Newer
Older
import dataloader
import model
import test
def optimizer(cfg, model):
result = {"Adam" : torch.optim.Adam(model.parameters())}
return result[cfg["Optimizer"]]
logging.basicConfig(filename='logs/main_unit_test.log', level=logging.INFO)
config_file = open("config.yml")
cfg = yaml.load(config_file)
use_cuda = torch.cuda.is_available()
trainpath = cfg["Dataset"]["_DEFAULT_TRAIN_FILEPATH"]
num_days = int(cfg["Dataset"]["num_days"])
batch_size = int(cfg["Dataset"]["batch_size"])
num_workers = int(cfg["Dataset"]["num_workers"])
valid_ratio = float(cfg["Dataset"]["valid_ratio"])
max_num_samples = eval(cfg["Dataset"]["max_num_samples"])
train_loader, valid_loader = dataloader.get_dataloaders(
trainpath,
num_days,
batch_size,
num_workers,
use_cuda,
valid_ratio,
overwrite_index=True,
if use_cuda :
device = torch.device('cuda')
else :
device = toch.device('cpu')
#model = model.build_model(cfg, 18)
model = nn.Sequential(
nn.Linear(18,1,False),
nn.ReLU()
)
for param in list(model.parameters()):
param = 1
#optimizer = torch.optim.Adam((model.parameters()), lr = 10000)
for t in range(cfg["Training"]["Epochs"]):
print("Epoch {}".format(t))
train(model, train_loader, f_loss, optimizer, device)
val_loss = test.test(model, valid_loader, f_loss, device)
print(" Validation : Loss : {:.4f}".format(val_loss))
logdir = generate_unique_logpath(top_logdir, "linear")
print("Logging to {}".format(logdir))
# -> Prints out Logging to ./logs/linear_1
if not os.path.exists(logdir):