Skip to content
Snippets Groups Projects
Commit d21d7df4 authored by Yandi's avatar Yandi
Browse files

[Debug] Trying to understand why does not converge

parent c1356bff
No related branches found
No related tags found
1 merge request!1Master into main
...@@ -107,7 +107,7 @@ if __name__ == "__main__": ...@@ -107,7 +107,7 @@ if __name__ == "__main__":
print(" Validation : Loss : {:.4f}".format(val_loss)) print(" Validation : Loss : {:.4f}".format(val_loss))
create_submission.create_submission(network, None) create_submission.create_submission(network, None, device)
""" """
logdir = generate_unique_logpath(top_logdir, "linear") logdir = generate_unique_logpath(top_logdir, "linear")
print("Logging to {}".format(logdir)) print("Logging to {}".format(logdir))
......
...@@ -11,11 +11,28 @@ class LinearRegression(nn.Module): ...@@ -11,11 +11,28 @@ class LinearRegression(nn.Module):
super(LinearRegression, self).__init__() super(LinearRegression, self).__init__()
self.input_size = input_size self.input_size = input_size
self.bias = cfg["LinearRegression"]["Bias"] self.bias = cfg["LinearRegression"]["Bias"]
self.regressor = nn.Linear(input_size, 1, self.bias) self.hidden_size = int(cfg["LinearRegression"]["HiddenSize"])
self.activate = nn.ReLU() self.regressor = nn.Sequential(
nn.Linear(input_size,self.hidden_size,self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size, self.hidden_size, self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,self.hidden_size,self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,self.hidden_size,self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,self.hidden_size,self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,self.hidden_size,self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,self.hidden_size, self.bias),
nn.ReLU(),
nn.Linear(self.hidden_size,1, self.bias),
nn.ReLU()
)
def forward(self, x): def forward(self, x):
y = self.regressor(x).view((x.shape[0],-1)) return self.regressor(x)
return self.activate(y)
def build_model(cfg, input_size): def build_model(cfg, input_size):
return eval(f"{cfg['Model']['Name']}(cfg, input_size)") return eval(f"{cfg['Model']['Name']}(cfg, input_size)")
......
...@@ -41,14 +41,14 @@ def train(model, loader, f_loss, optimizer, device): ...@@ -41,14 +41,14 @@ def train(model, loader, f_loss, optimizer, device):
Y = list(model.parameters())[0].grad.cpu().tolist() Y = list(model.parameters())[0].grad.cpu().tolist()
gradients.append(np.mean(Y)) #gradients.append(np.mean(Y))
tar.append(np.mean(outputs.cpu().tolist())) #tar.append(np.mean(outputs.cpu().tolist()))
out.append(np.mean(targets.cpu().tolist())) #out.append(np.mean(targets.cpu().tolist()))
optimizer.step() optimizer.step()
visualize_gradients(gradients) #visualize_gradients(gradients)
visualize_gradients(tar) #visualize_gradients(tar)
visualize_gradients(out) #visualize_gradients(out)
def visualize_gradients(gradients): def visualize_gradients(gradients):
print(gradients) print(gradients)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment