Newer
Older
Muller Sacha
committed
from Traj3D import Traj3D
P1 = 0.015
''' Un individu est caractérisé par sa table de rotations (individu.table)'''
lineList = [line.rstrip('\n') for line in open("plasmid_8k.fasta")]
brin = ''.join(lineList[1:])
lineList = [line.rstrip('\n') for line in open("plasmid_8k.fasta")]
self.brin = ''.join(lineList[1:])
#self.brin = "AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCCAGTAAACGAAAAAACCGCCTGGGGAGGCGGTTTAGTCGAA"
''' Evalue le score d'un individu sur un nombre numb_ajout de points'''
fisrt_seq = self.brin[0:numb_ajout]
last_seq = self.brin[-numb_ajout:]
traj.compute(last_seq + self.brin + fisrt_seq, self.table)
begining = traj_array[0:2*numb_ajout]
end = traj_array[-2*numb_ajout:]
nuc_coordonate_beg = begining[i]
nuc_coordonate_end = end[i]
distance_nuc = np.linalg.norm(nuc_coordonate_beg - nuc_coordonate_end, ord=2)
list_distance += [distance_nuc]
self.score = max(list_distance)
#return max(list_distance)
def mutation(self, proba = P1):
table_rotations = self.table.rot_table
for doublet in sorted(table_rotations.keys()) :
for coord in range(3):
tir = random()
if tir < proba :
table_rotations[doublet][coord] =np.random.uniform(low = self.table.orta()[doublet][coord] - self.table.orta()[doublet][coord + 3], high = self.table.orta()[doublet][coord] + self.table.orta()[doublet][coord + 3])
Muller Sacha
committed
doublet2 = self.table.corr()[doublet]
Muller Sacha
committed
table_rotations[doublet2][coord] = table_rotations[doublet][coord]
else :
#sur l'axe z il y a un moins
table_rotations[doublet2][coord] = - table_rotations[doublet][coord]
def mutation_with_numbers(self, proba = P1, number_of_mutations = 1):
table_rotation_not_seen = [i for i in sorted(table_rotations.keys())]
table_rotation_not_seen = table_rotation_not_seen[:8]
tir = random()
if tir < proba :
for i in range(0,number_of_mutations):
doublet = choice(table_rotation_not_seen)
table_rotation_not_seen.remove(doublet)
for coord in range(3):
table_rotations[doublet][coord] =np.random.uniform(low = self.table.orta()[doublet][coord] - self.table.orta()[doublet][coord + 3], high = self.table.orta()[doublet][coord] + self.table.orta()[doublet][coord + 3])
doublet2 = self.table.corr()[doublet]
if coord == 0 or coord == 1 :
table_rotations[doublet2][coord] = table_rotations[doublet][coord]
else :
#sur l'axe z il y a un moins
table_rotations[doublet2][coord] = - table_rotations[doublet][coord]
def mutation_close_values(self, proba = P1, number_of_mutations = 1):
table_rotations = self.table.rot_table
table_rotation_not_seen = [i for i in sorted(table_rotations.keys())]
table_rotation_not_seen = table_rotation_not_seen[:8]
tir = random()
if tir < proba :
for i in range(0,number_of_mutations):
doublet = choice(table_rotation_not_seen)
table_rotation_not_seen.remove(doublet)
for coord in range(3):
value = table_rotations[doublet][coord] + np.random.normal(0, self.table.orta()[doublet][coord + 3]/15)
if value > self.table.orta()[doublet][coord] + self.table.orta()[doublet][coord + 3]:
value = self.table.orta()[doublet][coord] + self.table.orta()[doublet][coord + 3]
elif value < self.table.orta()[doublet][coord] - self.table.orta()[doublet][coord + 3]:
value = self.table.orta()[doublet][coord] - self.table.orta()[doublet][coord + 3]
table_rotations[doublet][coord] = value
doublet2 = self.table.corr()[doublet]
if coord == 0 or coord == 1 :
table_rotations[doublet2][coord] = table_rotations[doublet][coord]
else :
#sur l'axe z il y a un moins
table_rotations[doublet2][coord] = - table_rotations[doublet][coord]
# individu1 = Individu(RotTable())
# print(individu1.table.rot_table)
# individu1.mutation()
# table = RotTable()
# test = Individu(table)
# test.evaluate("AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCCAGTAAACGAAAAAACCGCCTGGGGAGGCGGTTTAGTCGAA")
# print(test.score)
# qqun=Individu(RotTable())
# qqun.table.rot_table={'AA': [35.576558502141, 7.433901511509349, -154], 'AC': [33.22048222654215, 5.25191751302917, 143], 'AG': [26.446029097301288, 6.052240462237622, -2], 'AT': [30.47045254036881, 1.333716025628036, 0], 'CA': [34.00734209585039, 33.70710613604862, -64], 'CC': [33.61019622767888, 3.713127032109607, -57], 'CG': [29.664061041382677, 6.725155507162601, 0], 'CT': [26.446029097301288, 6.052240462237622, 2], 'GA': [36.655773481637176, 10.45337581740701, 120], 'GC': [42.26984493493484, 3.5310453395352823, 180], 'GG': [33.61019622767888, 3.713127032109607, -57], 'GT': [33.22048222654215, 5.25191751302917, 143], 'TA': [36.951508786388914, -2.5174751178033303, 0], 'TC': [36.655773481637176, 10.45337581740701, -120], 'TG': [34.00734209585039, 33.70710613604862, -64], 'TT': [35.576558502141, 7.433901511509349, -154]}
# qqun.evaluate("AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCCAGTAAACGAAAAAACCGCCTGGGGAGGCGGTTTAGTCGAA")
# print(qqun.score)