Skip to content
Snippets Groups Projects
Commit a44f9df6 authored by Simon's avatar Simon
Browse files

update readme

parent f88b8e8d
No related branches found
No related tags found
No related merge requests found
# To Complete # A Recurrent Variational Autoencoder for Speech Enhancement
\ No newline at end of file
This repository contains the implementation of the speech enhancement method proposed in:
>S. Leglaive, X. Alameda-Pineda, L. Girin, R. Horaud, [A Recurrent Variational Autoencoder for Speech Enhancement](https://hal.archives-ouvertes.fr/hal-02329000/document), in Proc. of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2020.
Audio examples are available [here](https://sleglaive.github.io/demo-icassp2020.html).
If you use this code, please cite the above-mentioned paper ([Bibtex](https://hal.archives-ouvertes.fr/hal-02329000v1/bibtex)).
## Repository structure
```bash
.
├── audio
│ ├── mix_qut_wsj0.wav
│ ├── mix_sunrise.wav
│ └── mix_thierry_roland.wav
├── environment.yml
├── LICENSE.txt
├── main.py
├── README.md
├── saved_model
│ ├── WSJ0_2019-07-15-10h01_RVAE_BRNNenc_BRNNdec_latent_dim=16
│ │ ├── final_model_RVAE_epoch145.pt
│ │ ├── loss.pdf
│ │ ├── loss_RVAE.pckl
│ │ ├── parameters.pckl
│ │ └── parameters.txt
│ ├── WSJ0_2019-07-15-10h14_RVAE_RNNenc_RNNdec_latent_dim=16
│ │ ├── final_model_RVAE_epoch121.pt
│ │ ├── loss.pdf
│ │ ├── loss_RVAE.pckl
│ │ ├── parameters.pckl
│ │ └── parameters.txt
│ └── WSJ0_2019-07-15-10h21_FFNN_VAE_latent_dim=16
│ ├── final_model_RVAE_epoch65.pt
│ ├── loss.pdf
│ ├── loss_RVAE.pckl
│ ├── parameters.pckl
│ └── parameters.txt
├── SE_algorithms.py
└── training
├── speech_dataset.py
├── train_BRNN_WSJ0.py
├── train_FFNN_WSJ0.py
├── train_RNN_WSJ0.py
└── VAEs.py
```
## Python files
* ```main.py```: Main script to run the speech enhancement algorithms. If you just want to test the method quickly, run this script. Input and output audio files are located in the ```audio``` folder.
* ```SE_algorithms.py```: Implementation of the speech enhancement algorithms (MCEM, PEEM, VEM).
* ```./training/speech_dataset.py```: Custom Pytorch dataset for training.
* ```./training/VAEs.py```: Pytorch implementation of the FFNN, RNN and BRNN variational autoencoders (VAEs).
* ```./training/train_FFNN_WSJ0.py```: Script to train the FFNN VAE.
* ```./training/train_RNN_WSJ0.py```: Script to train the RNN VAE.
* ```./training/train_BRNN_WSJ0.py```: Script to train the BRNN VAE.
## Conda environment
```environment.yml``` describes the conda environment that was used for the experiments.
## License
GNU Affero General Public License (version 3), see ```LICENSE.txt```.
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment