Skip to content
Snippets Groups Projects
Commit 7a33a34f authored by Bentriou Mahmoud's avatar Bentriou Mahmoud
Browse files

network_model macro can get any form of propensity function now

parent a9a7a453
No related branches found
No related tags found
No related merge requests found
......@@ -16,6 +16,7 @@ function get_multiplicand_and_species(expr::Real)
end
end
#=
function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict)
str_propensity = ""
for op in propensity.args[2:end]
......@@ -29,17 +30,46 @@ function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::D
end
return str_propensity[1:(end-2)]
end
=#
function get_str_propensity(propensity::Expr, dict_species::Dict, dict_params::Dict)
operator_expr = propensity.args[1]
operands_expr = propensity.args[2:end]
if (operator_expr in [:+, :-]) && length(operands_expr) == 1
return "($(operator_expr)" * "$(get_str_propensity(operands_expr[1], dict_species, dict_params)))"
end
str_propensity = "("
for op in operands_expr[1:(end-1)]
str_propensity *= "$(get_str_propensity(op, dict_species, dict_params))" * "$(operator_expr)"
end
str_propensity *= "$(get_str_propensity(operands_expr[end], dict_species, dict_params)))"
return str_propensity
end
function get_str_propensity(propensity::Symbol, dict_species::Dict, dict_params::Dict)
str_propensity = String(propensity)
if haskey(dict_species, str_propensity)
str_propensity = "xn[$(dict_species[str_propensity])]"
elseif haskey(dict_params, str_propensity)
str_propensity = "p[$(dict_params[str_propensity])]"
if haskey(dict_species, propensity)
return "xn[$(dict_species[propensity])]"
elseif haskey(dict_params, propensity)
return "p[$(dict_params[propensity])]"
else
str_propensity = "$(str_propensity)"
error("Error during the parsing of propensity functions: a symbol is neither a parameter or a species.")
end
end
get_str_propensity(propensity::Real, dict_species::Dict, dict_params::Dict) = "$(propensity)"
function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Expr, list_species::Vector)
for operand in propensity.args[2:end]
fill_params!(dict_params, l_dim_params, operand, list_species)
end
end
function fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Symbol, list_species::Vector)
if !(propensity in list_species) && !haskey(dict_params, propensity)
l_dim_params[1] += 1
dict_params[propensity] = l_dim_params[1]
end
return str_propensity
end
fill_params!(dict_params::Dict{ParameterModel,Int}, l_dim_params::Vector{Int},
propensity::Real, list_species::Vector) = nothing
macro network_model(expr_network,expr_name...)
model_name = isempty(expr_name) ? "Unnamed macro generated" : expr_name[1]
......@@ -48,6 +78,7 @@ macro network_model(expr_network,expr_name...)
dict_params = Dict{ParameterModel,Int}()
dim_state = 0
dim_params = 0
l_dim_params = [0]
list_expr_reactions = Any[]
empty_symbols = [:]
# First we detect all of the species
......@@ -83,10 +114,13 @@ macro network_model(expr_network,expr_name...)
list_species = [species for species in keys(dict_species)]
# Then we detect parameters in propensity expressions
# Parameters are the symbols that are not species (at this point we know all of the involved species)
allowed_op_in_propensity = [:*]
for expr_reaction in list_expr_reactions
local isreaction = @capture(expr_reaction, TR_: (reactants_ => products_, propensity_))
fill_params!(dict_params, l_dim_params, propensity, list_species)
#=
if typeof(propensity) <: Expr
@assert propensity.args[1] == :* "Only product of species/params/constants are allowed in propensity"
@assert propensity.args[1] in allowed_op_in_propensity "Only product of species/params/constants are allowed in propensity"
for operand in propensity.args[2:end]
if typeof(operand) <: Symbol
# If it's not a species, it's a parameter
......@@ -105,7 +139,9 @@ macro network_model(expr_network,expr_name...)
if !isreaction && !(typeof(expr_reaction) <: LineNumberNode)
error("Error in an expression describing a reaction")
end
=#
end
dim_params = l_dim_params[1]
# Let's write some lines that creates the function f! (step of a simulation) for this biochemical network
nbr_rand = rand(1:1000)
nbr_reactions = length(list_expr_reactions)
......@@ -155,7 +191,7 @@ macro network_model(expr_network,expr_name...)
# Anticipating the line l_a = (..)
str_l_a *= "a$(i), "
end
str_test_isabsorbing = str_test_isabsorbing[1:(end-2)] * ")"
str_test_isabsorbing = str_test_isabsorbing[1:(end-1)] * ")"
str_l_a = str_l_a[1:(end-2)] * ")\n\t"
expr_model_f! *= str_l_a
expr_model_f! *= "asum = sum(l_a)\n\t"
......@@ -191,8 +227,10 @@ macro network_model(expr_network,expr_name...)
expr_model_isabsorbing = "isabsorbing_$(basename_func)(p::Vector{Float64},xn::Vector{Int}) = $(str_test_isabsorbing) === 0.0"
model_f! = eval(Meta.parse(expr_model_f!))
model_isabsorbing = eval(Meta.parse(expr_model_isabsorbing))
map_idx_var_model = Dict(value => key for (key, value) in dict_species)
model_g = [map_idx_var_model[i] for i = 1:length(list_species)]
return :(ContinuousTimeModel($dim_state, $dim_params, $dict_species, $dict_params, $transitions,
$(zeros(dim_params)), $(zeros(Int, dim_state)), 0.0, $model_f!, $model_isabsorbing;
g = $list_species, name=$model_name))
g = $model_g, name=$model_name))
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment