Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
MarkovProcesses.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Bentriou Mahmoud
MarkovProcesses.jl
Commits
7a33a34f
Commit
7a33a34f
authored
4 years ago
by
Bentriou Mahmoud
Browse files
Options
Downloads
Patches
Plain Diff
network_model macro can get any form of propensity function now
parent
a9a7a453
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
core/network_model.jl
+48
-10
48 additions, 10 deletions
core/network_model.jl
with
48 additions
and
10 deletions
core/network_model.jl
+
48
−
10
View file @
7a33a34f
...
...
@@ -16,6 +16,7 @@ function get_multiplicand_and_species(expr::Real)
end
end
#=
function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict)
str_propensity = ""
for op in propensity.args[2:end]
...
...
@@ -29,17 +30,46 @@ function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::D
end
return str_propensity[1:(end-2)]
end
=#
function
get_str_propensity
(
propensity
::
Expr
,
dict_species
::
Dict
,
dict_params
::
Dict
)
operator_expr
=
propensity
.
args
[
1
]
operands_expr
=
propensity
.
args
[
2
:
end
]
if
(
operator_expr
in
[
:+
,
:-
])
&&
length
(
operands_expr
)
==
1
return
"(
$(operator_expr)
"
*
"
$
(get_str_propensity(operands_expr[1], dict_species, dict_params)))"
end
str_propensity
=
"("
for
op
in
operands_expr
[
1
:
(
end
-
1
)]
str_propensity
*=
"
$
(get_str_propensity(op, dict_species, dict_params))"
*
"
$(operator_expr)
"
end
str_propensity
*=
"
$
(get_str_propensity(operands_expr[end], dict_species, dict_params)))"
return
str_propensity
end
function
get_str_propensity
(
propensity
::
Symbol
,
dict_species
::
Dict
,
dict_params
::
Dict
)
str_propensity
=
String
(
propensity
)
if
haskey
(
dict_species
,
str_propensity
)
str_propensity
=
"xn[
$
(dict_species[str_propensity])]"
elseif
haskey
(
dict_params
,
str_propensity
)
str_propensity
=
"p[
$
(dict_params[str_propensity])]"
if
haskey
(
dict_species
,
propensity
)
return
"xn[
$
(dict_species[propensity])]"
elseif
haskey
(
dict_params
,
propensity
)
return
"p[
$
(dict_params[propensity])]"
else
str_propensity
=
"
$(str_propensity)
"
error
(
"Error during the parsing of propensity functions: a symbol is neither a parameter or a species."
)
end
end
get_str_propensity
(
propensity
::
Real
,
dict_species
::
Dict
,
dict_params
::
Dict
)
=
"
$(propensity)
"
function
fill_params!
(
dict_params
::
Dict
{
ParameterModel
,
Int
},
l_dim_params
::
Vector
{
Int
},
propensity
::
Expr
,
list_species
::
Vector
)
for
operand
in
propensity
.
args
[
2
:
end
]
fill_params!
(
dict_params
,
l_dim_params
,
operand
,
list_species
)
end
end
function
fill_params!
(
dict_params
::
Dict
{
ParameterModel
,
Int
},
l_dim_params
::
Vector
{
Int
},
propensity
::
Symbol
,
list_species
::
Vector
)
if
!
(
propensity
in
list_species
)
&&
!
haskey
(
dict_params
,
propensity
)
l_dim_params
[
1
]
+=
1
dict_params
[
propensity
]
=
l_dim_params
[
1
]
end
return
str_propensity
end
fill_params!
(
dict_params
::
Dict
{
ParameterModel
,
Int
},
l_dim_params
::
Vector
{
Int
},
propensity
::
Real
,
list_species
::
Vector
)
=
nothing
macro
network_model
(
expr_network
,
expr_name
...
)
model_name
=
isempty
(
expr_name
)
?
"Unnamed macro generated"
:
expr_name
[
1
]
...
...
@@ -48,6 +78,7 @@ macro network_model(expr_network,expr_name...)
dict_params
=
Dict
{
ParameterModel
,
Int
}()
dim_state
=
0
dim_params
=
0
l_dim_params
=
[
0
]
list_expr_reactions
=
Any
[]
empty_symbols
=
[
:
∅
]
# First we detect all of the species
...
...
@@ -83,10 +114,13 @@ macro network_model(expr_network,expr_name...)
list_species
=
[
species
for
species
in
keys
(
dict_species
)]
# Then we detect parameters in propensity expressions
# Parameters are the symbols that are not species (at this point we know all of the involved species)
allowed_op_in_propensity
=
[
:*
]
for
expr_reaction
in
list_expr_reactions
local
isreaction
=
@capture
(
expr_reaction
,
TR_
:
(
reactants_
=>
products_
,
propensity_
))
fill_params!
(
dict_params
,
l_dim_params
,
propensity
,
list_species
)
#=
if typeof(propensity) <: Expr
@assert
propensity
.
args
[
1
]
==
:*
"Only product of species/params/constants are allowed in propensity"
@assert propensity.args[1]
in allowed_op_in_propensity
"Only product of species/params/constants are allowed in propensity"
for operand in propensity.args[2:end]
if typeof(operand) <: Symbol
# If it's not a species, it's a parameter
...
...
@@ -105,7 +139,9 @@ macro network_model(expr_network,expr_name...)
if !isreaction && !(typeof(expr_reaction) <: LineNumberNode)
error("Error in an expression describing a reaction")
end
=#
end
dim_params
=
l_dim_params
[
1
]
# Let's write some lines that creates the function f! (step of a simulation) for this biochemical network
nbr_rand
=
rand
(
1
:
1000
)
nbr_reactions
=
length
(
list_expr_reactions
)
...
...
@@ -155,7 +191,7 @@ macro network_model(expr_network,expr_name...)
# Anticipating the line l_a = (..)
str_l_a
*=
"a
$(i)
, "
end
str_test_isabsorbing
=
str_test_isabsorbing
[
1
:
(
end
-
2
)]
*
")"
str_test_isabsorbing
=
str_test_isabsorbing
[
1
:
(
end
-
1
)]
*
")"
str_l_a
=
str_l_a
[
1
:
(
end
-
2
)]
*
")
\n\t
"
expr_model_f!
*=
str_l_a
expr_model_f!
*=
"asum = sum(l_a)
\n\t
"
...
...
@@ -191,8 +227,10 @@ macro network_model(expr_network,expr_name...)
expr_model_isabsorbing
=
"isabsorbing_
$(basename_func)
(p::Vector{Float64},xn::Vector{Int}) =
$(str_test_isabsorbing)
=== 0.0"
model_f!
=
eval
(
Meta
.
parse
(
expr_model_f!
))
model_isabsorbing
=
eval
(
Meta
.
parse
(
expr_model_isabsorbing
))
map_idx_var_model
=
Dict
(
value
=>
key
for
(
key
,
value
)
in
dict_species
)
model_g
=
[
map_idx_var_model
[
i
]
for
i
=
1
:
length
(
list_species
)]
return
:
(
ContinuousTimeModel
(
$
dim_state
,
$
dim_params
,
$
dict_species
,
$
dict_params
,
$
transitions
,
$
(
zeros
(
dim_params
)),
$
(
zeros
(
Int
,
dim_state
)),
0.0
,
$
model_f!
,
$
model_isabsorbing
;
g
=
$
list_species
,
name
=$
model_name
))
g
=
$
model_g
,
name
=$
model_name
))
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment