename_func = "$(replace(m.name, ' '=>'_'))_$(nbr_rand)"
basename_func = replace(basename_func, '-'=>'_')
func_name(type_func::Symbol, from_loc::Location, to_loc::Location, edge_number::Int) =
Symbol("$(type_func)_eucl_dist_aut_2_$(basename_func)_$(from_loc)$(to_loc)_$(edge_number)$(type_func == :us ? "!" : "")")
loc_nbr_obs = Symbol("l$(nbr_observations)")
meta_elementary_functions = quote
# l0 loc
# l0 => l1
@everywhere $(func_name(:cc, :l0, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = true
@everywhere $(func_name(:us, :l0, :l1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
(setfield!(S, :loc, Symbol("l1"));
setindex!(getfield(S, :values), x[$(idx_obs_var)], $(to_idx(:n)));
setindex!(getfield(S, :values), 0.0, $(to_idx(:d))))
# lnbr_obs => lfinal
@everywhere $(func_name(:cc, loc_nbr_obs, :lfinal, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
get_value(S, $(to_idx(:t))) >= $(timeline[nbr_observations])
@everywhere $(func_name(:us, loc_nbr_obs, :lfinal, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
(setfield!(S, :loc, Symbol("lfinal"));
setindex!(getfield(S, :values), get_value(S, $(to_idx(:d))) + (get_value(S, $(to_idx(:n)))-$(observations[nbr_observations]))^2,
$(to_idx(:d)));
setindex!(getfield(S, :values), sqrt(get_value(S, $(to_idx(:d)))), $(to_idx(:d))))
# lnbr_obs => lnbr_obs
@everywhere $(func_name(:cc, loc_nbr_obs, loc_nbr_obs, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = true
@everywhere $(func_name(:us, loc_nbr_obs, loc_nbr_obs, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
(setindex!(getfield(S, :values), x[$(idx_obs_var)], $(to_idx(:n))))
end
eval(meta_elementary_functions)
# l0 loc
# l0 => l1
edge1 = Edge([nothing], getfield(Main, func_name(:cc, :l0, :l1, 1)), getfield(Main, func_name(:us, :l0, :l1, 1)))
map_edges[:l0][:l1] = [edge1]
# lnbr_obs => lfinal
edge1 = Edge([nothing], getfield(Main, func_name(:cc, loc_nbr_obs, :lfinal, 1)), getfield(Main, func_name(:us, loc_nbr_obs, :lfinal, 1)))
map_edges[loc_nbr_obs][:lfinal] = [edge1]
# lnbr_obs => lnbr_obs
edge1 = Edge([:ALL], getfield(Main, func_name(:cc, loc_nbr_obs, loc_nbr_obs, 1)), getfield(Main, func_name(:us, loc_nbr_obs, loc_nbr_obs, 1)))
map_edges[loc_nbr_obs][loc_nbr_obs] = [edge1]
for i = 1:(nbr_observations-1)
loci = Symbol("l$(i)")
locip1 = Symbol("l$(i+1)")
meta_elementary_functions_loci = quote
# l1 loc
# l1 => l1
# Defined below
@everywhere $(func_name(:cc, loci, locip1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
get_value(S, $(to_idx(:t))) >= $(timeline[i])
@everywhere $(func_name(:us, loci, locip1, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
(setfield!(S, :loc, $(Meta.quot(locip1)));
setindex!(getfield(S, :values), get_value(S, $(to_idx(:d))) + (get_value(S, $(to_idx(:n)))-$(observations[i]))^2,
$(to_idx(:d))))
@everywhere $(func_name(:cc, loci, loci, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) = true
@everywhere $(func_name(:us, loci, loci, 1))(S::StateLHA, x::Vector{Int}, p::Vector{Float64}) =
(setindex!(getfield(S, :values), x[$(idx_obs_var)], $(to_idx(:n))))
end
eval(meta_elementary_functions_loci)
# loci => loci+1
edge1 = Edge([nothing], getfield(Main, func_name(:cc, loci, locip1, 1)), getfield(Main, func_name(:us, loci, locip1, 1)))
map_edges[loci][locip1] = [edge1]
# loci => loci
edge1 = Edge([:ALL], getfield(Main, func_name(:cc, loci, loci, 1)), getfield(Main, func_name(:us, loci, loci, 1)))
map_edges[loci][loci] = [edge1]
end
## Constants
constants = Dict{Symbol,Float64}(:nbr_obs => nbr_observations)
A = LHA("Euclidean distance", m.transitions, locations, Λ_F, locations_init, locations_final,
