-
Bentriou Mahmoud authored
automata and proba moels are differents. This bug was introduced after we change the structure of automata in order to better distributed programming. It leads to a restructuration of automata. In fine, the structure is more stable and consistent. It is possible it is more computationally efficient, but for now it is not well tested. 2) Creation of functions that collects data along with a timeline over a trajectory + unit test vectorize. 3) Very small fix in plots and abc smc.
Bentriou Mahmoud authoredautomata and proba moels are differents. This bug was introduced after we change the structure of automata in order to better distributed programming. It leads to a restructuration of automata. In fine, the structure is more stable and consistent. It is possible it is more computationally efficient, but for now it is not well tested. 2) Creation of functions that collects data along with a timeline over a trajectory + unit test vectorize. 3) Very small fix in plots and abc smc.
trajectory.jl 11.07 KiB
# Top-level Lp distance function
"""
`dist_lp(l_σ1, l_σ2; verbose, p, str_stat_list, str_stat_trajectory)`
Function that computes Lp distance between two set of any dimensional trajectories.
...
# Arguments
- `l_σ1::Vector{AbstractTrajectory}` is the first set of trajectories. l_σ2 is the second.
- `verbose::Bool` If `true`, launch a verbose execution of the computation.
- `str_stat_list::String` allows to set the statistic to apply on the distances of the trajectories.
It is salso called linkage function in clustering field. Only "mean" is available for now on.
...
"""
function dist_lp(l_σ1::Vector{<:AbstractTrajectory}, l_σ2::Vector{<:AbstractTrajectory};
verbose::Bool = false, p::Int = 1, str_stat_list::String = "mean", str_stat_trajectory::String = "mean")
if str_stat_list == "mean"
return dist_lp_mean(l_σ1, l_σ2; verbose = verbose, p = p, str_stat_trajectory = str_stat_trajectory)
end
error("Unrecognized statistic in dist_lp")
end
"""
`dist_lp(σ1, σ2; verbose, p, str_stat)`
Function that computes Lp distance between two trajectories of any dimension.
It computes Lp distances for each observed variable (contained in `get_obs_var(σ)`). and then apply a statistic on these distances.
Requires `get_obs_var(σ1) == get_obs_var(σ2)`, it is verified if they are simulated from the same model.
...
# Arguments
- `σ1::AbstractTrajectory` is the first trajectory. σ2 is the second.
- `verbose::Bool` If `true`, launch a verbose execution of the computation.
- `str_stat::String` allows to set the statistic to apply on the distances computed of the trajectories.
Only "mean" is available for now on.
...
"""
function dist_lp(σ1::AbstractTrajectory, σ2::AbstractTrajectory;
verbose::Bool = false, p::Int = 1, str_stat::String = "mean")
if str_stat == "mean"
return dist_lp_mean(σ1, σ2; verbose = verbose, p = p)
end
error("Unrecognized statistic in dist_lp")
end
"""
`dist_lp(σ1, σ2, var; verbose, p, str_stat)`
Function that computes Lp distance between two trajectories of any dimension.
It computes Lp distances for each observed variable (contained in `get_obs_var(σ)`). and then apply a statistic on these distances.
Requires `get_obs_var(σ1) == get_obs_var(σ2)`, it is verified if they are simulated from the same model.
...
# Arguments
- `σ1::AbstractTrajectory` is the first trajectory. σ2 is the second.
- `var::Symbol` is an observed variable. Have to be contained in `get_obs_var(σ1)` and `get_obs_var(σ2)`.
- `verbose::Bool` If `true`, launch a verbose execution of the computation.
...
"""
function dist_lp(σ1::AbstractTrajectory, σ2::AbstractTrajectory, var::VariableModel;
verbose::Bool = false, p::Int = 1)
if !isbounded(σ1) || !isbounded(σ2)
@warn "Lp distance computed on unbounded trajectories. Result should be wrong"
end
return dist_lp(σ1[var], times(σ1), σ2[var], times(σ2); verbose = false, p = p)
end
# Distance function. Vectorized version
function dist_lp(x_obs::Vector{Int}, t_x::Vector{Float64}, y_obs::Vector{Int}, t_y::Vector{Float64};
verbose::Bool = false, p::Int = 1)
current_y_obs = y_obs[1]
current_t_y = t_y[2]
idx = 1
res = 0.0
for i = 1:(length(x_obs)-1)
if verbose
@show i
@show (t_x[i], x_obs[i])
@show current_t_y
@show t_x[i+1]
end
last_t_y = t_x[i]
while current_t_y < t_x[i+1]
rect = abs(current_y_obs - x_obs[i])^p * (current_t_y - last_t_y)
res += rect
if verbose
println("-- in loop :")
println("-- add : $rect abs($current_y_obs - $(x_obs[i]))^p * ($current_t_y - $(last_t_y)) / $(abs(current_y_obs - x_obs[i])^p) * $(current_t_y - last_t_y)")
print("-- ")
@show current_y_obs, current_t_y
end
idx += 1
last_t_y = t_y[idx]
current_y_obs = y_obs[idx]
current_t_y = t_y[idx+1]
end
last_t_read = max(last_t_y, t_x[i])
rect = abs(current_y_obs - x_obs[i])^p * (t_x[i+1] - last_t_read)
res += rect
if verbose
println("add : $rect abs($current_y_obs - $(x_obs[i]))^p * ($(t_x[i+1]) - $last_t_read) / $(abs(current_y_obs - x_obs[i])^p) * $(t_x[i+1] - last_t_read)")
@show t_x[i+1], t_y[idx+1]
@show y_obs[idx], x_obs[i]
@show last_t_read
@show current_y_obs
end
end
return res^(1/p)
end
# For all the observed variables
function dist_lp_mean(σ1::AbstractTrajectory, σ2::AbstractTrajectory;
verbose::Bool = false, p::Int = 1)
if get_obs_var(σ1) != get_obs_var(σ2) error("Lp distances should be computed with the same observed variables") end
res = 0.0
for var in get_obs_var(σ1)
res += dist_lp(σ1, σ2, var; verbose = verbose, p = p)
end
return res / length_obs_var(σ1)
end
# For a list of trajectories
function dist_lp_mean(l_σ1::Vector{<:AbstractTrajectory}, l_σ2::Vector{<:AbstractTrajectory};
verbose::Bool = false, p::Int = 1, str_stat_trajectory::String = "mean")
res = 0.0
for σ1 in l_σ1
for σ2 in l_σ2
res += dist_lp(σ1, σ2; verbose = verbose, p = p, str_stat = str_stat_trajectory)
end
end
return res / (length(l_σ1)*length(l_σ2))
end
# Get the value at any time
function _f_step(l_x::AbstractArray, l_t::AbstractArray, t::Float64)
@assert length(l_x) == length(l_t)
for i = 1:(length(l_t)-1)
if l_t[i] <= t < l_t[i+1]
return l_x[i]
end
end
if l_t[end] == t
return l_x[end]
end
return missing
end
# Riemann sum
function _riemann_sum(f::Function, t_begin::Real, t_end::Real, step::Float64)
res = 0.0
l_t = collect(t_begin:step:t_end)
for i in 2:length(l_t)
res += f(l_t[i]) * (l_t[i] - l_t[i-1])
end
return res
end
function vectorize(σ::AbstractTrajectory, sym_var::Symbol,
timeline::AbstractVector{Float64})
times_var = times(σ)
time_end = isbounded(σ) ? times_var[end] : Inf
@assert timeline[end] <= time_end "Trajectory is bounded and timeline is out of bounds."
states_var = σ[sym_var]
nbr_states = length(states_var)
nbr_points = length(timeline)
trajectory_points = zeros(nbr_points)
index_timeline = 1
for i = eachindex(states_var)
next_transition_time = (i < nbr_states) ? times_var[i+1] : time_end*1.01
while index_timeline <= nbr_points && timeline[index_timeline] < next_transition_time
trajectory_points[index_timeline] = states_var[i]
index_timeline += 1
end
if index_timeline > nbr_points
break
end
end
return trajectory_points
end
function check_consistency(σ::AbstractTrajectory)
test_length_var = true
for i = 1:σ.m.dim_obs_state
test_length_i = (length(σ.values[1]) == length(σ.values[i]))
test_length_var = test_length_var && test_length_i
end
@assert begin (length(σ.times) == length(σ.transitions)) &&
(length(σ.times) == length(σ.values[1])) &&
test_length_var
end
@assert length_obs_var(σ) == σ.m.dim_obs_state
return true
end
function Base.show(io::IO, σ::Trajectory)
print(io, "Trajectory\n")
print(io, "- Model name: $((σ.m).name) \n")
print(io, "- Variable trajectories:\n")
for obs_var in σ.m.g
print(io, "* $obs_var: $(σ[obs_var])\n")
end
print(io, "- times = $(times(σ))\n")
print(io, "- transitions = $(transitions(σ))")
end
function Base.show(io::IO, σ::SynchronizedTrajectory)
print(io, "SynchronizedTrajectory\n")
print(io, "End LHA state:\n")
print(io, σ.state_lha_end)
print(io, "\n")
print(io, "- Model name: $(σ.m.name) \n")
print(io, "- Variable trajectories:\n")
for obs_var in σ.m.g
print(io, "* $obs_var: $(σ[obs_var])\n")
end
print(io, "- times = $(times(σ))\n")
print(io, "- transitions = $(transitions(σ))")
end
# Properties of the trajectory
length_states(σ::AbstractTrajectory) = length(σ.times)
length_obs_var(σ::AbstractTrajectory) = length(σ.values)
get_obs_var(σ::AbstractTrajectory) = σ.m.g
isbounded(σ::AbstractTrajectory) = σ.transitions[end] == nothing && length_states(σ) >= 2
isaccepted(σ::SynchronizedTrajectory) = isaccepted(σ.state_lha_end)
issteadystate(σ::AbstractTrajectory) = @warn "Unimplemented"
# Access to trajectory values
get_var_values(σ::AbstractTrajectory, var::VariableModel) = σ.values[(σ.m)._map_obs_var_idx[var]]
get_state(σ::AbstractTrajectory, idx::Int) = [σ.values[i][idx] for i = 1:length(σ.values)] # /!\ Creates an array
get_value(σ::AbstractTrajectory, var::VariableModel, idx::Int) = get_var_values(σ, var)[idx]
# Operation σ@t
function get_state_from_time(σ::AbstractTrajectory, t::Float64)
@assert t >= 0.0
l_t = times(σ)
if t == l_t[end] return σ[end] end
if t > l_t[end]
if !isbounded(σ)
return σ[end]
else
error("This trajectory is bounded and you're accessing out of the bounds")
end
end
for i in eachindex(l_t)
if l_t[i] <= t < l_t[i+1]
return σ[i]
end
end
error("Unexpected behavior")
end
# Operation σ@t
function get_var_from_time(σ::AbstractTrajectory, sym_var::Symbol, t::Float64)
@assert t >= 0.0
l_t = times(σ)
if t == l_t[end] return σ[sym_var][end] end
if t > l_t[end]
if !isbounded(σ)
return σ[sym_var][end]
else
error("This trajectory is bounded and you're accessing out of the bounds")
end
end
for i in eachindex(l_t)
if l_t[i] <= t < l_t[i+1]
return σ[sym_var][i]
end
end
error("Unexpected behavior")
end
function getproperty(σ::SynchronizedTrajectory, sym::Symbol)
if sym == :sm
return getfield(σ, :sm)
elseif sym == :m
return getfield(σ.sm, :m)
elseif sym in keys((σ.sm).m.map_var_idx)
return get_var_values(σ, sym)
else
return getfield(σ, sym)
end
end
function getproperty(σ::Trajectory, sym::Symbol)
if sym == :m
return getfield(σ, :m)
elseif sym in keys((σ.m).map_var_idx)
return get_var_values(σ, sym)
else
return getfield(σ, sym)
end
end
states(σ::AbstractTrajectory) = σ.values
times(σ::AbstractTrajectory) = σ.times
transitions(σ::AbstractTrajectory) = σ.transitions
# Get i-th state [i]
getindex(σ::AbstractTrajectory, idx::Int) = get_state(σ, idx)
# Get i-th value of var [:I, idx]
getindex(σ::AbstractTrajectory, var::VariableModel, idx::Int) = get_value(σ, var, idx)
# Get the path of a variable [:I]
getindex(σ::AbstractTrajectory, var::VariableModel) = get_var_values(σ, var)
lastindex(σ::AbstractTrajectory) = length_states(σ)
# Operations
function +(σ1::AbstractTrajectory,σ2::AbstractTrajectory) end
function -(σ1::AbstractTrajectory,σ2::AbstractTrajectory) end
δ(σ::AbstractTrajectory,idx::Int) = times(σ)[i+1] - times(σ)[i]