Skip to content
Snippets Groups Projects
  • Bentriou Mahmoud's avatar
    5d886fc4
    The package becomes more meta to reach higher performance. · 5d886fc4
    Bentriou Mahmoud authored
    This commit groups the change operated to the creation of models and
    simulate function of a ContinuousTimeModel.
    The general idea is to create a concrete type and a simulate function
     per model creation by metaprogramming.
    - Now, ContinuousTimeModel is an abstract type. Each creation of a model
    defines a concrete type T <: ContinuousTimeModel by meta programming.
    - f! and isabsorbing ContinuousTimeModel fields are Symbols.
    - simulate(::ContinuousTimeModel) is run by multiple dispatch, according
    to the type of the model.
    
    Can't run the whole tests for now but unit/simulate_available_models.jl
    runs properly (i've updated the list of models in this commit), and I've
    manually checked in the repl that simulations run correctly (distributed
    / plots).
    5d886fc4
    History
    The package becomes more meta to reach higher performance.
    Bentriou Mahmoud authored
    This commit groups the change operated to the creation of models and
    simulate function of a ContinuousTimeModel.
    The general idea is to create a concrete type and a simulate function
     per model creation by metaprogramming.
    - Now, ContinuousTimeModel is an abstract type. Each creation of a model
    defines a concrete type T <: ContinuousTimeModel by meta programming.
    - f! and isabsorbing ContinuousTimeModel fields are Symbols.
    - simulate(::ContinuousTimeModel) is run by multiple dispatch, according
    to the type of the model.
    
    Can't run the whole tests for now but unit/simulate_available_models.jl
    runs properly (i've updated the list of models in this commit), and I've
    manually checked in the repl that simulations run correctly (distributed
    / plots).
poisson.jl 1.31 KiB

import StaticArrays: SVector, SMatrix, @SVector, @SMatrix
import Distributions: Poisson, rand

d=1
k=1
dict_var_poisson = Dict(:N => 1)
dict_p_poisson = Dict(:λ => 1)
l_tr_poisson = [:R]
p_poisson = [5.0]
x0_poisson = [0]
t0_poisson = 0.0
@everywhere function Poisson_f!(xnplus1::Vector{Int}, l_t::Vector{Float64}, l_tr::Vector{Transition},
                                xn::Vector{Int}, tn::Float64, p::Vector{Float64})
    
    u1 = rand()
    tau = (-log(u1)/p[1])
    xnplus1[1] += 1
    l_t[1] = tn + tau
    l_tr[1] = :R
end
@everywhere isabsorbing_Poisson(p::Vector{Float64}, xn::Vector{Int}) = p[1] === 0.0
g_poisson = [:N]

@everywhere @eval $(MarkovProcesses.generate_code_model_type_def(:PoissonModel))
@everywhere @eval $(MarkovProcesses.generate_code_model_type_constructor(:PoissonModel))
@everywhere @eval $(MarkovProcesses.generate_code_simulation(:PoissonModel, :Poisson_f!, :isabsorbing_Poisson))

poisson = PoissonModel(d, k, dict_var_poisson, dict_p_poisson, l_tr_poisson,
                       p_poisson, x0_poisson, t0_poisson,
                       :Poisson_f!, :isabsorbing_Poisson; g=g_poisson, time_bound=1.0)

function create_poisson(new_p::Vector{Float64})
    poisson_new = deepcopy(poisson)
    @assert length(poisson_new.p) == length(new_p)
    set_param!(poisson_new, new_p)
    return poisson_new
end