map_var_automaton_idx, flow, map_edges, constants, m.map_var_idx)
return A
end
export create_euclidean_distance_automaton_2
......@@ -4,37 +4,77 @@ import LinearAlgebra: dot
import Distributions: Uniform
load_automaton("euclidean_distance_automaton")
load_automaton("euclidean_distance_automaton_2")
load_model("SIR")
load_model("ER")
observe_all!(SIR)
observe_all!(ER)
test_all = true
# SIR model
nbr_sim = 10
nbr_sim = 20
for i = 1:nbr_sim
set_param!(SIR, [:ki, :kr], [rand(Uniform(5E-5, 3E-3)), rand(Uniform(5E-3, 0.2))])
let tml_obs, y_obs, sync_SIR, σ, test
let tml_obs, y_obs, sync_SIR, σ, test, test2
tml_obs = rand(Uniform(0.0, 5.0)):1.0:rand(Uniform(50.0, 100.0))
y_obs = vectorize(simulate(SIR), :I, tml_obs)
sync_SIR = SIR * create_euclidean_distance_automaton(SIR, tml_obs, y_obs, :I)
σ = simulate(sync_SIR)
test = euclidean_distance(σ, :I, tml_obs, y_obs) == σ.state_lha_end[:d]
#@show test, euclidean_distance(σ, tml_obs, y_obs, :I), σ.state_lha_end[:d]
global test_all = test_all && test
if !test
@show test, euclidean_distance(σ, :I, tml_obs, y_obs), σ.state_lha_end[:d]
global err = σ
global tml = tml_obs
global y = y_obs
global sync_model = sync_SIR
break
end
sync_SIR = SIR * create_euclidean_distance_automaton_2(SIR, tml_obs, y_obs, :I)
σ = simulate(sync_SIR)
test2 = euclidean_distance(σ, :I, tml_obs, y_obs) == σ.state_lha_end[:d]
if !test2
@show test2, euclidean_distance(σ, :I, tml_obs, y_obs), σ.state_lha_end[:d]
global err = σ
global tml = tml_obs
global y = y_obs
global sync_model = sync_SIR
break
end
global test_all = test_all && test && test2
end
end
# ER model
for i = 1:nbr_sim
let tml_obs, y_obs, sync_SIR, σ, test
let tml_obs, y_obs, sync_SIR, σ, test, test2
set_param!(ER, :k3, rand(Uniform(0.0, 100.0)))
tml_obs = rand(Uniform(0.0, 0.2)):1.0:rand(Uniform(0.5,10.0))
y_obs = vectorize(simulate(ER), :P, tml_obs)
sync_ER = ER * create_euclidean_distance_automaton(ER, tml_obs, y_obs, :P)
σ = simulate(sync_ER)
test = euclidean_distance(σ, :P, tml_obs, y_obs) == σ.state_lha_end[:d]
if !test
@show test, euclidean_distance(σ, :P, tml_obs, y_obs), σ.state_lha_end[:d]
global err = σ
global tml = tml_obs
global y = y_obs
global sync_model = sync_ER
break
end
sync_ER = ER * create_euclidean_distance_automaton_2(ER, tml_obs, y_obs, :P)
σ = simulate(sync_ER)
test2 = euclidean_distance(σ, :P, tml_obs, y_obs) == σ.state_lha_end[:d]
if !test2
@show test2, euclidean_distance(σ, :P, tml_obs, y_obs), σ.state_lha_end[:d]
global err = σ
global tml = tml_obs
global y = y_obs
global sync_model = sync_ER
break
end
#@show test, euclidean_distance(σ, tml_obs, y_obs, :P), σ.state_lha_end[:d]
global test_all = test_all && test
global test_all = test_all && test && test2
end
end
......
......@@ -4,12 +4,21 @@ import LinearAlgebra: dot
import Distributions: Uniform
load_automaton("euclidean_distance_automaton")
load_automaton("euclidean_distance_automaton_2")
load_model("SIR")
tml_obs = 0:0.5:200
set_time_bound!(SIR, 200.0)
y_obs = vectorize(simulate(SIR), :I, tml_obs)
sync_SIR = SIR * create_euclidean_distance_automaton(SIR, tml_obs, y_obs, :I)
aut1 = create_euclidean_distance_automaton(SIR, tml_obs, y_obs, :I)
sync_SIR = SIR * aut1
σ = simulate(sync_SIR)
test = euclidean_distance(σ, :I, tml_obs, y_obs) == σ.state_lha_end[:d]
aut2 = create_euclidean_distance_automaton_2(SIR, tml_obs, y_obs, :I)
sync_SIR = SIR * aut2
σ = simulate(sync_SIR)
@show euclidean_distance(σ, :I, tml_obs, y_obs), σ.state_lha_end[:d]
test = euclidean_distance(σ, :I, tml_obs, y_obs) == σ.state_lha_end[:d]
return test
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment