Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MarkovProcesses.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Bentriou Mahmoud
MarkovProcesses.jl
Commits
5a9333ee
Commit
5a9333ee
authored
1 year ago
by
Mahmoud Bentriou
Browse files
Options
Downloads
Patches
Plain Diff
New feature: new method for RF ABC model choice, when the dataset is already simulated.
parent
8151024c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#30280
failed
1 year ago
Stage: build
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algorithms/abc_model_choice.jl
+53
-15
53 additions, 15 deletions
algorithms/abc_model_choice.jl
test/abc_model_choice/toy_example.jl
+7
-1
7 additions, 1 deletion
test/abc_model_choice/toy_example.jl
with
60 additions
and
16 deletions
algorithms/abc_model_choice.jl
+
53
−
15
View file @
5a9333ee
...
...
@@ -2,6 +2,7 @@
struct
AbcModelChoiceDataset
models_indexes
::
Vector
{
Int
}
summary_stats_matrix
::
Matrix
summary_stats_observations
epsilon
::
Float64
end
...
...
@@ -41,6 +42,7 @@ The mandatory arguments are:
The result is a `AbcModelChoiceDataset` with fields:
* `summary_stats_matrix`: the (N_stats, N_ref) features matrix. Accessible via `.X`.
* `summary_stats_observations`: the observations used for simulating the dataset.
* `models_indexes`: the labels vector. Accessible via `.y`.
If specified, `dir_results` is the directory where the summary statistics matrix and associated models are stored (CSV).
...
...
@@ -113,15 +115,18 @@ function _abc_model_choice_dataset(models::Vector{<:Union{Model,ParametricModel}
close
(
file_cfg
)
end
return
AbcModelChoiceDataset
(
knn_models_indexes
,
knn_summary_stats_matrix
,
distances
[
k_nn
[
end
]])
return
AbcModelChoiceDataset
(
knn_models_indexes
,
knn_summary_stats_matrix
,
summary_stats_observations
,
distances
[
k_nn
[
end
]])
end
function
_distributed_abc_model_choice_dataset
(
models
::
Vector
{
<:
Union
{
Model
,
ParametricModel
}},
models_prior
::
DiscreteUnivariateDistribution
,
summary_stats_observations
,
summary_stats_func
::
Function
,
distance_func
::
Function
,
k
::
Int
,
N
::
Int
;
dir_results
::
Union
{
Nothing
,
String
}
=
nothing
)
function
_distributed_abc_model_choice_dataset
(
models
::
Vector
{
<:
Union
{
Model
,
ParametricModel
}},
models_prior
::
DiscreteUnivariateDistribution
,
summary_stats_observations
,
summary_stats_func
::
Function
,
distance_func
::
Function
,
k
::
Int
,
N
::
Int
;
dir_results
::
Union
{
Nothing
,
String
}
=
nothing
)
@assert
length
(
models
)
>=
2
"Should contain at least 2 models"
@assert
ncategories
(
models_prior
)
==
length
(
models
)
"Number of
categories of
models' prior and number of models do not equal"
@assert
ncategories
(
models_prior
)
==
length
(
models
)
"Number of models' prior
categories
and number of models do not equal"
models_indexes
=
SharedVector
{
Int
}(
N
)
summary_stats_matrix
=
SharedMatrix
{
eltype
(
summary_stats_observations
)}(
length
(
summary_stats_observations
),
N
)
...
...
@@ -157,7 +162,8 @@ function _distributed_abc_model_choice_dataset(models::Vector{<:Union{Model,Para
close
(
file_cfg
)
end
return
AbcModelChoiceDataset
(
knn_models_indexes
,
knn_summary_stats_matrix
,
distances
[
k_nn
[
end
]])
return
AbcModelChoiceDataset
(
knn_models_indexes
,
knn_summary_stats_matrix
,
summary_stats_observations
,
distances
[
k_nn
[
end
]])
end
"""
...
...
@@ -175,7 +181,6 @@ The mandatory arguments are:
* `summary_stats_func::Function`: the function that computes the summary statistics over a model simulation.
The optional arguments are:
* `abc_trainset`: an already simulated dataset with ``abc_model_choice_dataset` (by default: nothing)
* `models_prior`: the prior over the models (by default: discrete uniform distribution)
* `k`: the k nearest samples from the observations to keep in the reference table (by default: k = N_ref)
* `distance_func`: the distance function, has to be defined if k < N_ref
...
...
@@ -192,30 +197,63 @@ The result is a `RandomForestABC` object with fields:
"""
function
rf_abc_model_choice
(
models
::
Vector
{
<:
Union
{
Model
,
ParametricModel
}},
summary_stats_observations
,
summary_stats_func
::
Function
,
N_ref
::
Int
;
abc_trainset
::
Union
{
Nothing
,
AbcModelChoiceDataset
}
=
nothing
,
summary_stats_func
::
Function
,
N_ref
::
Int
;
models_prior
::
DiscreteUnivariateDistribution
=
Categorical
([
1
/
length
(
models
)
for
i
=
1
:
length
(
models
)]),
k
::
Int
=
N_ref
,
distance_func
::
Function
=
(
x
,
y
)
->
1
,
hyperparameters_range
::
Dict
=
Dict
(
:
n_estimators
=>
[
200
],
:
min_samples_leaf
=>
[
1
],
:
min_samples_split
=>
[
2
]))
@assert
k
<=
N_ref
if
isnothing
(
abc_trainset
)
abc_trainset
=
abc_model_choice_dataset
(
models
,
models_prior
,
summary_stats_observations
,
summary_stats_func
,
distance_func
,
k
,
N_ref
)
end
abc_trainset
=
abc_model_choice_dataset
(
models
,
models_prior
,
summary_stats_observations
,
summary_stats_func
,
distance_func
,
k
,
N_ref
)
gridsearch
=
GridSearchCV
(
RandomForestClassifier
(
oob_score
=
true
),
hyperparameters_range
)
fit!
(
gridsearch
,
transpose
(
abc_trainset
.
X
),
abc_trainset
.
y
)
best_rf
=
gridsearch
.
best_estimator_
return
RandomForestABC
(
abc_trainset
,
best_rf
,
summary_stats_observations
,
predict
(
best_rf
,
[
summary_stats_observations
]))
end
"""
rf_abc_model_choice(abc_trainset;
k::Int = N_ref, distance_func::Function = (x,y) -> 1,
hyperparameters_range::Dict)
Run the Random Forest Approximate Bayesian Computation model choice method with an already simulated dataset.
The mandatory arguments are:
* `abc_trainset`: an already simulated dataset with ``abc_model_choice_dataset`
The optional arguments are:
* `hyperparameters_range`: a dict with the hyperparameters range values for the cross validation fit of the
Random Forest (by default: `Dict(:n_estimators => [200], :min_samples_leaf => [1], :min_samples_split => [2])`).
See scikit-learn documentation of RandomForestClassifier for the hyperparameters name.
The result is a `RandomForestABC` object with fields:
* `reference_table` an AbcModelChoiceDataset that corresponds to the reference table of the algorithm,
* `clf` a random forest classifier (PyObject from scikit-learn),
* `summary_stats_observations` are the summary statitics of the observations
* `estim_model` is the underlying model of the observations inferred with the RF-ABC method.
"""
function
rf_abc_model_choice
(
abc_trainset
::
MarkovProcesses
.
AbcModelChoiceDataset
;
hyperparameters_range
::
Dict
=
Dict
(
:
n_estimators
=>
[
200
],
:
min_samples_leaf
=>
[
1
],
:
min_samples_split
=>
[
2
]))
gridsearch
=
GridSearchCV
(
RandomForestClassifier
(
oob_score
=
true
),
hyperparameters_range
)
fit!
(
gridsearch
,
transpose
(
abc_trainset
.
X
),
abc_trainset
.
y
)
best_rf
=
gridsearch
.
best_estimator_
return
RandomForestABC
(
abc_trainset
,
best_rf
,
summary_stats_observations
,
predict
(
best_rf
,
[
summary_stats_observations
]))
return
RandomForestABC
(
abc_trainset
,
best_rf
,
abc_trainset
.
summary_stats_observations
,
predict
(
best_rf
,
[
abc_trainset
.
summary_stats_observations
]))
end
"""
posterior_proba_model(rf_abc::RandomForestABC)
Estimates the posterior probability of the model ``P(M =
\\
widehat{M}(s_{obs}) | s_{obs})`` with the Random Forest ABC method.
"""
function
posterior_proba_model
(
rf_abc
::
RandomForestABC
)
@assert
rf_abc
.
summary_stats_observations
==
rf_abc
.
reference_table
.
summary_stats_observations
oob_votes
=
rf_abc
.
clf
.
oob_decision_function_
y_pred_oob
=
argmax
.
([
oob_votes
[
i
,
:
]
for
i
=
1
:
size
(
oob_votes
)[
1
]])
y_oob_regression
=
y_pred_oob
.!=
rf_abc
.
reference_table
.
y
...
...
This diff is collapsed.
Click to expand it.
test/abc_model_choice/toy_example.jl
+
7
−
1
View file @
5a9333ee
...
...
@@ -44,7 +44,8 @@ observations = simulate(m3)
ss_observations
=
ss_func
(
observations
)
models
=
[
m1
,
m2
,
m3
]
println
(
"Testset 10000 samples"
)
@timev
abc_testset
=
abc_model_choice_dataset
(
models
,
ss_observations
,
ss_func
,
dist_l2
,
10000
,
10000
;
dir_results
=
"toy_ex"
)
@timev
abc_testset
=
abc_model_choice_dataset
(
models
,
ss_observations
,
ss_func
,
dist_l2
,
10000
,
10000
;
dir_results
=
"toy_ex"
)
list_lh
=
[
lh_m1
,
lh_m2
,
lh_m3
]
prob_model
(
ss
,
list_lh
,
idx_model
)
=
list_lh
[
idx_model
](
ss
)
/
sum
([
list_lh
[
i
](
ss
)
for
i
=
eachindex
(
list_lh
)])
...
...
@@ -72,11 +73,16 @@ savefig("set.svg")
grid
=
Dict
(
:
n_estimators
=>
[
500
],
:
min_samples_leaf
=>
[
1
],
:
min_samples_split
=>
[
2
],
:
n_jobs
=>
[
8
])
println
(
"RF ABC"
)
# When rf_abc_model_choice simulates the abc dataset
@timev
res_rf_abc
=
rf_abc_model_choice
(
models
,
ss_observations
,
ss_func
,
29000
;
hyperparameters_range
=
grid
)
@show
posterior_proba_model
(
res_rf_abc
)
X_testset
=
transpose
(
abc_testset
.
X
)
println
(
classification_report
(
y_true
=
abc_testset
.
y
,
y_pred
=
predict
(
res_rf_abc
.
clf
,
X_testset
)))
@show
accuracy_score
(
abc_testset
.
y
,
predict
(
res_rf_abc
.
clf
,
X_testset
))
# When rf_abc_model_choice uses an already simulated dataset
@timev
abc_dataset
=
abc_model_choice_dataset
(
models
,
ss_observations
,
ss_func
,
dist_l2
,
29000
,
29000
)
@timev
res_rf_abc
=
rf_abc_model_choice
(
abc_dataset
;
hyperparameters_range
=
grid
)
@show
posterior_proba_model
(
res_rf_abc
)
return
true
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment